[1] X. Wei, Y. Zhang, L. Liu, and T. J. R. Hughes, “Truncated T-splines: Fundamentals and methods,” Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 349–372, Apr. 2017. http://www.sciencedirect.com/science/article/pii/S004578251630771X
[2] D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes, “Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 1005–1061, Apr. 2017. http://www.sciencedirect.com/science/article/pii/S004578251631533X
[3] S. K. F. Stoter, P. Müller, L. Cicalese, M. Tuveri, D. Schillinger, and T. J. R. Hughes, “A diffuse interface method for the Navier–Stokes/Darcy equations: Perfusion profile for a patient-specific human liver based on MRI scans,” Computer Methods in Applied Mechanics and Engineering, vol. 321, pp. 70–102, Jul. 2017. http://www.sciencedirect.com/science/article/pii/S0045782516316644
[4] B. Marussig and T. J. R. Hughes, “A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects,” Arch Computat Methods Eng, pp. 1–69, Jun. 2017. https://link.springer.com/article/10.1007/s11831-017-9220-9
[5] G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, and H. Gomez, “Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth,” Computer Methods in Applied Mechanics and Engineering, vol. 319, pp. 515–548, Jun. 2017. http://www.sciencedirect.com/science/article/pii/S0045782516318254
[6] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes, “Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 314, pp. 408–472, Feb. 2017. https://www.sciencedirect.com/science/article/pii/S0045782516308015
[7] R. R. Hiemstra, F. Calabrò, D. Schillinger, and T. J. R. Hughes, “Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 966–1004, Apr. 2017. http://www.sciencedirect.com/science/article/pii/S004578251631489X
[8] H. Zhu, N. Petra, G. Stadler, T. Isaac, T. J. R. Hughes, and O. Ghattas, “Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model,” The Cryosphere, vol. 10, no. 4, pp. 1477–1494, Jul. 2016. http://www.the-cryosphere.net/10/1477/2016/
[9] X. Wei, Y. Zhang, L. Liu, and T. J. R. Hughes, “Truncated T-splines: Fundamentals and methods,” Computer Methods in Applied Mechanics and Engineering, Jul. 2016. https://www.sciencedirect.com/science/article/pii/S004578251630771X
[10] X. Wei, Y. J. Zhang, T. J. R. Hughes, and M. A. Scott, “Extended Truncated Hierarchical Catmull–Clark Subdivision,” Computer Methods in Applied Mechanics and Engineering, vol. 299, pp. 316–336, Feb. 2016. https://www.sciencedirect.com/science/article/pii/S0045782515003618
[11] D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes, “Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631533X
[12] M. Taus, G. J. Rodin, and T. J. R. Hughes, “Isogeometric analysis of boundary integral equations: High-order collocation methods for the singular and hyper-singular equations,” Math. Models Methods Appl. Sci., vol. 26, no. 08, pp. 1447–1480, Apr. 2016. http://www.worldscientific.com/doi/abs/10.1142/S0218202516500354
[13] A. A. Oberai and T. J. R. Hughes, “A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence,” Comput Mech, vol. 57, no. 4, pp. 629–635, Apr. 2016. http://link.springer.com/article/10.1007/s00466-015-1242-2
[14] G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, Y. J. Zhang, L. Liu, G. Vilanova, and H. Gomez, “Tissue-scale, personalized modeling and simulation of prostate cancer growth,” PNAS, vol. 113, no. 48, pp. E7663–E7671, Nov. 2016. http://www.pnas.org/content/113/48/E7663
[15] R. R. Hiemstra, F. Calabrò, D. Schillinger, and T. J. R. Hughes, “Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631489X
[16] M. J. Borden, T. J. R. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, “A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects,” Computer Methods in Applied Mechanics and Engineering, vol. 312, pp. 130–166, Dec. 2016. https://www.sciencedirect.com/science/article/pii/S0045782516311069
[17] X. Wei, Y. Zhang, T. J. R. Hughes, and M. A. Scott, “Truncated hierarchical Catmull–Clark subdivision with local refinement,” Computer Methods in Applied Mechanics and Engineering, vol. 291, pp. 1–20, Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0045782515001292
[18] D. Schillinger, J. A. Evans, F. Frischmann, R. R. Hiemstra, M.-C. Hsu, and T. J. R. Hughes, “A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics,” Int. J. Numer. Meth. Engng, vol. 102, no. 3–4, pp. 576–631, Apr. 2015. http://onlinelibrary.wiley.com/doi/10.1002/nme.4783/abstract
[19] S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, and A. Reali, “Patient-specific isogeometric structural analysis of aortic valve closure,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 508–520, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514003806
[20] J. Liu, C. M. Landis, H. Gomez, and T. J. R. Hughes, “Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 297, pp. 476–553, Dec. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515003011
[21] R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T. J. R. Hughes, “Isogeometric collocation for large deformation elasticity and frictional contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 296, pp. 73–112, Nov. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515002406
[22] J. Kiendl, F. Auricchio, T. J. R. Hughes, and A. Reali, “Single-variable formulations and isogeometric discretizations for shear deformable beams,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 988–1004, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004368
[23] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes, “An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 1005–1053, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004101
[24] S. S. Hossain, Y. Zhang, X. Fu, G. Brunner, J. Singh, T. J. R. Hughes, D. Shah, and P. Decuzzi, “Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease,” Journal of The Royal Society Interface, vol. 12, no. 106, p. 20150001, May 2015. http://rsif.royalsocietypublishing.org/content/12/106/20150001
[25] L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali, “Isogeometric collocation: Neumann boundary conditions and contact,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 21–54, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S004578251400245X
[26] L. Beirão Da Veiga, T. J. R. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, and H. Speleers, “A locking-free model for Reissner–Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS,” Math. Models Methods Appl. Sci., vol. 25, no. 08, pp. 1519–1551, Feb. 2015. http://www.worldscientific.com/doi/abs/10.1142/S0218202515500402
[27] C. Adam, T. J. R. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam, “Selective and reduced numerical integrations for NURBS-based isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 732–761, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004228
[28] D. Schillinger, S. J. Hossain, and T. J. R. Hughes, “Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 277, pp. 1–45, Aug. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514001339
[29] A. A. Oberai, J. Liu, D. Sondak, and T. J. R. Hughes, “A residual based eddy viscosity model for the large eddy simulation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 282, pp. 54–70, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002849
[30] T. J. R. Hughes, J. A. Evans, and A. Reali, “Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems,” Computer Methods in Applied Mechanics and Engineering, vol. 272, pp. 290–320, Apr. 2014. http://www.sciencedirect.com/science/article/pii/S0045782513003071
[31] T. J. R. Hughes, “Amplitude–phase decompositions and the growth and decay of solutions of the incompressible Navier–Stokes and Euler equations,” Math. Models Methods Appl. Sci., vol. 24, no. 05, pp. 1017–1035, May 2014. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500759
[32] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes, “Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation,” Comput Mech, vol. 54, no. 4, pp. 1055–1071, Oct. 2014. http://link.springer.com/article/10.1007/s00466-014-1059-4
[33] A. I. Ginnis, K. V. Kostas, C. G. Politis, P. D. Kaklis, K. A. Belibassakis, T. P. Gerostathis, M. A. Scott, and T. J. R. Hughes, “Isogeometric boundary-element analysis for the wave-resistance problem using T-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 279, pp. 425–439, Sep. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002230
[34] T. Elguedj and T. J. R. Hughes, “Isogeometric analysis of nearly incompressible large strain plasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 388–416, Jan. 2014. http://www.sciencedirect.com/science/article/pii/S004578251300251X
[35] L. De Lorenzis, P. Wriggers, and T. J. R. Hughes, “Isogeometric contact: a review,” GAMM-Mitteilungen, vol. 37, no. 1, pp. 85–123, 2014. http://onlinelibrary.wiley.com/doi/10.1002/gamm.201410005/abstract
[36] M. J. Borden, T. J. R. Hughes, C. M. Landis, and C. V. Verhoosel, “A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework,” Computer Methods in Applied Mechanics and Engineering, vol. 273, pp. 100–118, May 2014. http://www.sciencedirect.com/science/article/pii/S0045782514000292
[37] G. Bao, Y. Bazilevs, J.-H. Chung, P. Decuzzi, H. D. Espinosa, M. Ferrari, H. Gao, S. S. Hossain, T. J. R. Hughes, R. D. Kamm, W. K. Liu, A. Marsden, and B. Schrefler, “USNCTAM perspectives on mechanics in medicine,” Journal of The Royal Society Interface, vol. 11, no. 97, p. 20140301, Aug. 2014. http://rsif.royalsocietypublishing.org/content/11/97/20140301
[38] Y. Zhang, W. Wang, and T. J. R. Hughes, “Conformal solid T-spline construction from boundary T-spline representations,” Comput Mech, vol. 51, no. 6, pp. 1051–1059, Jun. 2013. http://link.springer.com/article/10.1007/s00466-012-0787-6
[39] W. Wang, Y. Zhang, L. Liu, and T. J. R. Hughes, “Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology,” Computer-Aided Design, vol. 45, no. 2, pp. 351–360, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0010448512002230
[40] M. A. Scott, R. N. Simpson, J. A. Evans, S. Lipton, S. P. A. Bordas, T. J. R. Hughes, and T. W. Sederberg, “Isogeometric boundary element analysis using unstructured T-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 197–221, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0045782512003386
[41] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, “Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations,” Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 170–232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X
[42] L. Liu, Y. Zhang, T. J. R. Hughes, M. A. Scott, and T. W. Sederberg, “Volumetric T-spline construction using Boolean operations,” Engineering with Computers, vol. 30, no. 4, pp. 425–439, Nov. 2013. http://link.springer.com/article/10.1007/s00366-013-0346-6
[43] J. Liu, H. Gomez, J. A. Evans, T. J. R. Hughes, and C. M. Landis, “Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations,” Journal of Computational Physics, vol. 248, pp. 47–86, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113002544
[44] J. Liu, L. Dedè, J. A. Evans, M. J. Borden, and T. J. R. Hughes, “Isogeometric analysis of the advective Cahn–Hilliard equation: Spinodal decomposition under shear flow,” Journal of Computational Physics, vol. 242, pp. 321–350, Jun. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113001186
[45] S. S. Hossain, T. J. R. Hughes, and P. Decuzzi, “Vascular Deposition Patterns for Catheter-Injected Nanoparticles in an Inflamed Patient-specific Arterial Tree,” Biomechanics and Modeling in Mechanobiology, Aug. 2013. http://link.springer.com/article/10.1007%2Fs10237-013-0520-1
[46] Y. Ghaffari Motlagh, H. T. Ahn, T. J. R. Hughes, and V. M. Calo, “Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method,” Computers & Fluids, vol. 71, pp. 146–155, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0045793012003507
[47] J. A. Evans and T. J. R. Hughes, “Isogeometric Divergence-conforming B-splines for the Unsteady Navier-Stokes Equations,” Journal of Computational Physics, 2013. http://www.sciencedirect.com/science/article/pii/S0021999113000363
[48] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY–STOKES–BRINKMAN EQUATIONS,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 04, pp. 671–741, Apr. 2013. http://www.worldscientific.com/doi/abs/10.1142/S0218202512500583
[49] J. A. Evans and T. J. R. Hughes, “Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements,” Numer. Math., vol. 123, no. 2, pp. 259–290, Feb. 2013. http://link.springer.com/article/10.1007/s00211-012-0484-6
[50] D. J. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes, “Blended isogeometric shells,” Computer Methods in Applied Mechanics and Engineering, vol. 255, pp. 133–146, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S0045782512003696
[51] W. Wang, Y. Zhang, G. Xu, and T. J. R. Hughes, “Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline,” Comput Mech, vol. 50, no. 1, pp. 65–84, Jul. 2012. http://link.springer.com/article/10.1007/s00466-011-0674-6
[52] İ. Temizer, P. Wriggers, and T. J. R. Hughes, “Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS,” Computer Methods in Applied Mechanics and Engineering, vol. 209–212, pp. 115–128, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003355
[53] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes, “Local refinement of analysis-suitable T-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 213–216, pp. 206–222, Mar. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003689
[54] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R. Hughes, “An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces,” Computer Methods in Applied Mechanics and Engineering, vol. 249–252, pp. 116–150, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200093X
[55] H. A. F. A. Santos, J. A. Evans, and T. J. R. Hughes, “Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence,” Computer Methods in Applied Mechanics and Engineering, vol. 209–212, pp. 101–114, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511002738
[56] N. Petra, H. Zhu, G. Stadler, T. J. R. Hughes, and O. Ghattas, “An inexact GaussNewton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model,” Journal of Glaciology, vol. 58, no. 211, pp. 889–903, 2012. https://www.igsoc.org/journal/58/211/t11J182.html
[57] X. Li, J. Zheng, T. W. Sederberg, T. J. R. Hughes, and M. A. Scott, “On linear independence of T-spline blending functions,” Computer Aided Geometric Design, vol. 29, no. 1, pp. 63–76, Jan. 2012. http://www.sciencedirect.com/science/article/pii/S0167839611000938
[58] S. S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T. J. Hughes, and P. Decuzzi, “In silico vascular modeling for personalized nanoparticle delivery,” Nanomedicine (Lond), Dec. 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909646/
[59] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls,” Comput Mech, vol. 49, no. 2, pp. 213–242, Feb. 2012. http://link.springer.com/article/10.1007/s00466-011-0633-2
[60] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS,” Mathematical Models and Methods in Applied Sciences, pp. 1–58, Nov. 2012. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500139
[61] J. A. Evans and T. J. R. Hughes, “Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem,” Comput Mech, vol. 50, no. 6, pp. 667–674, Dec. 2012. http://link.springer.com/article/10.1007/s00466-012-0788-5
[62] R. Duddu, L. L. Lavier, T. J. R. Hughes, and V. M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements,” International Journal for Numerical Methods in Engineering, vol. 89, no. 6, pp. 762–785, 2012. http://onlinelibrary.wiley.com/doi/10.1002/nme.3262/abstract
[63] L. Dedè, M. J. Borden, and T. J. R. Hughes, “Isogeometric Analysis for Topology Optimization with a Phase Field Model,” Arch Computat Methods Eng, vol. 19, no. 3, pp. 427–465, Sep. 2012. http://link.springer.com/article/10.1007/s11831-012-9075-z
[64] K. Chang, T. J. R. Hughes, and V. M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall,” Computers & Fluids, vol. 68, pp. 94–104, Sep. 2012. http://www.sciencedirect.com/science/article/pii/S0045793012002320
[65] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and C. M. Landis, “A phase-field description of dynamic brittle fracture,” Computer Methods in Applied Mechanics and Engineering, vol. 217–220, pp. 77–95, Apr. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512000199
[66] F. Auricchio, F. Calabrò, T. J. R. Hughes, A. Reali, and G. Sangalli, “A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 249–252, pp. 15–27, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200134X
[67] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “Isogeometric collocation for elastostatics and explicit dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 249–252, pp. 2–14, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512001028
[68] W. Wang, Y. Zhang, M. A. Scott, and T. J. R. Hughes, “Converting an unstructured quadrilateral mesh to a standard T-spline surface,” Comput Mech, vol. 48, no. 4, pp. 477–498, Oct. 2011. http://link.springer.com/article/10.1007/s00466-011-0598-1
[69] C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and R. de Borst, “An isogeometric analysis approach to gradient damage models,” Int. J. Numer. Meth. Engng., vol. 86, no. 1, pp. 115–134, Apr. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3150/abstract
[70] C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes, “An isogeometric approach to cohesive zone modeling,” Int. J. Numer. Meth. Engng., vol. 87, no. 1–5, pp. 336–360, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3061/abstract
[71] İ. Temizer, P. Wriggers, and T. J. R. Hughes, “Contact treatment in isogeometric analysis with NURBS,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 9–12, pp. 1100–1112, Feb. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003440
[72] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R. Hughes, “Isogeometric finite element data structures based on Bézier extraction of T-splines,” Int. J. Numer. Meth. Engng., vol. 88, no. 2, pp. 126–156, Oct. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract
[73] H. Gomez, “Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models,” Journal of Computational Physics, vol. 230, no. 13, pp. 5310–5327, Jun. 2011. http://www.sciencedirect.com/science/article/pii/S0021999111001847
[74] F. Brezzi, J. A. Evans, T. J. R. Hughes, and L. D. Marini, “New rectangular plate elements based on twist-Kirchhoff theory,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 33–36, pp. 2547–2561, Aug. 2011. http://www.sciencedirect.com/science/article/pii/S0045782511001459
[75] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Isogeometric finite element data structures based on Bézier extraction of NURBS,” Int. J. Numer. Meth. Engng., vol. 87, no. 1–5, pp. 15–47, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.2968/abstract
[76] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes, “A large deformation, rotation-free, isogeometric shell,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 13–16, pp. 1367–1378, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003488
[77] Y. Zhang, T. J. R. Hughes, and C. L. Bajaj, “An automatic 3D mesh generation method for domains with multiple materials,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 405–415, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S004578250900214X
[78] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes, “Robustness of isogeometric structural discretizations under severe mesh distortion,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 357–373, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000346
[79] T. J. R. Hughes, A. Reali, and G. Sangalli, “Efficient quadrature for NURBS-based isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 301–313, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004295
[80] T. J. R. Hughes, G. Scovazzi, and T. E. Tezduyar, “Stabilized Methods for Compressible Flows,” J Sci Comput, vol. 43, no. 3, pp. 343–368, Jun. 2010. http://link.springer.com/article/10.1007/s10915-008-9233-5
[81] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 13–16, pp. 828–840, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509002254
[82] H. Gomez, T. J. R. Hughes, X. Nogueira, and V. M. Calo, “Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 25–28, pp. 1828–1840, May 2010. http://www.sciencedirect.com/science/article/pii/S004578251000068X
[83] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Isogeometric shell analysis: The Reissner–Mindlin shell,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 276–289, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509001820
[84] D. J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko, “A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM,” International Journal for Numerical Methods in Engineering, vol. 83, no. 6, pp. 765–785, 2010. http://onlinelibrary.wiley.com/doi/10.1002/nme.2864/abstract
[85] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 13–16, pp. 780–790, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004052
[86] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg, “Isogeometric analysis using T-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 229–263, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000875
[87] F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “ISOGEOMETRIC COLLOCATION METHODS,” Mathematical Models and Methods in Applied Sciences, vol. 20, no. 11, pp. 2075–2107, Nov. 2010. http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878
[88] H. J. Kim, C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor, “Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 45–46, pp. 3551–3566, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000887
[89] J. A. Evans, T. J. R. Hughes, and G. Sangalli, “Enforcement of constraints and maximum principles in the variational multiscale method,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 1–4, pp. 61–76, Dec. 2009. http://www.sciencedirect.com/science/article/pii/S004578250900317X
[90] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes, “n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 21–26, pp. 1726–1741, May 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000280
[91] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 45–46, pp. 3534–3550, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509001674
[92] T. J. R. Hughes, A. Reali, and G. Sangalli, “Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49–50, pp. 4104–4124, Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001618
[93] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of the Cahn–Hilliard phase-field model,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49–50, pp. 4333–4352, Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001953
[94] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “F-bar projection method for finite deformation elasticity and plasticity using NURBS based isogeometric analysis,” Int J Mater Form, vol. 1, no. 1, pp. 1091–1094, Apr. 2008. http://link.springer.com/article/10.1007/s12289-008-0209-7
[95] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 33–40, pp. 2732–2762, Jun. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508000248
[96] V. M. Calo, N. F. Brasher, Y. Bazilevs, and T. J. R. Hughes, “Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow,” Comput Mech, vol. 43, no. 1, pp. 161–177, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0321-z
[97] Y. Bazilevs and T. J. R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components,” Comput Mech, vol. 43, no. 1, pp. 143–150, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0277-z
[98] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms, and computations,” Comput Mech, vol. 43, no. 1, pp. 3–37, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0315-x
[99] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff, “The role of continuity in residual-based variational multiscale modeling of turbulence,” Comput Mech, vol. 41, no. 3, pp. 371–378, Feb. 2008. http://link.springer.com/article/10.1007/s00466-007-0193-7
[100] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes, “Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 29–30, pp. 2943–2959, May 2007. http://www.sciencedirect.com/science/article/pii/S0045782507000801
[101] G. Scovazzi, M. A. Christon, T. J. R. Hughes, and J. N. Shadid, “Stabilized shock hydrodynamics: I. A Lagrangian method,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 4–6, pp. 923–966, Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045782506002374
[102] T. J. R. Hughes and G. Sangalli, “Variational Multiscale Analysis: the Fine‐scale Green’s Function, Projection, Optimization, Localization, and Stabilized Methods,” SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp. 539–557, Jan. 2007. http://epubs.siam.org/doi/abs/10.1137/050645646
[103] J. A. Cottrell, T. J. R. Hughes, and A. Reali, “Studies of refinement and continuity in isogeometric structural analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 41–44, pp. 4160–4183, Sep. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507001703
[104] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes, “Weak Dirichlet boundary conditions for wall-bounded turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 49–52, pp. 4853–4862, Nov. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507002885
[105] Y. Bazilevs and T. J. R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics,” Computers & Fluids, vol. 36, no. 1, pp. 12–26, Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045793005001258
[106] Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes, “YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery,” International Journal for Numerical Methods in Fluids, vol. 54, no. 6–8, pp. 593–608, 2007. http://onlinelibrary.wiley.com/doi/10.1002/fld.1484/abstract
[107] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1–4, pp. 173–201, Dec. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507003027
[108] T. J. R. Hughes and G. N. Wells, “Erratum to ‘Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations’ [Comput. Methods Appl. Mech. Engrg. 194 (2005) 1141–1159],” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 9–12, pp. 1277–1278, Feb. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505001416
[109] T. J. R. Hughes, G. Scovazzi, P. B. Bochev, and A. Buffa, “A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 19–22, pp. 2761–2787, Apr. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002288
[110] T. J. R. Hughes, A. Masud, and J. Wan, “A stabilized mixed discontinuous Galerkin method for Darcy flow,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 25–28, pp. 3347–3381, May 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002732
[111] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor, “A coupled momentum method for modeling blood flow in three-dimensional deformable arteries,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 41–43, pp. 5685–5706, Aug. 2006. http://www.sciencedirect.com/science/article/pii/S004578250500513X
[112] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of structural vibrations,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 41–43, pp. 5257–5296, Aug. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505005451
[113] A. Buffa, T. J. R. Hughes, and G. Sangalli, “Analysis of a Multiscale Discontinuous Galerkin Method for Convection‐Diffusion Problems,” SIAM Journal on Numerical Analysis, vol. 44, no. 4, pp. 1420–1440, Jan. 2006. http://epubs.siam.org/doi/abs/10.1137/050640382
[114] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes, “Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow,” Comput Mech, vol. 38, no. 4–5, pp. 310–322, Sep. 2006. http://link.springer.com/article/10.1007/s00466-006-0084-3
[115] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli, “Isogeometric analysis: approximation, stability and error estimates for h-refined meshes,” Mathematical Models and Methods in Applied Sciences, vol. 16, no. 7, pp. 1031–1090, 2006. http://www.worldscientific.com/doi/abs/10.1142/S0218202506001455
[116] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 39–41, pp. 4135–4195, Oct. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504005171
[117] T. J. R. Hughes and G. N. Wells, “Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 9–11, pp. 1141–1159, Mar. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504003172
[118] F. Brezzi, T. J. R. Hughes, L. D. Marini, and A. Masud, “Mixed Discontinuous Galerkin Methods for Darcy Flow,” J Sci Comput, vol. 22–23, no. 1–3, pp. 119–145, Jun. 2005. http://link.springer.com/article/10.1007/s10915-004-4150-8
[119] T. J. R. Hughes, G. N. Wells, and A. A. Wray, “Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations,” Physics of Fluids, vol. 16, no. 11, pp. 4044–4052, Oct. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1789157
[120] T. J. R. Hughes, J. Tinsley Oden, and M. Papadrakakis, “In memoriam to Professor John H. Argyris: 19 August 1913 – 2 April 2004,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 36–38, pp. 3763–3766, Sep. 2004. http://www.sciencedirect.com/science/article/pii/S0045782504002361
[121] J. Holmen, T. J. R. Hughes, A. A. Oberai, and G. N. Wells, “Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow,” Physics of Fluids, vol. 16, no. 3, pp. 824–827, Feb. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1644573
[122] B. N. Steele, J. Wan, J. P. Ku, T. J. R. Hughes, and C. A. Taylor, “In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 6, pp. 649–656, Jun. 2003. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1203803&queryText%3DIn+vivo+validation+of+a+one-dimensional+finite-element+method+for+predicting+blood+flow+in+cardiovascular+bypass+grafts
[123] J. T. Oden, T. Belytschko, I. Babuska, and T. J. R. Hughes, “Research directions in computational mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 7–8, pp. 913–922, Feb. 2003. http://www.sciencedirect.com/science/article/pii/S0045782502006163
[124] T. J. R. Hughes and A. A. Oberai, “Calculation of shear stresses in the Fourier–Galerkin formulation of turbulent channel flows: projection, the Dirichlet filter and conservation,” Journal of Computational Physics, vol. 188, no. 1, pp. 281–295, Jun. 2003. http://www.sciencedirect.com/science/article/pii/S0021999103001670
[125] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. Feijo´o, T. J. R. Hughes, and C. A. Taylor, “A One-dimensional Finite Element Method for Simulation-based Medical Planning for Cardiovascular Disease,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 5, no. 3, pp. 195–206, 2002. http://www.tandfonline.com/doi/abs/10.1080/10255840290010670
[126] A. A. Oberai, F. Roknaldin, and T. J. R. Hughes, “Computation of Trailing-Edge Noise Due to Turbulent Flow over an Airfoil,” AIAA Journal, vol. 40, no. 11, pp. 2206–2216, Nov. 2002. http://arc.aiaa.org/doi/abs/10.2514/2.1582
[127] A. Masud and T. J. R. Hughes, “A stabilized mixed finite element method for Darcy flow,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 39–40, pp. 4341–4370, Aug. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502003717
[128] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, “Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 34, pp. 3669–3750, Jul. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502002864
[129] M. T. Draney, R. J. Herfkens, T. J. R. Hughes, N. J. Pelc, K. L. Wedding, C. K. Zarins, and C. A. Taylor, “Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging,” Annals of Biomedical Engineering, vol. 30, no. 8, pp. 1033–1045, Sep. 2002. http://link.springer.com/article/10.1114/1.1513566
[130] T. J. R. Hughes, A. A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method,” Physics of Fluids, vol. 13, no. 6, pp. 1784–1799, Jun. 2001. http://aip.scitation.org/doi/abs/10.1063/1.1367868
[131] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray, “The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence,” Physics of Fluids, vol. 13, no. 2, pp. 505–512, Feb. 2001. http://aip.scitation.org/doi/10.1063/1.1332391
[132] F. Brezzi, T. J. R. Hughes, and E. Suli, “Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: A model problem,” Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, vol. 12, no. 3, pp. 159–166, 2001. http://users.ices.utexas.edu/~hughes/photo-album/2001_brezzi_variationalappr.pdf
[133] S. M. Rifai, J. C. Buell, Z. Johan, and T. J. R. Hughes, “Automotive design applications of fluid flow simulation on parallel computing platforms,” Computer Methods in Applied Mechanics and Engineering, vol. 184, no. 2–4, pp. 449–466, Apr. 2000. http://www.sciencedirect.com/science/article/pii/S004578259900239X
[134] V. S. Rao, T. J. R. Hughes, and K. Garikipati, “On modelling thermal oxidation of Silicon II: numerical aspects,” International Journal for Numerical Methods in Engineering, vol. 47, no. 1–3, pp. 359–377, 2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<359::AID-NME775>3.0.CO;2-7/abstract
[135] V. S. Rao and T. J. R. Hughes, “On modelling thermal oxidation of Silicon I: theory,” International Journal for Numerical Methods in Engineering, vol. 47, no. 1–3, pp. 341–358, 2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<341::AID-NME774>3.0.CO;2-Z/abstract
[136] A. A. Oberai, F. Roknaldin, and T. J. . Hughes, “Computational procedures for determining structural-acoustic response due to hydrodynamic sources,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 3–4, pp. 345–361, Oct. 2000. http://www.sciencedirect.com/science/article/pii/S0045782500002061
[137] T. J. R. Hughes, L. Mazzei, and K. E. Jansen, “Large Eddy Simulation and the variational multiscale method,” Comput Visual Sci, vol. 3, no. 1–2, pp. 47–59, May 2000. http://link.springer.com/article/10.1007/s007910050051
[138] T. J. R. Hughes and K. Garikipati, “Embedding a Micromechanical Law in the Continuum Formulation: A Multiscale Approach Applied to Discontinuous Solutions,” International Journal for Computational Civil and Structural Engineering, vol. 1, pp. 64–78, 2000. http://users.ices.utexas.edu/~hughes/photo-album/2000_garikipati_embeddingam.pdf
[139] T. J. R. Hughes, G. Engel, L. Mazzei, and M. G. Larson, “The continuous Galerkin method is locally conservative,” J. Comput. Phys., vol. 163, no. 2, pp. 467–488, Sep. 2000. http://dx.doi.org/10.1006/jcph.2000.6577
[140] K. Garikipati and T. J. R. Hughes, “A variational multiscale approach to strain localization – formulation for multidimensional problems,” Computer Methods in Applied Mechanics and Engineering, vol. 188, no. 1–3, pp. 39–60, Jul. 2000. http://www.sciencedirect.com/science/article/pii/S0045782599001565
[141] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Effect of exercise on hemodynamic conditions in the abdominal aorta,” Journal of Vascular Surgery, vol. 29, no. 6, pp. 1077–1089, Jun. 1999. http://www.sciencedirect.com/science/article/pii/S0741521499702491
[142] S. M. Rifai, Z. Johan, W.-P. Wang, J.-P. Grisval, T. J. R. Hughes, and R. M. Ferencz, “Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms,” Computer Methods in Applied Mechanics and Engineering, vol. 174, no. 3–4, pp. 393–417, May 1999. http://www.sciencedirect.com/science/article/pii/S0045782598003065
[143] F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, and E. Süli, “A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems,” SIAM Journal on Numerical Analysis, vol. 36, no. 6, pp. 1933–1948, Jan. 1999. http://epubs.siam.org/doi/abs/10.1137/S0036142998342367
[144] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis,” Annals of Biomedical Engineering, vol. 26, no. 6, pp. 975–987, Nov. 1998. http://link.springer.com/article/10.1114/1.140
[145] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of blood flow in arteries,” Computer Methods in Applied Mechanics and Engineering, vol. 158, no. 1–2, pp. 155–196, May 1998. http://www.sciencedirect.com/science/article/pii/S004578259880008X
[146] J. R. Stewart and T. J. . Hughes, “A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates,” Computer Methods in Applied Mechanics and Engineering, vol. 158, no. 1–2, pp. 1–22, May 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002302
[147] M. OSHIMA, T. J. R. HUGHES, and K. JANSEN, “Consistent Finite Element Calculations of Boundary and Internal Fluxes,” International Journal of Computational Fluid Dynamics, vol. 9, no. 3–4, pp. 227–235, 1998. http://www.tandfonline.com/doi/abs/10.1080/10618569808940855
[148] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, “The variational multiscale method—a paradigm for computational mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 166, no. 1–2, pp. 3–24, Nov. 1998. http://www.sciencedirect.com/science/article/pii/S0045782598000796
[149] G. Hauke and T. J. R. Hughes, “A comparative study of different sets of variables for solving compressible and incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 153, no. 1–2, pp. 1–44, Jan. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597000431
[150] K. Garikipati and T. J. R. Hughes, “A study of strain localization in a multiple scale framework—The one-dimensional problem,” Computer Methods in Applied Mechanics and Engineering, vol. 159, no. 3–4, pp. 193–222, Jul. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002715
[151] J. R. Stewart and T. J. . Hughes, “h-Adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions,” Computer Methods in Applied Mechanics and Engineering, vol. 146, no. 1–2, pp. 65–89, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S004578259601225X
[152] J. R. Stewart and T. J. R. Hughes, “An a posteriori error estimator and hp-adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains,” Finite Elements in Analysis and Design, vol. 25, no. 1–2, pp. 1–26, Mar. 1997. http://www.sciencedirect.com/science/article/pii/S0168874X96000595
[153] A. Masud and T. J. R. Hughes, “A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems,” Computer Methods in Applied Mechanics and Engineering, vol. 146, no. 1–2, pp. 91–126, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012224
[154] M. Eldredge, T. J. R. Hughes, R. M. Ferencz, S. M. Rifai, A. Raefsky, and B. Herndon, “High-performance parallel computing in industry,” Parallel Computing, vol. 23, no. 9, pp. 1217–1233, Sep. 1997. http://www.sciencedirect.com/science/article/pii/S0167819197000495
[155] F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, “b = ∝ g,” Computer Methods in Applied Mechanics and Engineering, vol. 145, no. 3–4, pp. 329–339, Jun. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012212
[156] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Computational investigations in vascular disease,” Comput. Phys., vol. 10, no. 3, pp. 224–232, Jun. 1996. http://dl.acm.org/citation.cfm?id=229737.229751
[157] J. R. Stewart and T. J. R. Hughes, “Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality,” Computer Methods in Applied Mechanics and Engineering, vol. 131, no. 3–4, pp. 335–363, May 1996. http://www.sciencedirect.com/science/article/pii/0045782595009531
[158] T. J. R. Hughes and J. R. Stewart, “A space-time formulation for multiscale phenomena,” Journal of Computational and Applied Mathematics, vol. 74, no. 1–2, pp. 217–229, Nov. 1996. http://www.sciencedirect.com/science/article/pii/0377042796000258
[159] I. Harari, K. Grosh, T. J. R. Hughes, M. Malhotra, P. M. Pinsky, J. R. Stewart, and L. L. Thompson, “Recent developments in finite element methods for structural acoustics,” ARCO, vol. 3, no. 2–3, pp. 131–309, Jun. 1996. http://link.springer.com/article/10.1007/BF03041209
[160] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes, “A case study in parallel computation: Viscous flow around an ONERA M6 wing,” International Journal for Numerical Methods in Fluids, vol. 21, no. 10, pp. 877–884, 1995. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650211008/abstract
[161] T. J. R. Hughes, A. Masud, and I. Harari, “Numerical assessment of some membrane elements with drilling degrees of freedom,” Computers & Structures, vol. 55, no. 2, pp. 297–314, Apr. 1995. http://www.sciencedirect.com/science/article/pii/0045794994004389
[162] T. J. R. Hughes, A. Masud, and I. Harari, “Dynamic analysis and drilling degrees of freedom,” International Journal for Numerical Methods in Engineering, vol. 38, no. 19, pp. 3193–3210, 1995. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620381902/abstract
[163] T. J. R. Hughes and K. Jansen, “A stabilized finite element formulation for the Reynolds-averaged Navier-Stokes equations,” Surv. Math. Ind., vol. 4, pp. 279–317, 1995. http://users.ices.utexas.edu/~hughes/photo-album/1995_hughes_astabilizedfini.pdf
[164] T. J. R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,” Computer Methods in Applied Mechanics and Engineering, vol. 127, no. 1–4, pp. 387–401, Nov. 1995. http://www.sciencedirect.com/science/article/pii/0045782595008449
[165] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes, “Scalability of finite element applications on distributed-memory parallel computers,” Computer Methods in Applied Mechanics and Engineering, vol. 119, no. 1–2, pp. 61–72, Nov. 1994. http://www.sciencedirect.com/science/article/pii/004578259400076X
[166] G. Hauke and T. J. R. Hughes, “A unified approach to compressible and incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 113, no. 3–4, pp. 389–395, Mar. 1994. http://www.sciencedirect.com/science/article/pii/0045782594900558
[167] I. Harari and T. J. R. Hughes, “Studies of domain-based formulations for computing exterior problems of acoustics,” International Journal for Numerical Methods in Engineering, vol. 37, no. 17, pp. 2935–2950, 1994. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620371706/abstract
[168] I. Harari and T. J. . Hughes, “Stabilized finite element methods for steady advection—diffusion with production,” Computer Methods in Applied Mechanics and Engineering, vol. 115, no. 1–2, pp. 165–191, 1994. http://www.sciencedirect.com/science/article/pii/0045782594901937
[169] J.-J. Droux and T. J. . Hughes, “A boundary integral modification of the Galerkin least squares formulation for the Stokes problem,” Computer Methods in Applied Mechanics and Engineering, vol. 113, no. 1–2, pp. 173–182, Mar. 1994. http://www.sciencedirect.com/science/article/pii/0045782594902178
[170] F. Chalot and T. J. R. Hughes, “A consistent equilibrium chemistry algorithm for hypersonic flows,” Computer Methods in Applied Mechanics and Engineering, vol. 112, no. 1–4, pp. 25–40, Feb. 1994. http://www.sciencedirect.com/science/article/pii/0045782594900175
[171] K. Jansen, Z. Johan, and T. J. R. Hughes, “Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system,” Computer Methods in Applied Mechanics and Engineering, vol. 105, no. 3, pp. 405–433, Jun. 1993. http://www.sciencedirect.com/science/article/pii/0045782593900667
[172] T. J. . Hughes and K. Jansen, “Finite element methods in wind engineering,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 46–47, pp. 297–313, Aug. 1993. http://www.sciencedirect.com/science/article/pii/016761059390296Z
[173] L. P. Franca and T. J. R. Hughes, “Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 105, no. 2, pp. 285–298, Jun. 1993. http://www.sciencedirect.com/science/article/pii/004578259390126I
[174] N. Takashi and T. J. R. Hughes, “An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body,” Computer Methods in Applied Mechanics and Engineering, vol. 95, no. 1, pp. 115–138, Feb. 1992. http://www.sciencedirect.com/science/article/pii/004578259290085X
[175] J. C. Simo, D. D. Fox, and T. J. R. Hughes, “Formulations of finite elasticity with independent rotations,” Computer Methods in Applied Mechanics and Engineering, vol. 95, no. 2, pp. 277–288, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901449
[176] Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson, “A data parallel finite element method for computational fluid dynamics on the Connection Machine system,” Computer Methods in Applied Mechanics and Engineering, vol. 99, no. 1, pp. 113–134, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901243
[177] I. Harari and T. J. R. Hughes, “What are C and h?: Inequalities for the analysis and design of finite element methods,” Computer Methods in Applied Mechanics and Engineering, vol. 97, no. 2, pp. 157–192, Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290162D
[178] I. Harari and T. J. R. Hughes, “Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains,” Computer Methods in Applied Mechanics and Engineering, vol. 98, no. 3, pp. 411–454, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592900066
[179] I. Harari and T. J. R. Hughes, “Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains,” Computer Methods in Applied Mechanics and Engineering, vol. 97, no. 1, pp. 103–124, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290109W
[180] I. Harari and T. J. R. Hughes, “A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics,” Computer Methods in Applied Mechanics and Engineering, vol. 97, no. 1, pp. 77–102, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290108V
[181] L. P. Franca, S. L. Frey, and T. J. R. Hughes, “Stabilized finite element methods: I. Application to the advective-diffusive model,” Computer Methods in Applied Mechanics and Engineering, vol. 95, no. 2, pp. 253–276, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901438
[182] H. J. C. Barbosa and T. J. R. Hughes, “Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities,” Computer Methods in Applied Mechanics and Engineering, vol. 97, no. 2, pp. 193–210, Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290163E
[183] F. Shakib, T. J. R. Hughes, and Z. Johan, “A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 89, no. 1–3, pp. 141–219, Aug. 1991. http://www.sciencedirect.com/science/article/pii/0045782591900414
[184] F. Shakib and T. J. R. Hughes, “A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 87, no. 1, pp. 35–58, May 1991. http://www.sciencedirect.com/science/article/pii/004578259190145V
[185] Z. Johan, T. J. R. Hughes, and F. Shakib, “A MATRIX-FREE IMPLICIT ITERATIVE SOLVER FOR COMPRESSIBLE FLOW PROBLEMS,” Rend. Sem. Mat. Univ. Pol. Torino Fascicolo Speciale, pp. 141–161, 1991. http://users.ices.utexas.edu/~hughes/photo-album/1991_johan_amatrixfreeimpli.pdf
[186] Z. Johan and T. J. R. Hughes, “A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids,” Computer Methods in Applied Mechanics and Engineering, vol. 87, no. 2–3, pp. 281–304, Jun. 1991. http://www.sciencedirect.com/science/article/pii/004578259190009U
[187] I. Harari and T. J. R. Hughes, “Finite element methods for the helmholtz equation in an exterior domain: Model problems,” Computer Methods in Applied Mechanics and Engineering, vol. 87, no. 1, pp. 59–96, May 1991. http://www.sciencedirect.com/science/article/pii/004578259190146W
[188] H. J. C. Barbosa and T. J. R. Hughes, “The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition,” Computer Methods in Applied Mechanics and Engineering, vol. 85, no. 1, pp. 109–128, Jan. 1991. http://www.sciencedirect.com/science/article/pii/004578259190125P
[189] G. M. Hulbert and T. J. R. Hughes, “Space-time finite element methods for second-order hyperbolic equations,” Computer Methods in Applied Mechanics and Engineering, vol. 84, no. 3, pp. 327–348, Dec. 1990. http://www.sciencedirect.com/science/article/pii/004578259090082W
[190] I. Harari and T. J. R. Hughes, “Design and Analysis of Finite Element Methods for the Helmholtz Equation in Exterior Domains,” Appl. Mech. Rev., vol. 43, no. 5S, pp. S366–S373, May 1990. http://dx.doi.org/10.1115/1.3120842
[191] F. Chalot, T. J. R. Hughes, and F. Shakib, “Symmetrization of conservation laws with entropy for high-temperature hypersonic computations,” Computing Systems in Engineering, vol. 1, no. 2–4, pp. 495–521, 1990. http://www.sciencedirect.com/science/article/pii/095605219090032G
[192] F. Shakib, T. J. R. Hughes, and Z. Johan, “A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 75, no. 1–3, pp. 415–456, Oct. 1989. http://www.sciencedirect.com/science/article/pii/0045782589900406
[193] I. Miranda, R. M. Ferencz, and T. J. R. Hughes, “An improved implicit-explicit time integration method for structural dynamics,” Earthquake Engineering & Structural Dynamics, vol. 18, no. 5, pp. 643–653, 1989. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290180505/abstract
[194] A. F. D. Loula, I. Miranda, T. J. R. Hughes, and L. P. Franca, “On mixed finite element methods for axisymmetric shell analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 72, no. 2, pp. 201–231, Feb. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901618
[195] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations,” Computer Methods in Applied Mechanics and Engineering, vol. 73, no. 2, pp. 173–189, May 1989. http://www.sciencedirect.com/science/article/pii/0045782589901114
[196] T. J. R. Hughes and F. Brezzi, “On drilling degrees of freedom,” Computer Methods in Applied Mechanics and Engineering, vol. 72, no. 1, pp. 105–121, Jan. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901242
[197] T. J. R. Hughes, “New directions in computational mechanics,” Nuclear Engineering and Design, vol. 114, no. 2, pp. 197–210, Jun. 1989. http://www.sciencedirect.com/science/article/pii/002954938990191X
[198] C. Hoff, T. J. R. Hughes, G. Hulbert, and P. J. Pahl, “Extended comparison of the Hilber-Hughes-Taylor α-method and the Θ1-method,” Computer Methods in Applied Mechanics and Engineering, vol. 76, no. 1, pp. 87–93, Nov. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901424
[199] T. J. R. Hughes and G. M. Hulbert, “Space-time finite element methods for elastodynamics: Formulations and error estimates,” Computer Methods in Applied Mechanics and Engineering, vol. 66, no. 3, pp. 339–363, Feb. 1988. http://www.sciencedirect.com/science/article/pii/0045782588900060
[200] T. J. R. Hughes and L. P. Franca, “Convergence of transverse shear stresses in the finite element analysis of plates,” Communications in Applied Numerical Methods, vol. 4, no. 2, pp. 185–187, 1988. http://onlinelibrary.wiley.com/doi/10.1002/cnm.1630040208/abstract
[201] T. J. R. Hughes and L. P. Franca, “A mixed finite element formulation for Reissner-mindlin plate theory: Uniform convergence of all higher-order spaces,” Computer Methods in Applied Mechanics and Engineering, vol. 67, no. 2, pp. 223–240, Mar. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901272
[202] L. P. Franca, T. J. R. Hughes, A. F. D. Loula, and I. Miranda, “A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation,” Numer. Math., vol. 53, no. 1–2, pp. 123–141, Jan. 1988. http://link.springer.com/article/10.1007/BF01395881
[203] L. P. Franca and T. J. R. Hughes, “Two classes of mixed finite element methods,” Computer Methods in Applied Mechanics and Engineering, vol. 69, no. 1, pp. 89–129, Jul. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901685
[204] A. F. D. Loula, T. J. R. Hughes, and L. P. Franca, “Petrov-Galerkin formulations of the Timoshenko beam problem,” Computer Methods in Applied Mechanics and Engineering, vol. 63, no. 2, pp. 115–132, Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901678
[205] A. F. D. Loula, T. J. R. Hughes, L. P. Franca, and I. Miranda, “Mixed Petrov-Galerkin methods for the Timoshenko beam problem,” Computer Methods in Applied Mechanics and Engineering, vol. 63, no. 2, pp. 133–154, Jul. 1987. http://www.sciencedirect.com/science/article/pii/004578258790168X
[206] A. F. D. Loula, L. P. Franca, T. J. R. Hughes, and I. Miranda, “Stability, convergence and accuracy of a new finite element method for the circular arch problem,” Computer Methods in Applied Mechanics and Engineering, vol. 63, no. 3, pp. 281–303, Aug. 1987. http://www.sciencedirect.com/science/article/pii/0045782587900740
[207] G. M. Hulbert and T. J. R. Hughes, “An error analysis of truncated starting conditions in step-by-step time integration: Consequences for structural dynamics,” Earthquake Engineering & Structural Dynamics, vol. 15, no. 7, pp. 901–910, 1987. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290150710/abstract
[208] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems,” Computer Methods in Applied Mechanics and Engineering, vol. 63, no. 1, pp. 97–112, Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901253
[209] T. J. R. Hughes and L. P. Franca, “A new finite element formulation for computational fluid dynamics: VII. The stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces,” Computer Methods in Applied Mechanics and Engineering, vol. 65, no. 1, pp. 85–96, Nov. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901848
[210] T. J. R. Hughes, T. Belytschko, and W. K. Liu, “Convergence of an element-partitioned subcycling algorithm for the semi-discrete heat equation,” Numerical Methods for Partial Differential Equations, vol. 3, no. 2, pp. 131–137, 1987. http://onlinelibrary.wiley.com/doi/10.1002/num.1690030205/abstract
[211] T. J. R. Hughes, “Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 7, no. 11, pp. 1261–1275, 1987. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650071108/abstract
[212] J. C. Simo and T. J. R. Hughes, “On the Variational Foundations of Assumed Strain Methods,” J. Appl. Mech., vol. 53, no. 1, pp. 51–54, Mar. 1986. http://dx.doi.org/10.1115/1.3171737
[213] A. MULLER and T. J. R. HUGHES, “PRECONDICIONADORES ELEMENTO-POR-ELEMENTO Y GLOBALES. UNA PERSPECTIVA*.,” Revista internacional de metodos numericos para calculo y disefio’en ingenieria, vol. 2, no. 1, pp. 27–41, 1986. http://users.ices.utexas.edu/~hughes/photo-album/1986_muller_precondicionado.pdf
[214] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 54, no. 2, pp. 223–234, Feb. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901271
[215] T. J. R. Hughes and F. Shakib, “Pseudo-corner theory: a simple enhancement of J2-flow theory for applications involving non-proportional loading,” Engineering Computations, vol. 3, no. 2, pp. 116–120, Dec. 1986. http://www.emeraldinsight.com/journals.htm?articleid=1662554
[216] T. J. R. Hughes, M. Mallet, and M. Akira, “A new finite element formulation for computational fluid dynamics: II. Beyond SUPG,” Computer Methods in Applied Mechanics and Engineering, vol. 54, no. 3, pp. 341–355, Mar. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901106
[217] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems,” Computer Methods in Applied Mechanics and Engineering, vol. 58, no. 3, pp. 329–336, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901532
[218] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems,” Computer Methods in Applied Mechanics and Engineering, vol. 58, no. 3, pp. 305–328, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901520
[219] T. J. R. Hughes, L. P. Franca, and M. Balestra, “A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations,” Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 1, pp. 85–99, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586900253
[220] J. M. Winget and T. J. R. Hughes, “Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies,” Computer Methods in Applied Mechanics and Engineering, vol. 52, no. 1–3, pp. 711–815, Sep. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900155
[221] A. Tessler and T. J. R. Hughes, “A three-node mindlin plate element with improved transverse shear,” Computer Methods in Applied Mechanics and Engineering, vol. 50, no. 1, pp. 71–101, Jul. 1985. http://www.sciencedirect.com/science/article/pii/0045782585901148
[222] A. Mizukami and T. J. R. Hughes, “A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle,” Computer Methods in Applied Mechanics and Engineering, vol. 50, no. 2, pp. 181–193, Aug. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900891
[223] T. J. R. Hughes and T. E. Tezduyar, “Analysis of some fully-discrete algorithms for the one-dimensional heat equation,” International Journal for Numerical Methods in Engineering, vol. 21, no. 1, pp. 163–168, 1985. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620210113/abstract
[224] T. J. R. Hughes, “Discussion of a numerical study of localized deformation in bi-crystals,” Mechanics of Materials, vol. 4, no. 3–4, pp. 437–438, Dec. 1985. http://www.sciencedirect.com/science/article/pii/0167663685900389
[225] T. J. R. Hughes and T. E. Tezduyar, “Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations,” Computer Methods in Applied Mechanics and Engineering, vol. 45, no. 1–3, pp. 217–284, Sep. 1984. http://www.sciencedirect.com/science/article/pii/0045782584901579
[226] T. J. R. Hughes and T. E. Tezduyar, “Stability and accuracy analysis of some fully-discrete algorithms for the one-dimensional second-order wave equation,” Computers & Structures, vol. 19, no. 4, pp. 665–668, 1984. http://www.sciencedirect.com/science/article/pii/0045794984901135
[227] A. Tessler and T. J. R. Hughes, “An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element,” Computer Methods in Applied Mechanics and Engineering, vol. 39, no. 3, pp. 311–335, Sep. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900968
[228] T. Hughes, I. Levit, and J. Winget, “Element‐by‐Element Implicit Algorithms for Heat Conduction,” Journal of Engineering Mechanics, vol. 109, no. 2, pp. 576–585, 1983. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281983%29109%3A2%28576%29
[229] T. J. R. Hughes and T. Belytschko, “A Précis of Developments in Computational Methods for Transient Analysis,” J. Appl. Mech., vol. 50, no. 4b, pp. 1033–1041, Dec. 1983. http://dx.doi.org/10.1115/1.3167186
[230] T. J. R. Hughes, I. Levit, and J. Winget, “An element-by-element solution algorithm for problems of structural and solid mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 36, no. 2, pp. 241–254, Feb. 1983. http://www.sciencedirect.com/science/article/pii/0045782583901159
[231] T. J. R. Hughes and E. Carnoy, “Nonlinear finite element shell formulation accounting for large membrane strains,” Computer Methods in Applied Mechanics and Engineering, vol. 39, no. 1, pp. 69–82, Jul. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900749
[232] E. G. Carnoy and T. J. R. Hughes, “Finite element analysis of the secondary buckling of a flat plate under uniaxial compression,” International Journal of Non-Linear Mechanics, vol. 18, no. 2, pp. 167–175, 1983. http://www.sciencedirect.com/science/article/pii/0020746283900434
[233] J. M. Winget and T. J. R. Hughes, “A profile solver for specially structured symmetric-unsymmetric equation systems,” Advances in Engineering Software (1978), vol. 4, no. 2, pp. 64–67, Apr. 1982. http://www.sciencedirect.com/science/article/pii/S0141119582800557
[234] A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 32, no. 1–3, pp. 199–259, Sep. 1982. http://www.sciencedirect.com/science/article/pii/0045782582900718
[235] J. H. Prevost and T. J. R. Hughes, “Finite-Element Solution of Elastic-Plastic Boundary-Value Problems,” J. Appl. Mech., vol. 48, no. 1, pp. 69–74, Mar. 1981. http://dx.doi.org/10.1115/1.3157594
[236] J. H. Prevost, R. F. Scott, T. J. R. Hughes, and B. Cuny, “Offshore Gravity Structures: Analysis,” Journal of the Geotechnical Engineering Division, vol. 107, no. 2, pp. 143–165, Feb. 1981. http://cedb.asce.org/cgi/WWWdisplay.cgi?10036
[237] W. Kanok-Nukulchai, R. L. Taylor, and T. J. R. Hughes, “A large deformation formulation for shell analysis by the finite element method,” Computers & Structures, vol. 13, no. 1–3, pp. 19–27, Jun. 1981. http://www.sciencedirect.com/science/article/pii/004579498190105X
[238] T. J. R. Hughes and T. E. Tezduyar, “Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element,” J. Appl. Mech., vol. 48, no. 3, pp. 587–596, Sep. 1981. http://dx.doi.org/10.1115/1.3157679
[239] T. J. R. Hughes and R. A. Stephenson, “Convergence of implicit-explicit algorithms in nonlinear transient analysis,” International Journal of Engineering Science, vol. 19, no. 2, pp. 295–302, 1981. http://www.sciencedirect.com/science/article/pii/0020722581900306
[240] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann, “Lagrangian-Eulerian finite element formulation for incompressible viscous flows,” Computer Methods in Applied Mechanics and Engineering, vol. 29, no. 3, pp. 329–349, Dec. 1981. http://www.sciencedirect.com/science/article/pii/0045782581900499
[241] T. J. R. Hughes and W. K. Liu, “Nonlinear finite element analysis of shells: Part I. three-dimensional shells,” Computer Methods in Applied Mechanics and Engineering, vol. 26, no. 3, pp. 331–362, Jun. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901213
[242] T. J. R. Hughes and W. K. Liu, “Nonlinear finite element analysis of shells-part II. two-dimensional shells,” Computer Methods in Applied Mechanics and Engineering, vol. 27, no. 2, pp. 167–181, Jul. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901481
[243] J. Prevost, T. Hughes, and M. Cohen, “Analysis of Gravity Offshore Structure Foundations,” Journal of Petroleum Technology, vol. 32, no. 2, Feb. 1980. http://www.onepetro.org/mslib/app/Preview.do?paperNumber=00007239&societyCode=SPE
[244] T. J. R. Hughes and J. Winget, “Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis,” International Journal for Numerical Methods in Engineering, vol. 15, no. 12, pp. 1862–1867, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620151210/abstract
[245] T. J. R. Hughes and J. E. Akin, “Techniques for developing ‘special’ finite element shape functions with particular reference to singularities,” International Journal for Numerical Methods in Engineering, vol. 15, no. 5, pp. 733–751, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150509/abstract
[246] T. J. R. HUGHES, “Some Current Trends In Finite Element Research,” AMR, vol. 33, no. 11, pp. 1467–1477, Nov. 1980. http://users.ices.utexas.edu/~hughes/photo-album/1980_hughes_somecurrenttren.pdf
[247] T. J. R. Hughes, “Recent developments in computer methods for structural analysis,” Nuclear Engineering and Design, vol. 57, no. 2, pp. 427–439, May 1980. http://www.sciencedirect.com/science/article/pii/0029549380901168
[248] T. J. R. Hughes, “Generalization of selective integration procedures to anisotropic and nonlinear media,” International Journal for Numerical Methods in Engineering, vol. 15, no. 9, pp. 1413–1418, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150914/abstract
[249] T. J. R. Hughes, K. S. Pister, and R. L. Taylor, “Implicit-explicit finite elements in nonlinear transient analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 17–18, Part 1, pp. 159–182, Jan. 1979. http://www.sciencedirect.com/science/article/pii/0045782579900860
[250] T. J. R. Hughes, W. K. Liu, and A. Brooks, “Finite element analysis of incompressible viscous flows by the penalty function formulation,” Journal of Computational Physics, vol. 30, no. 1, pp. 1–60, Jan. 1979. http://www.sciencedirect.com/science/article/pii/002199917990086X
[251] D. S. Malkus and T. J. R. Hughes, “Mixed finite element methods — Reduced and selective integration techniques: A unification of concepts,” Computer Methods in Applied Mechanics and Engineering, vol. 15, no. 1, pp. 63–81, Jul. 1978. http://www.sciencedirect.com/science/article/pii/0045782578900051
[252] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory,” J. Appl. Mech., vol. 45, no. 2, pp. 371–374, Jun. 1978. http://dx.doi.org/10.1115/1.3424304
[253] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit Finite Elements in Transient Analysis: Implementation and Numerical Examples,” J. Appl. Mech., vol. 45, no. 2, pp. 375–378, Jun. 1978. http://dx.doi.org/10.1115/1.3424305
[254] T. J. R. Hughes, T. K. Caughey, and W. K. Liu, “Finite-Element Methods for Nonlinear Elastodynamics Which Conserve Energy,” J. Appl. Mech., vol. 45, no. 2, pp. 366–370, Jun. 1978. http://dx.doi.org/10.1115/1.3424303
[255] T. J. R. Hughes and R. L. Taylor, “Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis,” Computers & Structures, vol. 8, no. 2, pp. 169–173, Apr. 1978. http://www.sciencedirect.com/science/article/pii/0045794978900196
[256] T. J. R. Hughes and K. S. Pister, “Consistent linearization in mechanics of solids and structures,” Computers & Structures, vol. 8, no. 3–4, pp. 391–397, May 1978. http://www.sciencedirect.com/science/article/pii/0045794978901839
[257] T. J. R. Hughes and J. E. Marsden, “Classical elastodynamics as a linear symmetric hyperbolic system,” J Elasticity, vol. 8, no. 1, pp. 97–110, Jan. 1978. http://link.springer.com/article/10.1007/BF00044512
[258] T. J. R. Hughes, M. Cohen, and M. Haroun, “Reduced and selective integration techniques in the finite element analysis of plates,” Nuclear Engineering and Design, vol. 46, no. 1, pp. 203–222, Mar. 1978. http://www.sciencedirect.com/science/article/pii/002954937890184X
[259] T. J. R. Hughes and M. Cohen, “The ‘heterosis’ finite element for plate bending,” Computers & Structures, vol. 9, no. 5, pp. 445–450, Nov. 1978. http://www.sciencedirect.com/science/article/pii/004579497890041X
[260] T. J. R. Hughes, “A simple scheme for developing ‘upwind’ finite elements,” International Journal for Numerical Methods in Engineering, vol. 12, no. 9, pp. 1359–1365, 1978. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620120904/abstract
[261] H. M. Hilber and T. J. R. Hughes, “Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics,” Earthquake Engineering & Structural Dynamics, vol. 6, no. 1, pp. 99–117, 1978. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290060111/abstract
[262] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, “Product formulas and numerical algorithms,” Communications on Pure and Applied Mathematics, vol. 31, no. 2, pp. 205–256, 1978. http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160310205/abstract
[263] T. J. R. Hughes, “Equivalence of Finite Elements for Nearly Incompressible Elasticity,” J. Appl. Mech., vol. 44, no. 1, pp. 181–183, Mar. 1977. http://dx.doi.org/10.1115/1.3423994
[264] T. J. R. Hughes, R. L. Taylor, and W. Kanoknukulchai, “A simple and efficient finite element for plate bending,” International Journal for Numerical Methods in Engineering, vol. 11, no. 10, pp. 1529–1543, 1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620111005/abstract
[265] T. J. R. Hughes and J. E. Marsden, “Some applications of geometry in continuum mechanics,” Reports on Mathematical Physics, vol. 12, no. 1, pp. 35–44, Aug. 1977. http://www.sciencedirect.com/science/article/pii/0034487777900441
[266] T. J. R. Hughes, T. Kato, and J. E. Marsden, “Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,” Arch. Rational Mech. Anal., vol. 63, no. 3, pp. 273–294, Sep. 1977. http://link.springer.com/article/10.1007/BF00251584
[267] T. J. R. Hughes, “Unconditionally stable algorithms for nonlinear heat conduction,” Computer Methods in Applied Mechanics and Engineering, vol. 10, no. 2, pp. 135–139, Feb. 1977. http://www.sciencedirect.com/science/article/pii/0045782577900019
[268] T. J. R. Hughes, “A note on the stability of Newmark’s algorithm in nonlinear structural dynamics,” International Journal for Numerical Methods in Engineering, vol. 11, no. 2, pp. 383–386, 1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620110212/abstract
[269] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Engineering & Structural Dynamics, vol. 5, no. 3, pp. 283–292, 1977. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290050306/abstract
[270] T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai, “A finite element method for a class of contact-impact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 8, no. 3, pp. 249–276, Jul. 1976. http://www.sciencedirect.com/science/article/pii/0045782576900189
[271] T. J. R. Hughes, H. M. Hilber, and R. L. Taylor, “A reduction scheme for problems of structural dynamics,” International Journal of Solids and Structures, vol. 12, no. 11, pp. 749–767, 1976. http://www.sciencedirect.com/science/article/pii/0020768376900408
[272] T. J. R. Hughes, “Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics,” Computers & Structures, vol. 6, no. 4–5, pp. 313–324, Aug. 1976. http://www.sciencedirect.com/science/article/pii/0045794976900079
[273] T. J. R. Hughes, “Reduction scheme for some structural eigenvalue problems by a variational theorem,” International Journal for Numerical Methods in Engineering, vol. 10, no. 4, pp. 845–852, 1976. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620100411/abstract
[274] T. J. R. Hughes and J. Lubliner, “On the one-dimensional theory of blood flow in the larger vessels,” Mathematical Biosciences, vol. 18, no. 1–2, pp. 161–170, Oct. 1973. http://www.sciencedirect.com/science/article/pii/0025556473900278
[275] H. Allik and T. J. R. Hughes, “Finite element method for piezoelectric vibration,” International Journal for Numerical Methods in Engineering, vol. 2, no. 2, pp. 151–157, 1970. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620020202/abstract