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Imperfect path to knowledge
Courtesy of Oden et al.
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Large-scale computation under uncertainty
CFD Probabilistic analysis for mistuned bladed disk
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Geometric mistuning

Random blade-to-blade variation due to imperfection of manufacturing pro-
cess ⇒ Large impact on forced response ⇒ high-cycle fatigue properties of
engine

Challenge

How to propagate uncertainty in blade geometries to a quantity of interest
via large-scale CFD simulation with O

(
106
)

degree of freedoms?
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Large-scale computation under uncertainty
Inverse electromagnetic scattering

Randomness

Random errors in measurements are unavoidable

Inadequacy of the mathematical model (Maxwell equations)

Challenge

How to invert for the invisible shape/medium using computational
electromagnetics with O

(
106
)

degree of freedoms?
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Large-scale computation under uncertainty
Full wave form seismic inversion

Randomness

Random errors in seismometer measurements are unavoidable

Inadequacy of the mathematical model (elastodynamics)

Challenge

How to image the earth interior using forward computational model with
with O

(
109
)

degree of freedoms?
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Tentative Plan for the Lectures
Contents

1 From basic Bayesian probability theory (lecture-oriented)
I Probability space, random variables, distribution
I Conditional probability, Bayes’ formula, prior, likelihood, posterior
I Construction of likelihood and prior
I Relation between Bayesian inverse and deterministic inverse problems
I Monte Carlo and classical limit theorems

2 Advanced topics (lecture-oriented)
I Advanced MCMC techiniques (Langevin, stochastic Newton,

Hamiltonian, randomized MAP)
I Bayesian inversion in infinite dimensions
I Discretization-invariant MCMC methods

3 Large-scale Bayesian inverse problems (seminar-oriented)
I Reduce-then-sample approach
I Sample-then-reduce approach
I Compactness, convergence of discrete Bayesian approaches, etc
I Applications to large-scale inverse problems
I Big-data in large-scale inverse problems
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Outline

1 Doubly Infinite Dimensional Problems for UQ

2 Forward propagation of uncertainty in CFD (Reduce-then-Sample)

3 Statistical inverse problem in electromagnetics (Reduced-then-Sample)

4 Ultra-scale Seismic Wave Inversion (Sample-then-Reduce)
Infinite Dimensional Bayesian inference
Infinite Dimensional Bayesian inference: Derivation of A∗Γ−1A
Infinite Dimensional Bayesian Inference: Compactness of A∗Γ−1A
Scalable Discontinuous Galerkin for seismic waves: Scalability of A

5 Summary
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Large-scale uncertainty quantification in high dimensions

Common challenge (Doubly infinite dimensional problem)

Curse of dimensionality

Need to repeatedly solve the large-scale computational system under
consideration

Solution 1: Reduce-then-sample

Construct

reduced basis (reduced-order) model or

an accurate surrogate model

that is inexpensive to solve

Solution 2: Sample-then-reduce

Work directly with high-fidelity model but only explore important
subspaces/directions
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Forced Response Blade Example

2D Euler

∂

∂t


ρ
ρu
ρv
ρe

+
∂

∂x


ρu

ρu2 + p
ρuv

u (ρe+ p)

+
∂

∂y


ρv
ρuv

ρv2 + p
v (ρe+ p)

 = 0

Discontinuous Galerkin discretization

Static pressure

Full model

E (u) ẋ = A (u)x+B (u) z

y = C (u)x

Reduced basis approach

x = Φxr

ΨTEΦẋr = ΨTAΦxr + ΨTBu

yr = CΦxr

Petrov-Galerkin projection

Greedy optimization approach to find the reduced bases Φ,Ψ
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The Model-Constrained Adaptive Sampling Algorithm

1 Given a reduced basis Φ and initial guess u0. Find
u∗ = arg max

u
‖y(u)− yr(u)‖22

2 If ‖y(u∗)− yr(u∗)‖22 ≤ ε, then terminate the algorithm. If not, go to
the next step.

3 With u = u∗, solve the full system to compute the state solutions
x(u∗), which is then used to update the basis Φ. Go to step 1.
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Well-definedness of the Adaptive Sampling Method

Theorem

The proposed adaptive sampling algorithm is well-defined in the sense
that:

1 it terminates in finite time and

2 all the sampled points are distinct.

Details in:
Bui-Thanh, T., Willcox, K., and Ghattas, O., Model Reduction for Large-Scale Systems
with High-Dimensional Parametric Input Space, SIAM Journal on Scientific Computing,
30(6), pp. 3270–3288, 2008.
Bui-Thanh, T., Willcox, K., and Ghattas, O., Parametric Reduced-Order Models for
Probabilistic Analysis of Unsteady Aerodynamic Applications, AIAA Journal, 46(10), pp.
2520–2529, 2008.
Bui-Thanh, T., Model-Constrained Optimization Methods for Reduction of Parameterized
Large-Scale Systems. MIT, PhD thesis, 2007.
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Forced Response Blade Example (Monte Carlo Simulation)

Work per cycle (WPC) of two blades moving 180o degrees out of phase

Geometry described by 4 parameters

Same 10,000 random samples for both full and reduced models

Full CFD Reduced CFD

Model size 103,008 201

Number of nonzeros 2,846,056 40,401

Offline cost — 2.8 hours

Online cost 501.1 hours 0.21 hours

Blade 1 WPC mean -1.8572 -1.8573

Blade 1 WPC variance 2.687e-4 2.6819e-4

Blade 2 WPC mean -1.8581 -1.8580

Blade 2 WPC variance 2.797e-4 2.799e-4

Details in: Bui-Thanh, T., Willcox, K., and Ghattas, O., Model Reduction for Large-Scale
Systems with High-Dimensional Parametric Input Space, SIAM Journal on Scientific
Computing, 30(6), pp. 3270–3288, 2008.
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Forced Response Blade Example (Monte Carlo Simulation)
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Outline

1 Doubly Infinite Dimensional Problems for UQ

2 Forward propagation of uncertainty in CFD (Reduce-then-Sample)

3 Statistical inverse problem in electromagnetics (Reduced-then-Sample)

4 Ultra-scale Seismic Wave Inversion (Sample-then-Reduce)
Infinite Dimensional Bayesian inference
Infinite Dimensional Bayesian inference: Derivation of A∗Γ−1A
Infinite Dimensional Bayesian Inference: Compactness of A∗Γ−1A
Scalable Discontinuous Galerkin for seismic waves: Scalability of A

5 Summary
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Inverse Shape Electromagnetic Scattering Problem
Maxwell Equations:

∇×E = −µ∂H

∂t
, (Faraday)

∇×H = ε
∂E

∂t
, (Ampere)

E: Electric field, H: Magnetic field, µ: permeability, ε: permittivity

Forward problem (discontinuous Galerkin discretization)

y = G(u)

where G maps shape parameters u to electric/magnetic field y at the
measurement points

Inverse Problem

Given (possibly noise-corrupted) measurements on y, infer u?
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The Bayesian Statistical Inversion Framework

Bayes Theorem

Solution to the inverse problem is given as a posterior PDF over parameter
space:

πpost(u|yobs) ∝ πpr(u)πlike(yobs|u)

Prior knowledge: The obstacle is smooth:

πpr(u) ∝ exp

(
−λ
∫ 2π

0
r′′(u)dθ

)

Likelihood: Additive Gaussian noise, for example,

πlike(yobs|u) ∝ exp
(
− 1

2
(G(u)− yobs)

TΣ−1noise(G(u)− yobs)
)
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Challenge: Expensive Forward Solve

πpost(u|yobs) ∝ πpr(u)× πlike(yobs|u)︸ ︷︷ ︸
Computationally expensive forward model:y=G(u)

Approximate the likelihood

Reduced basis method, polynomial chaos, and etc

Approximate the posterior

1 The posterior is nicer than the likelihood due to the prior contribution

2 The posterior is scalar function of parameters u only

We propose a Hessian-based Adaptive Gaussian Process response sur-
face
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Hessian-based Adaptive Gaussian Process

Main idea (mitigating the curse of dimensionality)

1 Use Adaptive Sampling Algorithm to find the modes

2 Approximate the covariance matrix (Hessian inverse)

3 Partition parameter space using membership probabilities

4 Approximate the posterior with local Gaussian in subdomains

5 Glue all the local Gaussian approximations
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Inverse shape electromagnetic scattering
discontinuous Galerkin discretization with 80,892 state variables
24 shape parameters
1 million MCMC simulations for the Gaussian process response surface
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99.99% credibility envelope
Sample posterior mean
Exact shape
Deterministic solution

Offline time

Gaussian process 33 hours

Exact Posterior 0 hours

Online time

Gaussian process 0.96 hours

Exact Posterior 8802.35 hours

Details in: Bui-Thanh, T., Ghattas, O., and Higdon, D., Adaptive Hessian-based
Non-stationary Gaussian Process Response Surface Method for Probability Density
Approximation with Application to Bayesian Solution of Large-scale Inverse Problems, SIAM
Journal on Scientific Computing, 34(6), pp. A2837–A2871, 2012.
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Outline

1 Doubly Infinite Dimensional Problems for UQ

2 Forward propagation of uncertainty in CFD (Reduce-then-Sample)
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Full wave form seismic wave inversion

∂E

∂t
=

1

2

(
∇v +∇Tv

)
,

ρ
∂v

∂t
= ∇ · (CE) + f

Strain-velocity formulation

• I: fourth-order identity tensor,

• I: second-order identity tensor,

• f : external volumetric forces,

• C: four-order material tensor.

Animated by Greg Abram

• E: strain tensor,

• v: velocity vector,

• ρ: density,

• ei: ith unit vector,

Inverse problem statement

Earth surface velocity at given locations is recorded

Infer the wave velocities cs =
√
µ/ρ and cp =

√
(λ+ 2µ) /ρ
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Infinite dimensional Bayesian statistical inference

Why infinite dimensions?

The original inverse problem is posed in infinite dimensional spaces

Algorithms for infinite dimensional setting are most likely independent
of the dimension of discretization

Finite dimensional Bayes formula breaks down!

Our moral

Do as much as we can on infinite dimensional level, and discretization is
the last step
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Infinite dimensional Bayesian statistical inference
Bayes’ theorem in infinite dimensions

A Bayes’ theorem in infinite dimensional spaces (Stuart 2010)

dµ

dµ0
(u) ∝ exp

(
−Φ

(
yobs,u

))
defines the Radon-Nikodym derivative of the posterior probability measure
µ with respect to the prior measure µ0.

µ0: prior probability measure

µ: posterior probability measure

Φ
(
yobs,u

)
: misfit functional

u: unknown parameter

yobs: observation data
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution about the MAP

Compute the MAP

Linearize the forward map about the MAP yobs = f0 +A (u) + η

Posterior becomes a Gaussian measure

u|yobs ∼ µ = N (m,C) ,

posterior mean

m = E [u] = u0 + C0A
∗ (Γ +AC0A

∗)−1
(
yobs − f0 −Au0

)
posterior covariance operator

C =
(
A∗Γ−1A+ C−10

)−1
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution: Low rank approximation

posterior covariance operator: A low rank approximation

C =
(
A∗Γ−1A+ C−10

)−1
= C

1/2
0

(
C
1/2
0 A∗Γ−1A C

1/2
0 + I

)−1
C
1/2
0

≈ C
1/2
0 (V rΛrV

∗
r + I)−1C

1/2
0

= C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

Low rank approximation only involves incremetal forward and
incremental adjoint solve

Then use Sherman-Morrison-Woodbury

Relative to the prior uncertainty, the posterior uncertainty is reduced
when observations are made.
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Computation of action of Hessian in given direction
Action of the Hessian operator in direction C̃ at a point C given by

H(C)C̃ :=

∫ T

0

[
1

2
(∇w̃ + ∇w̃T )⊗E +

1

2
(∇w + ∇wT )⊗ Ẽ

]
dt+ R

′′(C)C̃

where ṽ, Ẽ satisfy the incremental forward wave propagation equations

ρ
∂ṽ

∂t
−∇ · (CẼ) = ∇ · (C̃E) in Ω× (0, T )

−C
∂Ẽ

∂t
+

1

2
C(∇ṽ + ∇ṽT ) = 0 in Ω× (0, T )

ρṽ = CẼ = 0 in Ω× {t = 0}

CẼn = −C̃En on Γ× (0, T )

and w̃, D̃ satisfy the incremental adjoint wave propagation equations

−ρ∂w̃
∂t
−∇ · (CD̃) = ∇ · (C̃D)−Bṽ in Ω× (0, T )

C
∂D̃

∂t
+

1

2
C(∇w̃ + ∇w̃T ) = 0 in Ω× (0, T )

ρw̃ = CD̃ = 0 in Ω× {t = T}

CD̃n = −C̃Dn on Γ× (0, T )
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution: Low rank approximation

posterior covariance operator: A low rank approximation
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= C

1/2
0

(
C
1/2
0 A∗Γ−1A C

1/2
0 + I

)−1
C
1/2
0

≈ C
1/2
0 (V rΛrV

∗
r + I)−1C

1/2
0
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1/2
0 V rDrV

∗
rC

1/2
0
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Linearized Bayesian solution: Why low rank approximation?
Compactness of the Hessian in inverse acoustic scattering

Theorem

Let (1− n) ∈ Cm,α0 , where n is the refractive index, m ∈ N ∪ {0} , α ∈ (0, 1).
The Hessian is a compact operator everywhere.

Coupled FEM-BEM method Eigenvalues of Gauss-Newton Hessian

Details in:

T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems.
Part II: Inverse medium scattering of acoustic waves. Inverse Problems, 28, 055002, 2012.

T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems.
Part I: Inverse shape scattering of acoustic waves. Inverse Problems 2012 Highlights
Collection, 28, 055001, 2012.
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution: Low rank approximation

posterior covariance operator: A low rank approximation

C =
(
A∗Γ−1A+ C−10

)−1
= C

1/2
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C
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1/2
0 (V rΛrV
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3D high-resolution local and global full-waveform inversion

Wish list Our choice

unified acoustic-elastic wave solver

parallel (strong) scalability of
wave solver

many wave lengths→low disper-
sion and dissipation

resolve varying wave speeds

first-order system formulation

Time domain + Explicit time
stepping

high-order (spectral) elements

nonconforming meshing

Discontinuous Galerkin Spectral Element Method
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hp non-conforming discontinuous Galerkin method
Elastic-Acoustic coupling as conservation laws

seven mortars

M1
M2

M3

M4
M5

M6
M7

+−
Pei→mi

Pmi→ei

Pe0→mi

Pmi→e0

() July 15, 2011 1 / 1

0

3

1

4

2

nonconforming hexahedral elements using Kopriva’s mortar approach for
hyperbolic equations

I theory for general hp-non-conforming dG
I implementation for h-non-conforming dG with 2:1 balance

tensor product Lagrange basis on the Legendre-Gauss-Lobatto (LGL) nodes

LGL quadrature (diagonal mass matrix)

time integration by classical 4-stage/RK4

integrated parallel mesh generation/adaptivity
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Convergence for non-conforming hp-discretization

Theorem

Assume qe ∈ [Hse (De)]
d
, se ≥ 3/2 with d = 6 for electromagnetic case and

d = 12 for elastic–acoustic case. In addition, suppose qd(0) = Πq(0), and the
mesh is affine and non-conforming. Then, the discontinuous Galerkin spectral
element solution qd converges to the exact solution q, i.e., there exists a constant
C that depends only on the angle condition of De, s, and the material constants
µ and ε (λ and µ for elastic–acoustic case) such that

‖q (t)− qd (t)‖DNel ,d ≤C
∑
e

hσe
e

Nse
e
‖q (t)‖[Hse (De)d]

+ C
∑
e

t
h
σe−1/2
e

N
se−1/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d ,

with he = diam (De), σe = min {pe + 1, se}, and ‖·‖Hs(De) denoting the usual
Sobolev norm

Details in: T. Bui-Thanh and O. Ghattas, Analysis of an hp-non-conforming discontinuous
Galerkin spectral element method for wave propagations, SIAM Journal on Numerical Analysis,
50(3), pp. 1801–1826, 2012.
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Scalability of global seismic wave propagation on Jaguar

Strong scaling: 3rd order DG, 16,195,864 elements, 9.3 billion DOFs
#cores time [ms] elem/core efficiency [%]

1024 5423.86 15817 100.0
4096 1407.81 3955 96.3
8192 712.91 1978 95.1

16384 350.43 989 96.7
32768 211.86 495 80.0
65536 115.37 248 73.5

131072 57.27 124 74.0
262144 29.69 62 71.4

Strong scaling: 6th order DG, 170 million elements, 525 billion DOFs
# cores meshing wave prop par eff Tflops

time (s) per step (s) wave

32,640 6.32 12.76 1.00 25.6
65,280 6.78 6.30 1.01 52.2

130,560 17.76 3.12 1.02 105.5
223,752 <25 1.89 0.99 175.6

Meshing time = time for parallel generation of the mesh (adapted to local wave speed)
prior to wave propagation solution

Wave prop per step is the runtime (s) per time step of the wave propagation solve

Tflops is double precision teraflops/s based on PAPI
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An example of global seismic inversion

inversion field: cp in acoustic wave equation

prior mean: PREM (radially symmetric model)

“truth” model: S20RTS (Ritsema et al.), (laterally heterogeneous)

Piecewise-trilinear on same mesh as forward/adjoint 3rd order dG fields

dimensions: 1.07 million parameters, 630 million field unknowns

Final time: T = 1000s with 2400 time steps

A single forward solve takes 1 minute on 64K Jaguar cores

“truth”, sources (black) MAP, receivers (white)
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40,842 parameters

67,770 parameters

431,749 parameters

Hessian eigenvalues
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Uncertainty quantification

C ≈ C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

A slice through the equator and isosurfaces in the left hemisphere of
variance reduction
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Samples from prior and posterior distributions

Top row: samples from prior

Bottom row: samples from posterior

Far right: MAP estimate

Details in:
Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox,
L.C.,Extreme-scale UQ for Bayesian inverse problems governed by PDEs, ACM/IEEE
Supercomputing SC12, Gordon Bell Prize Finalist, 2012.
Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G., A computational framework for
infinite-dimensional Bayesian inverse problems. Part I: The linearized case, SIAM Journal
on Scientific Computing, 35(6), pp. A2494–A2523, 2013.
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MCMC Simulation for Seismic inversion

1 / 1

prior distribution

posterior distribution

posterior sample

Use Gaussian approximation as proposal

15,587 samples, acceptance rate 0.28

96 hours on 2048 cores
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Discretization of infinite dimensional Bayesian inversion
Error analysis and uncertainty quantification for 2D inverse shape acoustic scattering

Shape r = exp (u), where u ∈ Cs,α [0, 2π], s ≥ 2 and 0 ≤ α ≤ 1

Discretize µ0 using Karhunen-Loève truncation with m terms

Discretize the forward equation using n-th order Nyström scheme

Theorem

dHellinger (µ, µn,m) ≤ c
(

1

(2n)s−1
+

logm

ms−1+α

)
,

‖EM‖L2[0,2π] ≤ c
(

1

(2n)s−1
+

logm

ms−1+α

)
,

‖EC‖L2[0,2π]⊗L2[0,2π] ≤ c
(

1

(2n)s−1
+

logm

ms−1+α

)
.

Details in: Bui-Thanh, T., and Ghattas, O., An Analysis of Infinite Dimensional Bayesian
Inverse Shape Acoustic Scattering and its Numerical Approximation, SIAM Journal on
Uncertainty Quantification, 2, pp. 203–222, 2014.
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Outline

1 Doubly Infinite Dimensional Problems for UQ

2 Forward propagation of uncertainty in CFD (Reduce-then-Sample)

3 Statistical inverse problem in electromagnetics (Reduced-then-Sample)

4 Ultra-scale Seismic Wave Inversion (Sample-then-Reduce)
Infinite Dimensional Bayesian inference
Infinite Dimensional Bayesian inference: Derivation of A∗Γ−1A
Infinite Dimensional Bayesian Inference: Compactness of A∗Γ−1A
Scalable Discontinuous Galerkin for seismic waves: Scalability of A

5 Summary
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Current/Future Work
Forward algorithms/solvers at extreme scale

1 Hybridized discontinuous Galerkin method

New MCMC algorithms for large-scale Bayesian inversions+big data

1 Riemannian manifold Hamiltonian MCMC

2 Randomized Maximum Likelihood

3 Finite element discretization of infinite dimensional MCMCs

4 UQ with big data

Bui-Thanh, T., From Godunov to A Unified Hybridized Discontinuous Galerkin
Framework, Submitted, 2014.

Bui-Thanh, T., and Girolami, M., Solving Large-scale PDE-Constrained Bayesian Inverse
Problems With Riemann Manifold Hamiltonian Monte Carlo, Inverse Problems, To
Appear, 2014.

Bui-Thanh, T., On Finite Element Approximation of PDE-constrained Infinite
Dimensional Bayesian Inverse Problems, Submitted, 2014.

Bui-Thanh, T., and Ghattas, O., Randomized Maximum likelihood method for large-scale
Bayesian Inversion, In Preparation, 2014.
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Conclusions: Reduce-Then-Sample

Computational Fluid dynamics: summary

CFD is expensive for probabilistic purposes

Reduced basis (Reduced-order) modeling seems to be useful

Probabilistic analysis with reduced model is cost effective (orders of
magnitude less time consuming), yet accurate

Computational Electromagnetics: summary

1 Statistical inversion via the Bayesian framework

2 Monte Carlo sampling the posterior in high dimensions is impractical

3 Hessian-based Piecewise Gaussian approximation to the posterior

4 Inverse solution comes with quantifiable uncertainty and more
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Conclusions: Sample-Then-Reduce

Full wave form seismic inversion
1 Given noise-corrupted measurements, want to image the earth interior

2 Infinite dimensional Bayesian inference

3 Explore the posterior measure: Derivation of A∗Γ−1A

4 Compactness of A∗Γ−1A

5 Scalable Discontinuous Galerkin for seismic waves: Scalability of A

Main results

Able to solve statistical inverse problem with more than one million
parameters with more than three orders of magnitude speedup

Gaussian approximation seems to be good in this case

Inverse solution comes with quantifiable uncertainty and more
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Future work: Variance-driven adaptivity

adaptively refine parameter mesh based on posterior covariance
(estimated by the inverse of the data-misfit Hessian)

begin with coarse parameter discretization relative to wave field mesh

locally refine parameter mesh based on variance information

allows information contained in the data to drive the medium
parametrization
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Future work: Inverse Electromagnetic Scattering

Blended wing body aircraft Animated by Greg Abram

Details in: Bui-Thanh, T., Burstedde, C., and Ghattas, O., A discontinuous Galerkin method
for electromagnetic wave propagation on h-non-conforming adapted meshes, In preparation,
2013.
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Future work: Seismic inversion with real data
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Future work: Infinite dimensional MCMC on function
spaces

Infinite dimensional scaled stochastic Newton

Infinite dimensional randomized maximum likelihood

Infinite dimensional hybrid Monte Carlo

Infinite dimensional Metropolis-adjusted Langevin method

Infinite dimensional random walk
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Future Research

Methodology

Reduced basis (reduced-order modeling) methods

Scalable response surface approach

(Infinite dimensional) MCMC on function spaces

Optimization-based discontinuous finite element method
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Details of MCMC for seismic inversion

1 Use Gaussian approximation at MAP as a proposal for MCMC

2 Sampling performance for a coarser problem (with 78k parameters):

3 15,587 MCMC samples (each requires 1 forward PDE solve) 4399
samples accepted (28%)

4 Integrated autocorrelation time of about 16–20 ) effective sample size
of about 800

5 Total runtime of about 96 hours on 2048 cores
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Infinite dimensional Bayesian statistical inference
Problem with the usual Bayes’ formula

The usual Bayes’ theorem

πpost(u|yobs) ∝ πprior(u)πlike(y
obs|u)

What are π’s?

They are probability density with respect to the Lebesgue’s measure
in Rn

There is no infinite dimensional Lebesgue’s measure!

πpost(u|yobs) ∝ πprior(u)πlike(y
obs|u)
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Infinite dimensional Bayesian statistical inference
Radon-Nikodym derivative

Define

µ0 the prior measure:
dµ0
dλ

= πprior, where λ is the Lebesgue measure

in Rn

µy
obs

the posterior measure conditional on yobs

Rewrite the usual Bayes’ theorem using Radon-Nikodym derivative

dµy
obs

dµ0
(u) ∝ πlike(y

obs|u)
def
= exp

(
−Φ

(
yobs,u

))

This formulation is valid for infinite dimensional setting

This formulation becomes the usual Bayes’ theorem in finite
dimensions
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Others: Discontinuous Petrov-Galerkin (DPG) Method

Optimal convergence p+ 1 as opposed to DG with p+ 1/2

Details in:
Roberts, N., Bui-Thanh, T., and Demkowicz, D., The DPG Method for the Stokes
Problem, Computers & Mathematics with Applications, Submitted, 2012.

Chan, J., Heuer, N., Bui-Thanh, T., and Demkowicz, D., Robust DPG method for
convection-dominated diffusion problems II: a natural in flow condition, Computers &
Mathematics with Applications, Accepted, 2012.

Bui-Thanh, T., Demkowicz, L., and Ghattas, O., A Unified Discontinuous Petrov-Galerkin
Method and its Analysis for Friedrichs’ Systems, SIAM Journal on Numerical Analysis,
Revised, 2012.

Bui-Thanh, T., Demkowicz, L., and Ghattas, O., Constructively Well-Posed
Approximation Methods with Unity Inf-Sup and Continuity Constants for Partial
Differential Equations, Mathematics of Computation, To appear, 2012.
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Gauss-Newton Hessian of data misfit with respect to cp

D2J(cp, cs)(δcp, δc̃p, δc̃s) :=
∑
De

[∫
De

∫ T

0
Ṽ e
p δcp +

∫
∂De

∫ T

0
S̃epδc

−
p

]
dxdt

where:

Ṽ e
p =2ρcp (∇ · w̃) tr(E)

S̃ep =− k20ρ−n · [[S]]n · [[G̃]]

+ k20ρ
− (ρ+cp+)2 [[v]][[w̃]]

+ k20ρ
−ρ+cp

+
(
n · [[S]][[w̃]]− [[v]]n · [[G̃]]

)
+ 2k0ρ

−cp
− tr(E−)

(
n · [[G̃]]− ρ+cp+[[w̃]]

)
k0 =

1

ρ−c−p + ρ+c+p
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Gauss-Newton Hessian of data misfit with respect to cs

D2J(cp, cs)(δcs, δc̃p, δc̃s) :=
∑
De

[∫
De

∫ T

0
Ṽ e
s δcs+

∫
∂De

∫ T

0
S̃esδcs

−
]
dxdt

where:

Ṽ e
s =4ρcs (E − tr(E)I) :

1

2

(
∇w̃ +∇w̃T

)
S̃es =− k21ρ− (n× (n× [[S]])) ·

(
n×

(
n× [[G̃]]

))
+ k21ρ

− (ρ+cs+)2 (n× (n× [v])) · (n× (n× [w̃]))

+ k21ρ
−ρ+cs

+ (n× (n× [[S]])) · (n× (n× [w̃]))

− k21ρ−ρ+cs+ (n× (n× [v])) ·
(
n×

(
n× [[G̃]]

))
+ 4k0ρ

−cs
− (n ·E−n− tr(E−)

) (
n · [[G̃]]− ρ+cp+[[w̃]]

)
+ 4k1ρ

−cs
−(n× (n×E−n

))
·
(
n×

(
n×

(
[[G̃]]− ρ+cs+[w̃]

)))
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State-of-the-art Optimization Technique

Subspace Trust Region Interior Reflective Inexact Newton-CG

1 Trust region (deals with ill-conditioning)

2 Interior reflective (deals with bound constraints)

3 Inexact Newton-CG (converges quadratically, prevents oversolving)

4 Uses adjoint method to compute the gradient

5 Computes Hessian-vector product on-the-fly using one forward-like
and one adjoint-like solves

−→ Efficient optimization solver

The number of Newton steps is numerically observed O(d).

d: the number of parameters
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GPU implementation: AMR on CPU, wave prop on GPU
Excellent weak scalability on TACC’s GPU cluster (collaboration with T. Warburton, Rice)

#GPUs #elem mesh transf wave par eff Tflops
(s) (s) prop wave (s.p.)

8 224048 9.40 13.0 29.95 1.000 0.63
64 1778776 9.37 21.3 29.88 1.000 5.07

256 6302960 10.6 19.1 30.03 0.997 20.3
478 12270656 11.5 16.2 29.89 1.002 37.9

Up to 12.3 million 7-th order elements (67 billion unknowns)

transf indicates the time to transfer the mesh and other initial data from CPU to GPU
memory

wave prop is the runtime in µsec per time step per average number of elements per GPU

wallclock time about 1 second per time step (meshing and transfer time are completely
negligible for realistic simulations)

Longhorn = 512 NVIDIA FX 5800 GPUs each with 4GB graphics memory and 512 Intel
Nehalem quad core processors connected by QDR InfiniBand interconnect
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The Model-Constrained Adaptive Sampling Algorithm

1 Given a reduced basis Φ and initial guess u0. Find
u∗ = arg max

u
‖y(u)− yr(u)‖22

2 If ‖y(u∗)− yr(u∗)‖22 ≤ ε, then terminate the algorithm. If not, go to
the next step.

3 With u = u∗, solve the full system to compute the state solutions
x(u∗), which is then used to update the basis Φ. Go to step 1.
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