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Abstract. By revisiting the basic Godunov approach for linear system of hyperbolic Partial
Differential Equations (PDEs) we show that it is hybridizable. As such, it is a natural recipe for us
to constructively and systematically establish a unified HDG framework for a large class of PDEs
including those of Friedrichs’ type. The unification is fourfold. First, it provides a single constructive
procedure to devise HDG schemes for elliptic, parabolic and hyperbolic PDEs. Second, it reveals
the nature of the trace unknowns as the Riemann solutions. Third, it provides a parameter-free
HDG framework, and hence eliminating the “usual complaint” that HDG is a parameter-dependent
method. Fourth, it allows us to construct the existing HDG methods in a natural manner. In
particular, using the unified framework we can rediscover most of the existing HDG methods and
furthermore discover new ones.

We apply the proposed unified framework to three different PDEs: the convection-diffusion-
reaction equation, the Maxwell equation in both frequency and time domains, and the Stokes equa-
tion. The purpose is to present a step-by-step construction of various HDG methods, including the
most economic ones with least trace unknowns, by exploiting the particular structure of the under-
lying PDEs. The well-posedness of the resulting HDG schemes, i.e. the existence and uniqueness of
the HDG solutions, are proved. The well-posedness results are also extended and proved for abstract
Friedrichs’ systems. We also discuss variants of the proposed unified framework and extend them to
the popular Lax-Friedrichs flux and to nonlinear PDEs. Numerical results for transport equation,
convection-diffusion equation, compressible Euler equation, and shallow water equation are presented
to support the unification of the HDG methods.
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1. Introduction. The discontinuous Galerkin (DG) method was originally de-
veloped by Reed and Hill [50] for the neutron transport equation, first analyzed
in [35, 33], and then has been extended to other problems governed by partial differ-
ential equations (PDEs) [13]. Roughly speaking, DG combines advantages of classical
finite volume and finite element methods. In particular, it has the ability to treat
solutions with large gradients including shocks, it provides the flexibility to deal with
complex geometries, and it is highly parallelizable due to its compact stencil. As such,
it has been adopted to solve large-scale forward [4,54] and inverse [5] problems. How-
ever, it is has so many (coupled) unknowns compared to the other existing numerical
methods for PDEs, and hence more expensive in general.

Recently, Cockburn, his coworkers, and others have introduced a hybridizable
(also known as hybridized) discontinuous Galerkin (HDG) methods for various type
of PDEs including Poisson equation [10,12,34], convection-diffusion equation [42,43,8,
18], Stokes equation [15,9,44], Euler and Navier-Stokes equations [47,48,40], Maxwell
equation [46, 37, 38], acoustics and elastodynamics [45], Helmholtz equation [27, 17],
and eigenvalue problem [14], to name a few. The beauty of the HDG method is
that it reduces the number of coupled unknowns substantially while retaining all
other attractive properties of the DG method. The coupled unknowns are in fact
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new unknown traces introduced on the mesh skeleton to hybridize the DG method.
Once they are solved for the usual DG unknowns can be recovered in an element-by-
element fashion, completely independent of each other. Existing HDG constructions
however vary from one type of PDE to another, though they do share some similarities.
Moreover, they are parameter-dependent method. Consequently, practitioners may
be wary of deriving/applying the HDG approach to a new PDE.

Our aim is to construct a unified HDG framework that can be applied to any
PDEs and that rediscovers most, if not all, the existing HDG methods when applied
to aforementioned PDEs. More importantly, the unified framework should be able
to provide a constructive approach to discover new HDG methods. It should be
pointed out that similar efforts for constructing a unified DG framework have been
done recently in [32, 20, 21, 22]. We have also successful devised a unified framework
for the discontinuous Petrov-Galerkin method [6]. Following this light, this paper is
an attempt provide a unified framework for the HDG approach.

In the following we summarize the contributions of this article. We start by re-
visiting the Godunov approach for solving a general system of linear PDEs in Section
2. This reveals the fact that the Godunov upwind flux on a face/edge can be hy-
bridized so that it can be computed using information of either of elements sharing
that face/edge and the single-valued Riemann solution. This motivates us to replace
the Riemann solution by a trace unknown living on the mesh skeleton and solve for
it as part of the solution. At the first sight, this seems to be more expensive than the
standard (upwind) DG. However, by a Schur complement approach (“static condensa-
tion”) we show that the actual coupled unknowns is the trace, and hence the number
of globally coupled unknowns are substantially reduced. In other words, instead of
evaluating the Riemann solution first and then the Godunov flux as usually done, we
propose to treat Riemann solutions as unknowns and compute it as part of solution.
We essentially suggest to redesign or, equivalently, to hybridize numerical methods
using the Godunov approach.

The purpose of above systematic construction of the upwind HDG framework is
threefold. First, we have shown that the basic Godunov approach can be used as a
natural recipe to constructively derive the HDG numerical fluxes. Thus, Godunov flux
is hybridizable. However, unlike the Godunov approach that was designed and mainly
used for hyperbolic PDEs, we first generalize it to abstract linear systems of PDEs
and then carry out the hybridization. Second, we provide a better understanding
of the trace unknown, that is, it is nothing more than the solution of the Riemann
problem. Third, our upwind HDG is parameter free by construction. Nevertheless,
from the upwind HDG we will show how one can naturally and constructively derive
families of parameter-dependent HDG methods in the literature.

We next apply our abstract upwind HDG framework to convection-diffusion-
reaction equation in Section 3, Maxwell’s equations in both time and frequency do-
mains in Section 4, and Stokes equation in Section 5. The purpose of these sections
is to show that by exploiting the structure of the underlying PDEs, one can system-
atically construct HDG method with minimal number of trace unknowns. In these
sections, we show the power of the unified framework in rediscovering most, if not
all, of the existing HDG methods and in discovering new ones. In each section (or
its subsections) we provide an analysis of the devised HDG method including the
well-posedness of the HDG global and local systems.

Section 6 is our attempt to generalize the analysis in Sections 3, 4, and 5 to a large
class of PDEs of Friedrichs’ type. It will be shown that one can indeed do so under
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certain conditions which will be stated clearly. In Section 7 we show how to extend
our upwind HDG idea to hybridize the popular Lax-Friedrichs flux. The advantages
and disadvantages of the latter compared to the former are also discussed. After that
we show in Section 8 how to construct variants of the upwind HDG that recover a
popular class of HDG schemes. It is then followed by an extension of the upwind HDG
framework in Section 9 to accommodate cases in which the coefficient of the PDEs are
discontinuous across element boundaries. Section 10 presents an extrapolation of the
proposed framework to nonlinear PDEs. To validate our HDG framework we presents
numerical results in Section 11 for various types of PDE including transport equa-
tion, convection-diffusion equation, compressible Euler equation, and shallow water
equation. Finally, Section 12 concludes the paper.

2. A constructive derivation of a unified HDG framework by hybridiz-
ing the Godunov’s flux. In this section we are interested in constructing a single
HDG framework for general linear system of PDEs of the following form

T u :=
d∑
k=1

∂kFk (u) + Cu :=
d∑
k=1

∂k
(
Aku

)
+ Cu = f , in Ω, (2.1)

where d is the spatial dimension (which, for clarity in the exposition, is assumed to
be d = 3 whenever a particular value of dimension is of concern though our theory
is valid for any dimension), Fk the kth component of the flux vector (or tensor) F,
u the unknown solution with values in Rm, and f the forcing term. The matrices
Ak and C are assumed to be constant and continuous across the domain of interest
Ω (the continuity will be relaxed later). Here, ∂k is understood as the kth partial
derivative. Since the boundary condition plays no role in the basic construction and
understanding of our unified framework, it is ignored until the well-definedness is
concerned. At the point we will provide the boundary condition and show how to
incorporate it through the trace unknown..

We are going to solve (2.1) using the discontinuous Galerkin finite element method.
To begin, let us partition the domain Ω into Nel non-overlapping elements Kj , j =
1, . . . , Nel with Lipschitz boundaries such that Ωh := ∪Nel

j=1Kj and Ω = Ωh. Here, h
is defined as h := maxj∈{1,...,Nel} diam (Kj). We denote the skeleton of the mesh by
Eh := ∪Nel

j=1∂Kj ; it is the set of all (uniquely defined) faces e, each of which comes with
a normal vector ne. We conventionally identify the normal vector n− on the boundary
∂K of the element K under consideration (also denoted as K−) and n+ = −n− as
the normal of the boundary of a neighboring element (also denoted as K+). On the
other hand, we use n to denote either n− or n+ in an expression that is valid for both
cases, and this convention is also used for other quantities (restricted) on e ∈ Eh. For
the sake of convenience, we denote by E∂h the sets of all boundary faces and define
Eoh := Eh \ E∂h the set of all interior faces. We also need ∂Ωh := {∂K : K ∈ Ωh}.

For simplicity in writing we define (·, ·)K as the L2-inner product on a domain
K ∈ Rd and 〈·, ·〉K as the L2-inner product on a domain K if K ∈ Rd−1. We shall use
‖·‖K = ‖·‖L2(K) as the induced norm for both cases and the particular value K in con-
text will indicate which inner product the norm is coming from. We also denote the
ε-weighted norm of a function u as ‖u‖K,ε = ‖

√
εu‖K for any positive ε. We shall use

bold-face lowercase letters for vector-valued functions and in that case the inner prod-
uct is defined as (u,v)K =

∑m
i=1 (ui,vi)K , and similarly as 〈u,v〉K =

∑m
i=1 〈ui,vi〉K ,

where m is the number of components (ui, i = 1, . . . ,m) of u. Moreover, we define
(u,v)Ω :=

∑
K∈Ωh

(u,v)K and 〈u,v〉Eoh :=
∑
e∈Eoh

〈u,v〉e whose induced (weighted)
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norms are clear, and hence their definitions are omitted. We also employ bold upper
case letter, e.g. L, to denote both matrices and tensors. It is our convention that
subscripts are used to denote the components of vector, matrix, and tensor.

We define Pp (K) as the space of polynomial of degree at most p on the domain
K. Next, we introduce three discontinuous piecewise polynomial spaces

Vh (Ωh) :=
{

v ∈
[
L2 (Ω)

]m
: v|K ∈ [Pp (K)]m ,∀K ∈ Ωh

}
,

Λh (Eh) :=
{

λ ∈
[
L2 (Eh)

]m
: λ|e ∈ [Pp (e)]m ,∀e ∈ Eh

}
,

and similarly for Vh (K), and Λh (e) by replacing Ωh with K and Eh with e. If m = 1,
i.e. scalar-valued functions, we denote these spaces as

Vh (Ωh) :=
{
v ∈ L2 (Ω) : v|K ∈ P

p (K) ,∀K ∈ Ωh
}
,

Λh (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P

p (e) ,∀e ∈ Eh
}
.

From now on to the rest of the paper we conventionally use u as the numerical
solution and ue for the exact solution. We would like to find local finite element
solution u ∈ Vh (K) on each element K ∈ Ωh. To that end, multiplying (2.1) by v
and integrating by parts we have

(F (u) ,∇v)K − 〈F (u) · n,v〉∂K + (Cu,v)K = (f ,v)K , ∀v ∈ Vh (K). (2.2)

At this point, the flux F (u) · n on e ∈ ∂K is not well-defined since the traces of
both u− of element K− and u+ of element K+ co-exist on e. Godunov’s type meth-
ods [26] resolves this by first solving, either exactly or approximately, the Riemann
problem at the interface e and then introducing some (typically upwind) numerical
flux F∗ (u−,u+) to replace F (u) on the boundary term in (2.2) so that (2.2) becomes

(F (u) ,∇v)K−
〈
F∗
(
u−,u+

)
· n,v

〉
∂K

+(Cu,v)K = (f ,v)K , ∀v ∈ Vh (K). (2.3)

It is this numerical flux that couples local unknowns on elements K+ and K− that
share a face e ∈ ∂K. Consequently, the local unknowns on all elements are coupled,
and they must be solved together. This leads to the “usual complaint” that DG has
so many coupled unknowns, and hence is expensive, though it has many attractive
properties.

The chief goal of this paper is to remove this coupling by introducing new trace un-
knowns that live on the mesh skeleton. The beauty of this approach is that the actual
globally coupled unknowns are those newly introduced trace unknowns, and hence the
resulting system is substantially smaller and sparser. Once the trace unknowns are
computed, the usual local DG unknown u are computed locally element-by-element
independent of each other. In other words, by introducing the trace unknowns, we
essentially transform the usual global DG system into much smaller global system
and many little local systems. In the following, we will show that this is possible by
revisiting the basic and classical Godunov flux.

The numerical flux is typically constructed by solving the Riemann problem lo-
cally along the normal coordinate n of ∂K: find u (n, t) such that

∂u
∂t

+
∂ (Au)
∂n

= 0, (2.4)

with the initial condition u (n, 0) = u− for n < 0, u (n, 0) = u+ for n ≥ 0, and
A =

∑d
k=1 Aknk. Here, the time t is introduced to facilitate the understanding of (the
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physics of) the Riemann problem and Godunov flux, but it is otherwise not necessary
in the following development. The detailed solution of the Riemann’s problem can be
found in [53] for example. For completeness, we however review the main points here.
We begin with the eigenvalue decomposition of A

A :=
∑

Aknk = RSR−1, (2.5)

where S := diag (θ1, . . . , θm) and θi are eigenvalues of A. To the end of this section
we assume that A has real eigenvalues and independent eigenvectors, i.e., the system
of linear PDEs (2.1) is hyperbolic [53].

Since R forms a complete basis of Rm, we can decompose the initial condition as

u− =
m∑
i=1

α−i Ri, and u+ =
m∑
i=1

α+
i Ri.

The solution of the Riemann problem (2.4) for small time t can be shown to be

u∗ =
I∑
i=1

α−i Ri +
m∑

i=I+1

α+
i Ri, (2.6)

where I is such that θI ≤ 0 and θI+1 ≥ 0. In terms of the “left” (-) and the “right”
(+) states, we have

u∗ = u− +
I∑
i=1

(
α+
i − α

−
i

)
Ri, (2.7)

and

û = u+ −
m∑

i=I+1

(
α+
i − α

−
i

)
Ri. (2.8)

The Godunov flux F∗ · n− on the boundary of element K− is found by multiplying
both sides of (2.7) by A, i.e.,

F∗ · n− := Au− + A
I∑
i=1

(
α+
i − α

−
i

)
Ri. (2.9)

Since the positive spectrum of A has no contribution to the second term in (2.9), we
can write

F∗ · n− = Au− − |A|
I∑
i=1

(
α+
i − α

−
i

)
Ri, (2.10)

where |A| := R |S|R−1. Now substituting (2.7) into (2.10) gives

F∗ · n− = F
(
u−
)
· n− + |A|

(
u− − û

)
. (2.11)

Similarly, the Godunov’s flux for the neighboring element K+ on the same face e is
given by

F∗ · n+ := F
(
u+
)
· n+ + |A|

(
u+ − û

)
. (2.12)
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The following identity obviously holds

[[F∗ · n]] = 0, (2.13)

where we have defined the “jump” operator [[(·)]] := (·)− + (·)+.
Next, combining (2.11) and (2.12) we have the usual “symmetric” form of the

Godunov’s flux

F∗ · n− =
1
2
[
F
(
u−
)

+ F
(
u+
)]
· n− +

1
2
|A|

(
u− − u+

)
, (2.14)

which is usually used in upwind numerical methods such as upwind DG. It is this
nicely symmetric form that couples the unknowns of the neighboring elements, and
hence the unknowns of all elements. This leads to the “usual complaint” that DG has
so many (coupled) unknowns.

Can we avoid this “standard” global coupling? The above re-derivation of the
Godunov flux with two new expressions in (2.11) and (2.12) in fact provides an answer.
These new formulas are unnecessary and not useful in the standard Godunov approach
since the symmetric form (2.14) is the final product that is actually used in numerical
methods. However, they are the key leading us to a unified HDG framework, as we now
show. We first observe that the Godunov numerical fluxes (2.11) and (2.12) depend
on the DG unknowns of only one side of a face e ∈ ∂K and the single-valued solution
u∗ of the Riemann problem. The numerical flux is then completely determined using
only information from either side (left or right) of the face e ∈ ∂K, as long as u∗

is (either exactly or approximately) provided. More importantly, this in turn shows
that we can solve equation (2.3) for u element-by-element independent of each other.

The above discussion suggests that we should treat u∗ as the extra unknown and
solve for it on the skeleton of the mesh instead of using the Riemann solution which
couples the local unknown u. To signify this step, let us rename u∗ to û and F∗ to F̂.
Conventionally, “hatted” quantities are computed using the trace unknown û while
“starred” quantities are associated with the Riemann solution u∗. An immediate
question that arises is how to compute û. To answer this question, we note that û is
a new unknown that is introduced on ∂K so that (2.3) can be solved in an element-
by-element fashion. To ensure the well-posedness of our formulation, we need to
introduce an extra equation on ∂K. Clearly, at this point û is not the solution of
the Riemann problem and hence the identity (2.13) is no longer satisfied in general.
It is therefore natural to use (2.13) as the extra equation. This additional algebraic
equation ensures that what coming out from element K through its boundary ∂K
must enter the neighboring elements that share (part of) the boundary ∂K. This is
the statement of conservation and it is exactly conveyed by (2.13).

In summary, for each element K, the DG local unknown u and the extra “trace”
unknown û need to satisfy

(F (u) ,∇v)K −
〈
F̂ (u, û) · n,v

〉
∂K

+ (Cu,v)K = (f ,v)K , ∀v ∈ Vh (K), (2.15a)〈
[[F̂ (u, û) · n]],µ

〉
∂K

= 0, ∀µ ∈ Λh, (2.15b)

where we have enforced the uniqueness of the numerical flux weakly which is sufficient
for local conservation. Here, the HDG flux has exactly the same form as the Godunov
one, i.e.

F̂ · n = F (u) · n + |A| (u− û) , (2.16)
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but û is now an extra unknown to be solved for.
By revisiting derivation of the Godunov flux we have constructively derived the

HDG method for a general linear system of PDEs. The procedure for computing
HDG solution requires three steps. We first solve (2.15a) for the local solution u as a
function of û. It is then substituted into the conservative algebraic equation (2.15b)
on the mesh skeleton to solve for the unknown û. Finally, the local unknown u is
computed, as in the first step, using û solved from the second step. To signify the
nature of each step, we conventionally name the element-by-element elimination in
the first and the third step as the local solver, and solving for the trace on the mesh
skeleton in the second step as the global solver.

Let us emphasize some other crucial points. First, we have shown that the Go-
dunov method is hybridizable. Second, the trace unknown in our upwind HDG, once
computed, is no thing more than the Riemann solution; we will verify this fact for vari-
ous linear PDEs in the following. Third, the appearance of |A|, and hence |A| (u− û),
is to ensure the upwinding mechanism, and hence stability. In the HDG literature
|A| is a free stabilization parameter that must be appropriately chosen for stability,
whereas in our upwind HDG framework |A| arises explicitly from the hybridization
of the Godunov method. Thus, it automatically ensures the stability of the upwind
HDG method if the original Godunov is stable.

At this level of generality, it appears that we have m trace unknowns ûi, i =
1, . . . ,m to solve for on the skeleton. However, when we apply our general HDG
method for a particular PDE—including convection-diffusion-reaction equation in
Section 3, Maxwell equation in Section 4, and Stokes equation in Section 5—we can
eliminate most of them so that there are in fact only a few trace unknowns that need
to be solved for. For all examples considered, we will assume that all the bound-
ary conditions are homogeneous for the clarity of the exposition. The extension to
non-homogeneous boundary conditions are straightforward and hence omitted.

3. HDG schemes for convection-diffusion-reaction equation. In this sec-
tion we will apply the general HDG methodology in Section 2 to convection-diffusion-
reaction equation and its subsets. As shall be shown, we recover several existing HDG
methods and discover new ones.

The problem of interest in this section is the convection-diffusion-reaction equa-
tion written in the first order form

ε−1σ +∇u = 0 in Ω, (3.1a)
∇ · σ + β · ∇u+ νu = f in Ω (3.1b)

where we assume β ∈ [L∞ (Ω)]d, ∇ · β ∈ L∞ (Ω). Simple algebraic manipulation
shows that

|A| = 1
α


2n2

1 2n1n2 2n1n3 β · nn1

2n1n2 2n2
2 2n2n3 β · nn2

2n1n3 2n2n3 2n2
3 β · nn3

β · nn1 β · nn2 β · nn3 γ

 ,

with α :=
√
|β · n|2 + 4 and γ = |β · n|2 + 2. If we order the Riemann solution in
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(2.6) as u∗ := (u∗, σ∗1 , σ
∗
2 , σ
∗
3) = (u∗,σ∗), the Godunov flux (2.16) becomes

F∗ · n =
1
α


αun1 + 2 (σ − σ∗) · nn1 + β · n (u− u∗) n1

αun2 + 2 (σ − σ∗) · nn2 + β · n (u− u∗) n2

αun3 + 2 (σ − σ∗) · nn3 + β · n (u− u∗) n3

αβ · nu+ ασ · n + β · n (σ − σ∗) · n + γ (u− u∗) .

 (3.2)

If we stop here and construct an HDG method by replacing starred quantities
by hatted ones as in the abstract setting presented in Section 2, we see that there
are four trace unknowns: three from σ∗ and one from u∗. However, as can be seen
from (3.2), there are only two independent quantities, namely, the traces |σ∗ · n| and
u∗ that are needed to compute the upwind flux. In fact, even these two quantities
are not independent of each other, as will be shown, and hence either of them can
be eliminated. This is the key leading to the most economic HDG methods: first
removing all the dependencies, and then constructing HDG methods.

3.1. Constructing HDG scheme by eliminating σ∗ · n. We first show that
the Godunov flux can be written as a function of only u∗.

Lemma 3.1. The following hold true:
i) The Riemann solution u∗ satisfies

u∗ = {{u}}+
β · n
2α

[[un]] · n +
1
α

[[σ · n]], (3.3a)

σ∗ · n = {{σ}} · n +
1
α

[[un]] · n− β · n
2α

[[σ · n]], (3.3b)

ii) The Godunov flux is given by

F∗ · n =


ûn1

ûn2

ûn3

β · nu+ σ · n + 1
2 (α− β · n) (u− u∗)

 , (3.4)

where

u∗ = u+
2
α

(σ − σ̂) · n +
β · n
α

(u− u∗) . (3.5)

Proof. To prove the first assertion we can use popular techniques such as those in
[53]. Here, we take a different approach using the conservation equation. Specifically,
we note that for the convection-diffusion-reaction problem, the conservation (2.13)
gives us four equations for the Riemann solution u∗. Solving for u∗ and σ∗ · n in
terms of u and σ we obtain the desired result. The second assertion immediately
follows by substituting (3.3) into (3.2) and inspecting that (3.5) is true.

Up to this point, we have used the exact Riemann solution and the Godunov
flux to derive identities in Lemma 3.1. These simple results are important since they
immediately pave the way for constructing a HDG method with single trace unknown.
In particular, we start by replacing the starred quantities with hatted ones in (3.4),
and then defining resulting expression as the HDG flux with û as the trace unknown,
i.e.,

F̂ · n =


ûn1

ûn2

ûn3

β · nu+ σ · n + 1
2 (α− β · n) (u− û)

 . (3.6)
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That is, we do not assume that û satisfies (3.3) and (3.5). It is clear that the first three
components of our HDG flux (3.6) automatically satisfy the conservation condition
(2.15b), and thus we need to weakly enforce only the fourth one according to (2.15b),
i.e.,〈

[[β · nu+ σ · n +
1
2

(α− β · n) (u− û)]], µ
〉
e

= 0, ∀µ ∈ Λh (e) , ∀e ∈ Eoh. (3.7)

Taking v = (κ, v) ∈ Vh (K) ⊗ Vh (K) as the test function, the local equation
(2.15a) when applied to (3.1) becomes: find (σ, u) ∈ Vh (K)⊗ Vh (K) such that(

ε−1σi, κi
)
K
− (u, ∂iκi)K +

〈(
F̂ · n

)
i
, κi

〉
∂K

= 0 i = 1, 2, 3, (3.8a)

− (σ,∇v)K − (u,∇ · (βv))K + (νu, v)K +
〈(

F̂ · n
)

4
, v
〉
∂K

= (f, v)K , (3.8b)

with
(
F̂ · n

)
i
, i = 1, . . . , 4 denoting the ith component of numerical flux (3.6).

In summary, we have proposed an HDG scheme consisting of local equations
(3.8), numerical flux (3.6), and conservation condition (3.7). A question immediately
arises is whether the trace solution û of the HDG method is identical to the Riemann
solution (3.3a) and the HDG flux (3.6) is in fact the Godunov one. The answer is,
not surprisingly, affirmative.

Lemma 3.2. The trace solution û of the HDG scheme (3.8), (3.6), and (3.7)
coincides with the Riemann solution. Furthermore, the HDG flux (3.6) is identical to
the Godunov upwind flux (3.2).

Proof. We proceed with the conservation condition (3.7) which shows that

〈αû, µ〉e =
〈
α {{u}}+

β · n
2

[[un]] · n + [[σ · n]], µ
〉
e

= 〈αu∗, µ〉e , ∀µ ∈ Λh (e) ,

where we have used (3.3a) to obtain the second equality. Now, taking µ = û − u∗
yields

‖û− u∗‖2e,α = 0,

which in turn shows that û is exactly the same as the Riemann solution u∗. The
second assertion is clear by defining σ̂ ·n in place of σ∗ ·n in (3.3b) and substituting
û from (3.3a) into (3.6).

As pointed out in the general case in Section 2, the HDG method involves three
steps. First, we solve the local problem (3.8) for (σ, u) as a function of û, which are
then substituted in (3.7) to have a sparse system of equation to solve for û on the
mesh skeleton. Finally, repeating step 1 element-by-element with the just-computed
û gives the local solution (σ, u).

3.2. Constructing HDG scheme by eliminating u∗. To achieve the goal of
eliminating u∗, let us define the unique flux θ∗ such that

θ∗ sgn(n) := β · nu+ σ · n +
β · n
α

(σ − σ∗) · n +
γ

α
(u− u∗) , (3.9)

so that the fourth component of the Godunov flux (3.2) can be written simply as

(F∗ · n)4 = θ∗ sgn(n) .
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Here, we have defined, ∀e ∈ Eh,

sgn(n) :=
{

1 if n = ne

−1 if n = −ne

Then, we have a result parallel to Lemma 3.1.
Proposition 3.3. The Godunov flux (3.2) is equivalent to

F∗ · n =


ũn1

ũn2

ũn3

θ∗ sgn(n)

 , (3.10)

where

ũ =
(

1 +
2αβ · n
α− β · n

)
u+

2α
α− β · n

σ · n− 2α
α− β · n

θ∗ sgn(n) . (3.11)

Proof. Combining (3.5) and (3.9) gives

(σ − σ∗) · n = −α
2

(
1 +

β · n
2

)
(u− u∗) , (3.12a)

(u− u∗) =
2

α− β · n
[θ∗ sgn(n)− β · n− σ · n] . (3.12b)

Substituting (3.12) and (3.9) into (3.2) ends the proof.
Proposition 3.3 shows that the upwind flux (3.2) can be written as a function

of only θ∗ instead of u∗ and σ∗. This suggests that we can construct a new HDG
scheme consisting of local solver (3.8) with numerical flux F̂ ·n and θ̂ defined in place
of F∗ · n and θ∗, respectively, in (3.10), where θ̂ is now the single unknown trace. As
can be seen, the fourth equation in the conservation condition (2.15b) is automatically
satisfied since θ̂ is single-valued. We need to weakly enforce the conservation for the
first three components, but they are the same up to a constant ni. Consequently,
only one conservation condition on the skeleton is necessary and this ensures that the
number of equations is the same as the number of unknowns, i.e.,

〈[[ũ sgn(n)]], µ〉e = 0, ∀µ ∈ Λh (e) , ∀e ∈ Eoh. (3.13)

Similar to Lemma 3.2, we can show that the new HDG scheme with θ̂ as the
trace unknown is equivalent to the standard upwind DG scheme for the convection-
diffusion-reaction (3.1).

Lemma 3.4. The HDG flux F̂ ·n (3.10) is identical to the Godunov upwind flux.
Proof. The proof is similar to that of Lemma 3.2.

3.3. HDG method for convection-reaction equation. This is a special case
of (3.1) in which the diffusion coefficient is zero, i.e. ε = 0. The construction of the
HDG method following the general procedure in Section 2 is substantially simplified.
In particular, we have

|A| = |β · n| ,

and the HDG flux (2.14) turns out to be very simple

F̂ · n = β · nu+ |β · n| (u− û) . (3.14)
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The local HDG equation (2.15a) on each element K now becomes: find u ∈ Vh (K)
such that

− (u,∇ · (βv))K + (νu, v)K +
〈
F̂ · n, v

〉
∂K

= (f, v)K , ∀v ∈ Vh (K) (3.15)

with the HDG flux given in (3.14), and the conservation equation (2.15b) is simply

〈[[β · nu+ |β · n| (u− û)]], µ〉e = 0, ∀µ ∈ Λh (e) , ∀e ∈ Eoh. (3.16)

Lemma 3.5. The trace solution û of the HDG scheme (3.15), (3.14), and (3.16)
coincides with the Riemann solution. Furthermore, the HDG flux F̂ · n (3.14) is
identical to the standard Godunov upwind flux for convection-reaction problem.

Proof. To begin, we note that, similar to Lemma 3.1, we can use the conservation
equation to deduce that

û =
1
2

[[u sgn(β · n)]] + {{u}} , (3.17)

which is exactly the solution of the Riemann problem. Next, û can can be substituted
into the HDG flux (3.14) to give

F̂ · n = β · n {{u}}+
1
2

sgn(β · n) [[β · nu]], (3.18)

which is exactly the usual upwind flux [50, 53] for the convection equation. Clearly,
we can also bypass the computation of û to compute the upwind flux directly by

2F̂ · n− = F̂ · n− − F̂ · n+ = 2β · n {{u}}+ sgn(β · n) [[β · nu]],

and hence obtaining the same result.
The HDG procedure is the same as before. We first solve (3.15) for u as a function

of û. We then substitute u into (3.16) to solve for the trace unknown û on the mesh
skeleton. Finally we recover the local solution u on each element by repeating step
one with known û. The next result shows that our upwind HDG method is the same
as the standard upwind scheme [33, 50, 35]. This is not surprising since the former is
constructed from the latter by hybridizing the upwind flux.

Corollary 3.6. The HDG scheme (3.15), (3.14), and (3.16) is equivalent to
the standard upwind DG scheme.

Proof. We first show that the HDG solution u is a solution of the DG scheme.
But this is clear from the proof of Lemma 3.5. In particular, by substituting (3.18)
into (3.15), the latter becomes the standard upwind DG [33,50,35].

Conversely, let u be the solution of the upwind DG method, i.e., u satisfies (3.15)
with the upwind flux (3.18). Now, first defining û as in (3.17), then expressing the
upwind flux (3.18) as a function of û we recover (3.15). We also observe that the
upwind flux satisfies the conservation equation (3.16), and this concludes the proof.

3.4. HDG method for Poisson equation. This is a special case of the HDG
scheme in Section 3.1 in which the velocity field β is zero, i.e. β = 0. In particular,
the HDG flux (3.6) now simplifies to

F̂ · n =


ûn1

ûn2

ûn3

σ · n + (u− û)

 .
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As shown above, û is the Riemann solution and hence approximating the trace of the
exact solution on the skeleton. This implies that the discrepancy/error u−û converges
to zero as the mesh (or solution order) is refined for PDE with smooth solution. This
observation suggests that one can penalize u− û by introducing a penalty parameter
τ so that the HDG flux now reads

F̂ · n =


ûn1

ûn2

ûn3

σ · n + τ (u− û)

 , (3.19)

which becomes our upwind HDG when the penalty parameter is unity. On the other
hand, if τ approaches infinity the trace unknown û is forced to match the trace
of the DG solution u. One can realize that, by hybridizing the Godunov flux, we
have constructively and intuitively recovered the HDG methods for elliptic equations
proposed in [11].

Remark 3.7. It is important to point out that since the differential part of the
Helmholtz equation is the same as that of the Poisson equation, the development of
the HDG method for the former is straightforward. In particular, the upwind HDG
flux, or its penalized variant, for the Helmholtz equation is identical to (3.19). That
is, we have also recovered the HDG scheme for Helmholtz equation in [27, 17].

3.5. Analysis. In this section, we discuss the relation of the our proposed HDG
schemes to the existing ones. This is advantageous since we can recycle the results
that have been proved for existing HDG methods. Since the upwind HDG scheme with
(3.8), (3.10), and (3.13) is equivalent to that with (3.8), (3.6), and (3.7), we study
only the latter. We will also discuss the HDG schemes for transport and Poisson
equations.

It is important to point out that our upwind HDG scheme for convection-diffusion-
reaction problem (3.1) is different from that proposed in [42]. In particular, their HDG
flux σ̂NPC · n is

σ̂NPC · n := β · nû+ σ · n + τ (u− û) ,

where τ is the so-called stabilization parameter. On the other hand, by hybridizing
the Godunov’s upwind method, ours is

σ̂ · n := β · nu+ σ · n +
1
2

(α− β · n) (u− û) .

Nevertheless, we can rewrite our upwind HDG flux as

σ̂ · n := β · nû+ σ · n +
1
2

(α+ β · n) (u− û) ,

and if we take τ = 1
2 (α+ β · n) the two fluxes are identical. Moreover, in this

case τ − β · n/2 = α > 0, and therefore all results in [42] hold for our upwind
HDG method as well. Let us summarize some important points for mixed Dirichlet-
Neumann boundary condition (enforcing boundary condition via the trace unknown
is straightforward and can be found in [42]).

Theorem 3.8. Assume ν − 1
2∇ · β ≥ 0. Then:

• There exists a unique solution for the local solver (3.8) of the upwind HDG
scheme (3.8), (3.6), and (3.7).
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• The trace solution û of the upwind HDG scheme (3.8), (3.6), and (3.7) exists
and it is unique.

Proof. See [42] for a proof.
When β = 0 the HDG scheme is much simplified as shown in Section 3.4. Conse-

quently, more results can be obtained for this case. Indeed, the work in [12] presents
a complete analysis, including optimal convergent rate, of the HDG method for the
Poisson equation with Dirichlet boundary condition . Thus our upwind HDG method
also converges optimally. A question that immediately arises is whether it is consis-
tent with the local discontinuous Galerkin (LDG) approach proposed [16] in which
the upwinding is done in the opposite direction, i.e. upwinding for (3.8a) and down-
winding for (3.8b) or the other way around. For clarity in the exposition, we present
the answer for the Poisson equation.

Due to Lemma 3.2, we see that since û = u∗, and hence σ̂ = σ∗, they also satisfy
(3.5), i.e.,

û− u = − (σ̂ · n− σ · n) , (3.20)

which says that the unbalanced (or mismatched) components of the flux due to our
upwind HDG/DG discretization of the system (3.1) are opposite. More specifically,
û− u and σ̂ · n− σ · n are the flux mismatch of quantities u and σ, respectively, per
unit area/length. The identity (3.20) implies that the mismatches are opposite. In
particular, if û = u∓ then from (3.3a)–(3.3b) one can easily sees that σ̂·n = σ± ·n, i.e.,
they are upwind fluxes in opposite directions. In other words, we have rediscovered
the LDG method from our upwind HDG/DG approach. More generally, (3.20) says
that the amount of out-going mismatched flux for u is exactly the amount of in-going
one for σ and vice versa. This is always true unless h approaches 0 (or p approaches
∞), for which both sides of (3.20), namely both mismatches, vanish.

We next discuss the upwind HDG scheme for transport equation in Section 3.3.
From Corollary 3.6, the upwind HDG scheme is equivalent to the standard upwind
DG method and hence all the results in [33] hold for the former as well. Let us present
some results that are special for our HDG scheme. These are simpler versions of the
results in Section 6, and hence we postpone the boundary condition enforcement until
then.

Lemma 3.9. If ν − 1
2∇ · β > 0, there exists a unique solution for the local solver

(3.15).
Proof. Since the local problem is in finite dimensional space, it is sufficient to

show that u = 0 when f = 0 and û = 0. Indeed, testing (3.15) with v = u we have

− (u,∇ · (βu))K + (νu, u)K + 〈(|β · n|+ β · n)u, u〉∂K = 0,

which, after integrating the first term by parts gives

(u,β · ∇u)K + (νu, u)K + 〈|β · n|u, u〉∂K = 0.

Finally adding the above two equations gives

((2ν −∇ · β)u, u)K + 〈(2 |β · n|+ β · n)u, u〉∂K = 0.

Since ν − 1
2∇ · β > 0 and 2 |β · n|+ β · n ≥ 0, we conclude that u = 0.

Lemma 3.10. If ν − 1
2∇ · β > 0, there exists a unique solution (u, û) for the

upwind HDG scheme.
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Proof. Similar to the proof of Lemma 3.9, it is sufficient to show that f = 0 and
g = 0 imply u = 0 and û = 0. Indeed, eliminating û as in the proof of the Lemma 3.5
we recover the standard upwind DG scheme [33] which shows that u = 0 since f = 0
and g = 0. This in turn implies that û = 0.

We have used the equivalence (Corollary 3.6) between our upwind HDG method
and the standard upwind HDG to obtain the uniqueness of û with no effort. Going
one step further we can immediately show the convergence rate of our upwind HDG
method.

Theorem 3.11. Suppose the exact solution ue is sufficiently smooth, i.e. ue|K ∈
Hp+1 (K), then the solution pair (u, û) satisfy the following error bounds

‖u− ue‖L2(Ωh) ≤ ch
p+ 1

2 ‖ue‖Hk+1(Ωh) ,

‖û− ue‖L2(Eoh) ≤ ch
p+ 1

2 ‖ue‖Hk+1(Ωh) ,

Proof. Since the upwind HDG is equivalent to the upwind DG scheme, the first
assertion is immediate by the existing convergence theory of the latter (see, e.g.,
[33, 49]). For the second assertion, subtracting ue from both sides of (3.17) yields

‖û− ue‖L2(e) ≤
∥∥∥∥1

2
[[u− ue]] sgn(β · n)

∥∥∥∥
L2(e)

+ ‖{{u− ue}}‖L2(e)

≤ c ‖u− ue‖L2(e) ≤ ch
p+ 1

2 ‖ue‖Hk+1(K) .

where the last inequality is from the upwind DG (see [33, 49] and the references
therein). Summing over all faces e, and hence elements, ends the proof.

4. HDG schemes for the Maxwell equations. In this section, we apply our
single abstract HDG framework in Section 2 to the Maxwell equation in both time and
frequency (time harmonic) domains. We will show that by hybridizing the upwind
DG for the first order Maxwell equation we can derive families of HDG schemes
from which we recover many existing methods and discover new ones. The details of
our constructive approach will be discussed at length in Section 4.1 for time domain
equation and in Section 4.2 for the frequency domain counterpart.

4.1. Time domain Maxwell equation. Consider the following Maxwell equa-
tion in the time domain

ε
∂E
∂t
−∇×H = f1 in Ω (4.1a)

ν
∂H
∂t

+∇×E = f2 in Ω. (4.1b)

Let us define u = (E,H)T and f = (f1, f2)T . We can rewrite (4.1) as

Q
∂u
∂t

+∇ · F (u) = f , (4.2)

where Q = diag (ε, ε, ε, ν, ν, ν) and the ith component of the flux tensor F (u) is given
by

Fi =
[
−ei ×H

ei ×E

]
,
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with ei as the ith canonical basis vector in Rd.
Let us introduce some notations: define c = 1/

√
νε, Z =

√
ν/ε and Y =

√
ε/ν =

1/Z. One can easily see that A in (2.5) when applied to the Maxwell equation (4.1)
can be written as

A =
[

0 1
εB

1
νB 0

]
, where B =

 0 n3 −n2

−n3 0 n1

n2 −n1 0

 .
Following the same exercise as above, one can show that |A| is given by

|A| =
[

B̃ 0
0 B̃

]
, where B̃ = c

 (1− n2
1

)
−n1n2 −n1n3

−n1n2

(
1− n2

2

)
−n2n3

−n1n3 −n2n3

(
1− n2

3

)
 ,

and the upwind Godunov fluxes (2.11) and (2.12), when applied to the Maxwell
equation (4.1), read

F∗ · n =
[
−n×H + Y n× n× (E∗ −E)

n×E + Zn× n× (H∗ −H)

]
, (4.3)

where E∗ and H∗ are the Riemann solutions.
It can be observed that in order to compute the flux (4.3) only tangent components

of E∗ and H∗, namely −n× n×E∗ and −n× n×H∗, are necessary. It implies that
E∗ and H∗ are not independent of each other and this will be confirmed in the
following. Again, this observation is the key to the hybridization in which we remove
the redundancy. We start with the following result for the Godunov flux with exact
Riemann solutions.

Lemma 4.1. Assuming ε and ν are positive and continuous across e ∈ Eoh, the
following hold true:

i) The Riemann solution u∗ := (E∗,H∗) satisfies

n× n×E∗ = n× n× {{E}}+
Z

2
[[n×H]], (4.4a)

n× n×H∗ = n× n× {{H}} − Y

2
[[n×E]]. (4.4b)

ii) The upwind Godunov flux (4.3) can be written either as

F∗ · n =
[
−n×H + Y n× n× (E∗ −E)

n×E∗

]
, (4.5a)

or as

F∗ · n =
[

−n×H∗

n×E + Zn× n× (H∗ −H)

]
. (4.5b)

Proof. The first assertion can be found using standard technique for solving the
Riemann problem (see, e.g., [53,29,39]). Here, it is straightforward to obtain (4.4a)–
(4.4b) from the conservation equation (2.13). Indeed, let us show (4.4a), and (4.4b)
follows similarly. When applying (2.13) to flux (4.3), the first three equations read

−n− ×H− + Y n− × n− ×
(
E∗ −E−

)
− n+ ×H+ + Y n+ × n+ ×

(
E∗ −E+

)
= 0,
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which immediately becomes (4.4a) after dividing Y both sides and arranging terms
appropriately.

In order to prove the second assertion, we start by rewriting (4.4a)–(4.4b) as

n× n× (E∗ −E) = −1
2
n× [[n×E]] +

Z

2
[[n×H]], (4.6a)

n× n× (H∗ −H) = −1
2
n× [[n×H]]− Y

2
[[n×E]]. (4.6b)

Next, performing the cross product both sides of (4.6a) with Y n we obtain

−Y n× (E∗ −E) =
Y

2
[[n×E]] +

1
2
n× [[n×H]],

which, together with (4.6b), yields

n× n× (H∗ −H) = Y n× (E∗ −E) (4.7a)
n× n× (E∗ −E) = −Zn× (H∗ −H) , (4.7b)

where (4.7b) is obtained from (4.7a) by performing the cross product both sides with
n. The upwind fluxes (4.5a) and (4.5b) are readily available by substituting (4.7a)
and (4.7b) into (4.3), respectively.

We are now in the position to construct HDG methods and we start with the local
solver. Taking v = (e,h) ∈ Vh (K)⊗Vh (K) as the test function, the local equation
(2.15a) when applied to (4.2) becomes: find (E,H) ∈ Vh (K)⊗Vh (K) such that(

ε
∂E
∂t
, e
)
K

− (H,∇× e)K +
3∑
i=1

〈(
F̂ · n

)
i
, ei
〉
∂K

= 0, (4.8a)

(
ν
∂H
∂t

,h
)
K

+ (E,∇× h)K +
6∑
i=4

〈(
F̂ · n

)
i
,hi
〉
∂K

= 0, (4.8b)

with
(
F̂ · n

)
i
, i = 1, . . . , 6 denoting the ith component of HDG flux.

It remains to construct the HDG flux F̂ · n and the conservation equation. To
this end, we follow the same strategy presented in the abstract Section 2, namely, we
simply replace the starred quantities, e.g. E∗ and H∗, in (4.5a)–(4.5b) with hatted
ones, e.g. Ê and Ĥ, but the latter are unknown traces that need to be solved for.
Let us now present in details two (families of) HDG fluxes based on Godunov fluxes
(4.5a)–(4.5b).

4.1.1. HDG schemes based on Ê. To define our first HDG method, we reverse
the results in Lemma 4.1 by defining the HDG flux as in (4.5a), i.e.,

F̂ · n =

[
−n×H + Y n× n×

(
Ê−E

)
n× Ê

]
. (4.9)

However, now Ê, in fact its tangent component Êt := −n × n × Ê, is considered as
the unknown. It is obvious that the last three components of the HDG flux (4.9) au-
tomatically satisfy the conservation constraint (2.15b). The task at hand is therefore
to ensure the first three to obey the conservation condition as well. To that end, we
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observe that since the flux −n ×H + Y n × n ×
(
Ê−E

)
is a vector in the tangent

plane orthogonal to n, it is sufficient to enforce the continuity in the tangent plane
only, i.e.,〈

[[−n×H + Y n× n×
(
Ê−E

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) , ∀e ∈ Eoh, (4.10)

where the tangent trace space Λt
h is defined as

Λt
h (Eh) :=

{
λ ∈

[
L2 (Eh)

]m
: λ|e ∈ [Pp (e)]m , λ · n|e = 0,∀e ∈ Eh

}
.

Let us also define the tangent component of the electric field as Et = −n × n × E.
The HDG flux (4.9) and the conservation condition (4.10) can be written in terms of
Êt and Et as follows

F̂ · n =

[
−n×H + Y

(
Et − Êt

)
n× Êt

]
, (4.11)

and 〈
[[−n×H + Y

(
Et − Êt

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) , ∀e ∈ Eoh, (4.12)

where we have used the fact that n×E = n×Et.
The first HDG method is defined by the local solver (4.8), where the HDG flux

is defined in (4.11), and the conservation condition (4.12).

4.1.2. HDG schemes based on Ĥ. In this section, the HDG flux is constructed
based on the Godunov flux (4.5b). More specifically, we define

F̂ · n =

[
−n× Ĥt

n×E + Z
(
Ht − Ĥt

) ] , (4.13)

where the tangent components Ht := −n× n×H of H and Ĥt := −n× n× Ĥ of Ĥ
have been employed.

If we follow the same exercise as in Section 4.1.1 by defining the HDG flux as
in (4.13), where the Ht is unknown on e, we see that the first three components
automatically satisfy the conservation constraint (2.15b). Since the flux n × E +
Z
(
Ht − Ĥt

)
is a vector in the tangent plane orthogonal to n, it is sufficient to

enforce the continuity in the tangent plane only, i.e.,〈
[[n×E + Z

(
Ht − Ĥt

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) , ∀e ∈ Eoh. (4.14)

Our second HDG method for the Maxwell equation in the time domain consists
of the local solver (4.8) with the HDG flux defined in (4.13) and the conservation
condition (4.14).

Before diving into a detailed analysis, let us present a result parallel to Lemma
3.5 and Corollary 3.6. Since the result is almost the same for both HDG approaches,
we present it for the first one only.

Lemma 4.2.
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i) Assume ε and ν are positive and continuous across e ∈ Eoh. Then, the tangent
component of the trace solution Êt of the first HDG scheme with (4.8), (4.11),
and (4.12) coincides with that of the Riemann solution (4.4a). Furthermore,
the HDG flux (4.11) is identical to the Godunov upwind flux (4.3).

ii) The first HDG scheme is equivalent to the standard upwind DG scheme.
Proof. Though there are differences in the details, the idea of the proof is similar

to that of Lemma 3.5 and Corollary 3.6, and hence we omit the details.

4.1.3. Analysis. In this section we will present some analysis for the first HDG
method (those for the second HDG method follow similarly and hence omitted). As
in Lemma 4.2, our HDG method is equivalent to the standard upwind DG for the
Maxwell equation, and thus all the existing results on consistency, stability, and con-
vergence [29, 30, 7] automatically hold. We therefore focus on results that are special
for the HDG method. To that end, we need to equip the Maxwell equation (4.1)
with an appropriate boundary condition. For simplicity, the perfect electric conduc-
tion (PEC) boundary condition is employed, namely the tangent component of the
electric field is zero on ∂Ω. We enforce the boundary condition through the tangent
trace, i.e.,

Êt = 0 on ∂Ω. (4.15)

We next present a fully discrete HDG scheme using, for simplicity, the backward Euler
approach. It is sufficient to present the results for one time step, so we will omit the
time index for clarity. The backward Euler discretization of (4.8) with the HDG flux
(4.11) reads

(εE, e)K − (H,∇× e)K +
〈
−n×H + Y

(
Et − 1∂K\∂ΩÊt

)
, e
〉
∂K

= (f , e)K ,

(4.16a)

(νH,h)K + (E,∇× h)K +
〈
1∂K\∂Ωn× Êt,h

〉
∂K

= (g,h)K ,

(4.16b)

where f and g contain quantities known from the previous time step and the forcing
f1, f2. Here, 1∂K\∂Ω denotes the standard indicator function for the set ∂K \ ∂Ω and
we have used it to enforce the PEC condition (4.15). We first study the well-posedness
of the local solver (4.16), i.e. step one of the HDG method.

Lemma 4.3. Assume that ε, ν > 0. For a given value of f ,g and Êt, the local
solver (4.16) has a solution and it is unique.

Proof. We observe that the local solver (4.16) is a finite dimensional square
system. Thus, due to linearity, it is sufficient to show that E = H = 0 is the only
solution when f = g = 0 and Êt = 0. Indeed, taking e = E,h = H, integrating the
second term of (4.16a) by parts, adding the two equations, and using the fact that〈

Et,E
〉
∂K

= 〈−n× n×E,E〉∂K = ‖n× n×E‖2∂K ,

we obtain

‖E‖2K,ε + ‖H‖2K,ν + ‖n× n×E‖2∂K = 0,

from which it follows that H = E = 0.
We next consider the well-posedness of the global HDG system of determining

the tangent trace unknown Êt, i.e. step two of the HDG method. We begin by setting
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e = E,h = H in (4.16), integrating the second term in (4.16a) by parts, adding the
resulting equations, and then summing over all elements to obtain

‖E‖2Ωh,ε + ‖H‖2Ωh,ν +
∑
K∈Ωh

〈
Y
(
Et − Êt

)
,Et
〉
∂K\∂Ω

+
∥∥Et

∥∥2

∂K∩∂Ω,Y
+

∑
K∈Ωh

〈
n× Êt,H

〉
∂K\∂Ω

= 0, (4.17)

where we have used the fact that E can be replaced by Et in the third term on the
left hand side of (4.16a). We next sum (4.12) over all faces e ∈ Eoh, set µt = Êt, and
use the definition of the jump operator to arrive at∑

K∈Ωh

〈
−n×H + Y

(
Et − Êt

)
, Êt
〉
∂K\∂Ω

= 0. (4.18)

Theorem 4.4. Assume that ε, ν > 0. For a given value of f and g, there exists
a unique solution for the tangent trace unknown Êt, E, and H.

Proof. Since the system of linear equations (4.12) for determining Êt is square,
it is sufficient, by induction, to show that the solutions E,H and Êt of the HDG
method for the first time step are zero with zero initial condition and zero forcing,
i.e. f = g = 0. Subtracting (4.18) from (4.17) we have

‖E‖2Ω,ε + ‖H‖2Ωh,ν +
∥∥Et

∥∥2

∂K∩∂Ω,Y
+
∑
K∈Ωh

∥∥∥Et − Êt
∥∥∥2

∂K\∂Ω,Y
= 0,

which shows that E,H, and hence Et, must vanish and so must Êt, and this concludes
the proof.

Remark 4.5. As in Theorem 3.11 we can further obtain the convergence rate
for both the volume E,H and the trace Êt unknowns exploiting the equivalence (see
Lemma 4.2) of our HDG schemes and the standard upwind DG in [29, 30, 7]. In
particular, one can show that E,H and the trace Êt converge to the exact solution
with the rate of hp+

1
2 , but we leave out the details here.

4.2. Frequency domain (time harmonic) Maxwell equation. Similar to
[46] we consider the following time-harmonic equation

νE−∇×H = 0 in Ω, (4.19a)

∇×E− εω2H + ε∇q = f in Ω, (4.19b)
∇ · (εH) = 0 in Ω. (4.19c)

As can be seen, A in this case has the structure of the time domain Maxwell equation
(the first two equations with respect to E and H) and the convection-diffusion (the
last two equations with respect to H and q). Indeed, the explicit form of A reads

A =

 0 B 0
B 0 D
0 DT 0

 , where B =

 0 n3 −n2

−n3 0 n1

n2 −n1 0

 , D = ε

 n1

n2

n3

 ,
and 0 are zero matrices with appropriate size. After some simple algebraic manipu-
lations one can show that |A| is given by

|A| =

 B̃ 0 0
0 B 0
0 0 ε

 , where B̃ =

 (1− n2
1

)
−n1n2 −n1n3

−n1n2

(
1− n2

2

)
−n2n3

−n1n3 −n2n3

(
1− n2

3

)
 ,
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and

B =

 (ε− 1) n2
1 + 1 (ε− 1) n1n2 (ε− 1) n1n3

(ε− 1) n1n2 (ε− 1) n2
2 + 1 (ε− 1) n2n3

(ε− 1) n1n3 (ε− 1) n2n3 (ε− 1) n2
3 + 1

 .
Consequently, the Godunov fluxes (2.11)–(2.12) in this case read

F∗ · n =

 −n×H + n× n× (E∗ −E)
n×E + n× n× (H∗ −H) + εqn + ε [(H−H∗) · n] n

εH · n + ε (q − q∗)

 , (4.20)

where E∗,H∗, and q∗ (two vectors and one scalar) are the Riemann solutions.
Similar to previous sections, we seek the relationships between the Riemann so-

lutions to motivate the construction of HDG methods. Proposition 4.6 collects some
important identities.

Proposition 4.6. The following hold for the Riemann solutions E∗,H∗ and q∗:

n× n× (E∗ −E) = n× (H−H∗) ,
(H−H∗) · n = (q∗ − q) .

and

n× n×E∗ = n× n× {{E}}+
1
2

[[n×H]],

n× n×H∗ = −{{n×E}}+ n× n× {{H}} ,

Ĥ · n = {{qn + H}} · n,

q∗ = {{q}}+
1
2

[[H · n]]

Using the results in Proposition 4.6, the upwind flux (4.20) can be written either as

F∗ · n =

 −n×H + n× n× (E∗ −E)
n×E∗ + εq∗n

εH · n + ε (q − q∗)

 , (4.21)

or

F∗ · n =

 −n×H∗

n×E + n× n× (H∗ −H) + εq∗n
εH · n + ε (q − q∗)

 , (4.22)

or

F∗ · n =

 −n×H∗

n×E + εqn + n× n× (H∗ −H) + ε [(H−H∗) · n] n
εH∗ · n

 . (4.23)

We have used the property of Riemann solutions E∗,H∗, q∗ and the Godunov
flux to construct different forms of the upwind fluxes (4.21)–(4.23) and identities in
Proposition 4.6. One can observe from (4.21)–(4.23) that we in fact need only either
the pair (n× n×E∗, q∗) or the pair (n× n×H∗, q∗) or H∗ to compute the upwind
flux. This motivates us to define the following two1 (families of) HDG schemes for
the time harmonic Maxwell equation based on two different, but equivalent, Godunov
fluxes (4.21)–(4.22).

1Our analysis shows that the HDG local solver using the HDG flux (4.23) does not have a unique
solution for q for the interior elements. A remedy similar to Section 5 can be done but we skip its
discussion in this paper to keep the length of the paper reasonable.
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4.2.1. HDG scheme based on
(
Êt, q̂

)
. The starting point of the first HDG

scheme is to define the HDG flux based on (4.21), i.e.,

F̂ · n =

 −n×H +
(
Et − Êt

)
n× Êt + εq̂n

εH · n + ε (q − q̂)

 . (4.24)

Thus, the actual single-valued trace unknowns in our first HDG scheme are the tangent
vector Êt and the scalar q̂.

Our next step is to determine the algebraic constraints (2.15b). Since n×Êt+εq̂n
automatically fulfill the conservation property and −n×H +

(
Et − Êt

)
lives in the

tangent plane, (2.15b) in this case reduces to〈
[[−n×H +

(
Et − Êt

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) , ∀e ∈ Eoh, (4.25a)

〈[[εH · n + ε (q − q̂)]], λ〉e = 0, λ ∈ Λh (e) , ∀e ∈ Eoh. (4.25b)

One can observe that Et − Êt and q − q̂ are the mismatches between the trace
unknowns and volume unknowns (in fact their traces) restricted on the mesh skeleton.
These mismatches vanish for the exact solution, but converges to zero for the HDG
solutions as the mesh (or solution order) is refined. This suggests that one can control
these mismatches by introducing two penalty parameters τ t and τn to form a penalized
family of HDG fluxes as follows

F̂ · n =

 −n×H + τ t
(
Et − Êt

)
n× Êt + εq̂n

εH · n + τnε (q − q̂)

 . (4.26)

The conservation algebraic constraints in this case read〈
[[−n×H + τ t

(
Et − Êt

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) , ∀e ∈ Eoh, (4.27a)

〈[[εH · n + τnε (q − q̂)]], λ〉e = 0, ∀e ∈ Eoh, ∀λ ∈ Λh. (4.27b)

Clearly, we recover the upwind HDG scheme by setting τ t = τn = 1.
Next is the description of the local solver. Taking v = (e,h, v) ∈ Vh (K) ⊗

Vh (K) ⊗ Vh (K) as the test function, the local equation (2.15a) when applied to
(4.19) becomes: find (E,H, q) ∈ Vh (K)⊗Vh (K)⊗ Vh (K) such that

(νE, e)K − (H,∇× e)K +
3∑
i=1

〈(
F̂ · n

)
i
, ei
〉
∂K

= 0, (4.28a)

−
(
εω2H,h

)
K

+ (E,∇× h)K − (q,∇ · (εh))K +
6∑
i=4

〈(
F̂ · n

)
i
,hi
〉
∂K

= (f ,h)K ,

(4.28b)

− (εH,∇v)K +
〈(

F̂ · n
)

7
, v
〉
∂K

= 0, (4.28c)

with
(
F̂ · n

)
i
, i = 1, . . . , 7 denoting the ith component of numerical flux (4.26).

The first HDG scheme consists of the local solver (4.28) and the algebraic equa-
tions (4.27), where the HDG flux is given in (4.26).
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4.2.2. HDG scheme based on
(
Ĥt, q̂

)
. In the second HDG scheme, we define

the HDG flux based on (4.22), i.e.,

F̂ · n =

 −n× Ĥt

n×E− n× n×
(
H− Ĥt

)
+ εq̂n

εH · n + ε (q − q̂)

 , (4.29)

where Ĥt := −n × n × Ĥ, and q̂ are now the single-valued unknown traces that
need to be solved for. Our HDG flux (4.29) is exactly the proposed HDG flux for
time-harmonic Maxwell equation in [46] with unity stabilization parameters. The
beauty of our approach is to construct the HDG flux (4.29) by hybridizing the upwind
scheme using the Godunov flux. On the one hand, our upwind HDG approach is
(stabilization) parameter-free and hence removing the “usual complaint” that HDG
schemes are parameter-dependent. On the other hand, one can view our approach
as a constructive way to devise the parameter dependent HDG family in [46] by
introducing two parameters τ t and τn to penalize the deviation of Ĥt and q̂ from H
and q, respectively, and rewrite (4.29) as

F̂ · n =

 −n× Ĥt

n×E− τ tn× n×
(
H− Ĥt

)
+ εq̂n

εH · n + τnε (q − q̂)

 . (4.30)

Clearly, when τ t = τn = 1 the upwind HDG flux (4.29) is recovered.
It is obvious that the first three components of the HDG flux (4.30) automatically

satisfy the conservation constraint (2.15b). For the next three components, note that
n × E − τ tn × n ×

(
H− Ĥt

)
is a vector in the tangent plane while εq̂n is a vector

along the normal vector. The latter automatically satisfies the conservation condition
since q̂ is single-valued, and hence will not appear in the conservation condition. Let
us define the tangent component of the magnetic field H as Ht := −n× n×H. The
conservation condition (2.15b) when applied to the HDG flux (4.30) reduces to the
following algebraic constraints〈

[[n×E + τ t
(
Ht − Ĥt

)
]],µt

〉
e

= 0, ∀µt ∈ Λt
h (e) ,∀e ∈ Eoh, (4.31a)

〈[[εH · n + τnε (q − q̂)]], µ〉e = 0, ∀e ∈ Eoh, ∀µ ∈ Λh. (4.31b)

The second HDG scheme consists of the local solver (4.28) and the algebraic equations
(4.31), where the HDG flux is given in (4.30).

Remark 4.7. Given the understanding on the nature of HDG schemes established
in this paper, one can introduce a new HDG scheme based on the HDG flux (4.22) by
defining

ε˜̂q sgn(n) := εH · n + τnε (q − q̂) ,

which transform the HDG flux (4.22) into

F̂ · n =

 −n× Ĥt

n×E + τ t
(
Ht − Ĥt

)
+ ε (H · n) n + τnε

(
q − ˜̂q sgn(n)

)
n

ε˜̂q sgn(n)

 . (4.32)
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For this HDG flux, the first three and the seventh conservation conditions are automat-
ically satisfied. We are left with three algebraic constraints, i.e. ∀µ ∈ Λh (e) , e ∈ Eoh,〈

[[n×E + τ t
(
Ht − Ĥt

)
+ ε (H · n) n + τnε

(
q − ˜̂q sgn(n)

)
n]],µ

〉
e

= 0. (4.33)

By construction, the HDG fluxes (4.22) and (4.32) are equivalent though different in
appearance. The number of the algebraic constraints in (4.31) is also the same as that
in (4.33) since the tangent trace space Λt

h has two components while it is three for
Λh.

Parallel to Lemma 3.5 and Corollary 3.6, the following results hold for two pro-
posed HDG families.

Lemma 4.8. Assume ε, ν are positive and continuous across e ∈ Eoh, and τ t =
τn = 1.

i) The tangent component of the trace solution Ĥt (or Êt) of the two proposed
HDG schemes coincides with that of the Riemann solution in Proposition 4.6.
Furthermore, the HDG fluxes are identical to the Godunov upwind flux (4.20).

ii) The two proposed HDG schemes are equivalent to the standard upwind DG
scheme.

Proof. The proofs of these assertions are similar to those of Lemma 3.5 and
Corollary 3.6, so we leave out the details.

4.2.3. Analysis. For simplicity in the exposition we will analyze our HDG
scheme for the fully upwind case, i.e. τ t = τn = 1. For the general case with
τ t, τn > 0, all the proofs will go through except that some terms will carry τ t and
τn. Since our second HDG scheme is the same as that proposed in [46], its analysis is
ignored and the readers are referred to [46]. Thus, the analysis of the our first HDG
scheme, a new HDG scheme for time harmonic Maxwell equation, is the main focus of
this section. By construction, it is automatically locally conservative and consistent
since it is equivalent to the upwind DG method as shown in Lemma 4.8.

In order to study the well-posedness of the local (solving for E,H, q as a function
of Ê and q̂) and global solvers (solving for Ê and q̂ on the mesh skeleton), we need
to supply boundary conditions. For simplicity, we again consider the PEC boundary
conditions

n×E = 0, and q = 0 on ∂Ω,

which is enforced through the hybrid variables, i.e.,

n× Êt = 0, and q̂ = 0 on ∂Ω.

The local solver (4.28) with the HDG flux (4.21) equipped with the boundary condi-
tions reads

(νE, e)K − (H,∇× e)K +
〈
−n×H +

(
Et − 1∂K\∂ΩÊt

)
, e
〉
∂K

= 0, (4.34a)

−
(
εω2H,h

)
K

+ (E,∇× h)K − (q,∇ · (εh))K +〈
1∂K\∂Ωn× Êt,h

〉
∂K

+
〈
1∂K\∂Ωεq̂n,h

〉
∂K

= (f ,h)K , (4.34b)

− (εH,∇v)K +
〈
εH · n + ε

(
q − 1∂K\∂Ωq̂

)
, v
〉
∂K

= 0, (4.34c)

Similar to [46] we also assume that εω2 is not an eigenvalue for an eigenvalue
problem defined by local solver (4.34) or by our HDG scheme with f = 0. This
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assumption is implicitly understood from now on to the end of the section. We are
now in the position to study the well-posedness of the local solver.

Lemma 4.9. Assume that ε > 0. For a given value of f and Ĥ, the local solver
(4.34) has a unique solution for E,H and q.

Proof. Since the local solver is a square linear system in finite dimensional space,
it is sufficient to show that E = H = 0 and q = 0 is the only solution if f = 0, Êt = 0,
and q̂ = 0. Indeed, first, since εω2 is not an eigenvalue of the local solver (4.34), H
must vanish. Second, taking e = E,h = H and v = q, integrating by parts the second
term in (4.34a) and the first term in (4.34c), and adding all equations in (4.34) yield

‖E‖2K,ν +
∥∥Et

∥∥2

∂K
+ ‖q‖2∂K,ε = 0,

which implies E = 0 on K and q = 0 on ∂K. It follows from (4.34b), by integrating
the third term by parts, that

(εh,∇q)K = 0, ∀h ∈ Vh (K),

which in turn shows that q is constant on K. Since q = 0 on ∂K, q must vanish, and
this ends the proof.

We next study the well-posedness of the global solver for Êt and q̂.
Theorem 4.10. Suppose ν > 0. For a given value of f , there is a unique solution

for trace unknowns Êt and q̂. Consequently, there is a unique solution for the local
volume unknowns E, H, and q.

Proof. Similar to the proof of Lemma 4.9, we exploit the finite dimensionality
and linearity of the square system determining Êt and q̂. The well-posedness of global
solver is equivalent to show that the pair Êt = 0 and q̂ = 0 on Eoh is the only solution
if f = 0. We proceed by taking e = E,h = H and v = q in the local solver (4.34).
Next, integrating by parts the second term in (4.34a) and the first term in (4.34c),
and adding the resulting equations of the all together we obtain

‖E‖2Ωh,v +
∑
K

〈(
Et − 1∂K\∂ΩÊt

)
,Et
〉
∂K

+
〈
1∂K\∂Ωn× Êt,H

〉
∂K

+∑
K

〈
1∂K\∂Ωεq̂n,H

〉
∂K

+
〈
ε
(
q − 1∂K\∂Ωq̂

)
, q
〉
∂K

= ‖H‖Ωh,εω2 . (4.35)

On the other hand, taking µt = Êt and λ = q̂ in (4.25) and then adding the resulting
equations lead to

∑
K

〈
−1∂K\∂Ωn×H, Êt

〉
∂K

+
〈
1∂K\∂Ω

(
Et − Êt

)
, Êt
〉
∂K

+∑
K

〈
1∂K\∂ΩεH · n, q̂

〉
∂K

+
〈
1∂K\∂Ωε (q − q̂) , q̂

〉
∂K

= 0. (4.36)

Next subtracting (4.36) from (4.35) yields

‖E‖2Ωh,v +
∑
K

〈
1∂K\∂Ω

(
Et − Êt

)
,Et − Êt

〉
∂K

+
〈
1∂K\∂Ωε (q − q̂) , q − q̂

〉
∂K

+
∥∥Et

∥∥2

∂Ω
+ ‖q‖2∂Ω,ε = ‖H‖Ωh,εω2 . (4.37)
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Since εω2 is not an eigenvalue of the eigenvalue problem defined by the HDG scheme
with f = 0, H must vanish. As a result, from (4.37), we infer that E = 0 on Ωh,
Êt = Et = 0 on Eoh, q̂ = q on Eoh, and q = 0 on ∂Ω. It follows that q is continuous
and has zero trace on ∂Ω.

Now taking v = q in (4.34c), using the fact that H = 0, q̂ = q on Eoh, and q = 0
on ∂Ω, and then summing the resulting equations all together we have

(εH,∇q)Ωh
= 0, ∀H ∈ Vh (Ωh) ,

which implies that q is piecewise constant. However, q is continuous and vanishes on
∂Ω. This can only be true if q is identically zero. Consequently, q̂ = 0 on Eoh as well.

4.2.4. HDG schemes for vector wave equation. We have explicitly imposed
the divergent free condition for the magnetic field in (4.19c), and hence it is necessary
to introduce the Lagrange multiplier q in (4.19b) [46]. Though this formulation is more
stable, especially when ω is small, we have one extra PDE with one extra unknown.
If this is not desirable one can study the vector wave equation directly, i.e.,

νE−∇×H = 0 in Ω, (4.38a)

∇×E− εω2H = f in Ω, (4.38b)

which is a simplified version of (4.19). Indeed, one can show that the Godunov flux
in this case reads

F∗ · n =
[
−n×H + n× n× (E∗ −E)
n×E + n× n× (H∗ −H)

]
,

which is, as expected, a simpler version of (4.20) by removing the last component
and all the terms associated with the normal direction. It is also almost the same
as the Godunov flux (4.3) for the time domain Maxwell equation. This observation
immediately gives us two HDG fluxes without detailed arguments, i.e.,

F̂ · n =

[
−n×H + n× n×

(
Ê−E

)
n× Ê

]
, (4.39a)

and

F̂ · n =

[
−n× Ĥ

n×E + n× n×
(
Ĥ−H

) ] . (4.39b)

We can construct two HDG schemes corresponding to these two HDG fluxes, the
former of which is a new HDG scheme for vector wave equation (4.38) while the latter
coincides with that proposed in [46]. Clearly, the analysis for time harmonic Maxwell
equation in previous sections still holds by removing appropriate terms, and for that
reason we leave out the unnecessary details here.

5. HDG schemes for Stokes equation. Consider the Stokes equation in the
following first order velocity-pressure-gradient form (see, e.g, [44, 15]):

ν−1L−∇u = 0, in Ω (5.1a)
−∇ · L +∇q = f , in Ω (5.1b)

∇ · u = 0, in Ω, (5.1c)∫
Ω

q dΩ = 0. (5.1d)
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Let us define

Σ := n⊗ [(L− L∗) · n] +

(√
2− 2

)
2

[n · (L− L∗) · n] n⊗ n−
√

2
2

n⊗ n (q − q∗) ,

γ :=
√

2 [(u− u∗) · n] n− n× n× (u− u∗) ,

α := −
√

2
2

n · (L− L∗) · n +
√

2
2

(q − q∗) .

Following the same exercise as above, one can compute |A| so that the Godunov
flux in this case reads

F̂ · n =

 −n⊗ u + Σ
−L · n + qn + γ

u · n + α

 . (5.2)

By inspection, the following result for the Riemann solutions L∗,u∗ and q∗ is straight-
forward.

Proposition 5.1. There hold:

Σ = n⊗

(
γ +

(√
2− 2

)
2

n⊗ n · γ

)
= n⊗ (u− u∗) , (5.3a)

α = −
√

2
2

γ · n = − (u− u∗) · n, (5.3b)

Σ · n =
√

2
2

n⊗ n · γ = −αn, (5.3c)

and the Godunov flux can be written as

F∗ · n =

 −n⊗ u∗

−L · n + qn +
√

2 [(u− u∗) · n] n− n× n× (u− u∗)
u∗ · n

 . (5.4)

As can be seen, u∗ is the only quantity required to compute the upwind flux. This
observation is the key to construct the HDG method. As for other PDEs discussed
in this paper, we start our HDG construction by defining (5.4) as the HDG flux, i.e.,

F̂ · n =

 −n⊗ û
−L · n + qn +

√
2 [(u− û) · n] n− n× n× (u− û)

û · n

 , (5.5)

with û as the trace unknown that needs to be solved for.
Unlike the other PDEs for which we have started defining first the conservation

condition and then the local solver, for Stokes case it is useful to discuss the local
solver first as we will see. The reason is that additional condition has to be introduced
to make the HDG method for Stokes equation well-defined, and this is best motivated
through the local solver. To that end, taking v = (G,v, r) as the test function, the
local equation (2.15a) when applied to (5.1) becomes: find (L,u, q) such that

(νL,G)K + (u,∇ ·G)K −
〈
1∂K\∂Ωn⊗ û,G

〉
∂K

= 0, (5.6a)

(L,∇v)K − (q,∇ · v)K + 〈−L · n + qn,v〉∂K+ (5.6b)〈√
2
[(

u− 1∂K\∂Ωû
)
· n
]
n− n× n×

(
u− 1∂K\∂Ωû

)
,v
〉
∂K

= (f ,v)K , (5.6c)

− (u,∇r) +
〈
1∂K\∂Ωû · n, r

〉
∂K

= 0, (5.6d)
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where we have imposed the homogeneous Dirichlet boundary condition, u = 0 on ∂Ω,
through the trace unknown û. Next, we use the energy method to study the well-
posedness of the local solver. Since it is linear and finite dimensional, it is sufficient
to show that L = 0, u = 0 and q = 0 is the only solution of the local solver if f = 0
and û = 0. To begin, taking G = L,v = u and r = q in (5.6), integrating by parts
the second term of (5.6a) and (5.6b), and then adding the resulting equations of (5.6)
all together yield

‖L‖2K,ν + ‖u · n‖2∂K,√2 + ‖n× n× u‖2∂K = 0

which implies that L = 0 on K, u · n = 0 and n × n × u on ∂K, and hence u = 0
on ∂K. It follows that (5.6a), after integrating the second term of (5.6a) by parts,
becomes

(∇u,G)K = 0, ∀G ∈ Vh (K),

from which we infer that u must be a constant vector on K, in fact null vector since
it vanishes on the boundary.

Similarly, integrating the second term of (5.6b) by parts and using the results
L = 0 and u = 0 we obtain

(∇q,v)K = 0, ∀v ∈ Vh (K),

which shows that q must be a constant. At this point, one can observe that there is
no extra information to prove the uniqueness of q, or equivalently q = 0. To resolve
this issue, a natural idea is to equip the local solver (5.6) with a minimal condition
to enforce the uniqueness. Similar to [44,15], we choose

q = ρ, on ∂K, (5.7)

where q is the average of q on ∂K defined as q := |∂K|−1 〈q, 1〉∂K , and ρ is a constant
function belonging to

Λh (∂Ωh) :=
{
λ ∈ L2 (∂Ωh) : λ|∂K ∈ P

0 (∂K) ,∀K ∈ Ωh
}
.

Let us state the well-posedness result in Lemma 5.2.
Lemma 5.2. Suppose ν > 0. Given û and ρ, there exists a unique solution

(L,u, q) for the local solver (5.6)–(5.7).
Proof. It is enough to show that û = 0 and ρ = 0 implies L = 0,u = 0 and

q = 0. Using the above motivation for the augmented local solver (5.6)–(5.7) we need
to only show q = 0, but it is clear since q is constant and have zero on ∂K according
to (5.7).

We next construct the global system of equations on the mesh skeleton to solve
for û and ρ. To this end, it is important to realize that the well-posedness of the
augmented local solver (5.6)–(5.7) comes at an expense of introducing a new unknown
ρ constant on each element boundary in addition to the trace unknown û. Since the
HDG flux components corresponding to (5.1a) and (5.1c) automatically satisfy the
conservation constraint (2.15b), we are left with three algebraic constraints (2.15b) in
our HDG scheme for the trace unknown û, i.e., ∀µ ∈ Λh (e) ,∀e ∈ Eoh,〈

[[−L · n + qn +
√

2 [(u− û) · n] n− n× n× (u− û)]],µ
〉
e

= 0. (5.8)
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We still need one extra equation for ρ. To seek this equation we note that if we take
r as a constant function so that r|∂K = r|∂K ∈ Λh (∂K), then (5.6d) reduces to〈

1∂K\∂Ωû · n, r
〉
∂K

= 0,

which implies 〈
1∂K\∂Ωû · n, ξ

〉
∂K

= 0, ∀ξ ∈ Λh (∂K) , (5.9)

since the trace operator from the space of constant functions on K to Λh (∂K) is
surjective. Since û is viewed as one of the inputs (the forcing) for the local solver,
(5.9) is the compatibility condition for û and this is exactly the extra equation we
are looking for. Thus, not only the usual conservation condition (5.8) but also the
compatibility condition (5.9) constitutes the HDG equations on the mesh skeleton
whose well-posedness is now discussed.

Theorem 5.3. Assume ν > 0. The HDG scheme consists of the local solver
(5.6)–(5.7) and the algebraic condition (5.8)–(5.9) has a unique solution (L,u, q, û, ρ).

Proof. We again employ the energy method as in previous sections. The task at
hand is to show that f = 0 implies L = 0, u = 0, q = 0, û = 0 and ρ = 0. Integrating
by parts the second term of (5.6a) and (5.6b), adding the resulting equations of (5.6)
all together, then summing over all elements give

‖L‖2Ωh,ν −
∑
K

〈
1∂K\∂Ωn⊗ û,L

〉
∂K
−
〈√

2
[(

u− 1∂K\∂Ωû
)
· n
]
,u · n

〉
∂K

−
∑
K

〈
n× n×

(
u− 1∂K\∂Ωû

)
,u
〉
∂K
−
〈
1∂K\∂Ωû · n, q

〉
∂K

= 0. (5.10)

On the other hand, taking µ = û in (5.8) and subtracting the resulting equation from
(5.10) we arrive at

‖L‖2Ωh,ν +
∑
K

∥∥(u− 1∂K\∂Ωû
)
· n
∥∥2

∂K,
√

2
+
∑
K

∥∥n× n×
(
u− 1∂K\∂Ωû

)∥∥2

∂K
= 0,

which shows that L must vanish, i.e. L = 0, on K. It also implies that u · n =
1∂K\∂Ωû · n and n× n× u = 1∂K\∂Ωn× n× û on ∂K. Thus, u = 1∂K\∂Ωû on ∂K.
In other words, L = 0 on Ωh, u = û on Eoh, and u = 0 on E∂h . Since û is single-valued
on Eoh, u must be continuous across Ωh.

Now integrating the second term of (5.6a) by parts we obtain

(∇u,G)Ωh
= 0, ∀G ∈ Vh (Ωh) ,

and hence u must be a constant. But u is continuous and vanishes on E∂h , it must
vanish over Ωh. As a result, û = 0 on Eoh.

Next, integrating the second term of (5.6b) by parts and using the results L = 0
and u = 0 we obtain

(∇q,v)K = 0, ∀v ∈ Vh (K),

which shows that q must be piecewise constant. On the other hand, if v is taken as a
constant vector, it is clear from (5.6b) that q = 0. Thus, q = 0 on K. It follows that
ρ also vanishes on ∂Ωh due to (5.7) and this ends the proof.
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Remark 5.4. As can be observed, though (5.7) is introduced to enforce the
uniqueness of q locally on each element, and hence the local solver, it automatically
enforces the uniqueness of q globally as shown in the proof of Theorem 5.3. This is
the reason why we do not need to explicitly enforce (5.1d) in our HDG scheme.

Though there are other HDG schemes such as those in [9], let us only discuss
the similarity and difference between ours and that proposed in [44, 15] since they
are related. Indeed, let us derive the HDG family in [44, 15] from ours. To that
end, we first simplify our HDG flux (5.5) by removing

√
2 [(u− û) · n] n. Next, let us

introduce a stabilization matrix T to penalize the deviation of the tangent velocity
n× n× (u− û) so that the HDG flux (5.5) now becomes

F̂ · n =

 −n⊗ û
−L · n + qn−T n× n× (u− û)

û · n

 .
This is exactly the penalized HDG flux proposed in [44,15] for the velocity-pressure-
gradient form of the Stokes flow. Clearly, by taking T as the identity we obtain a
simplified version of our upwind HDG flux (5.5) in which we omit

√
2 [(u− û) · n] n.

Remark 5.5. We note that there are other forms of the Stokes equations, see [15]
for example. Following our HDG construction, we can similarly derive HDG methods
for these forms as well. Since not much more benefit can be gained, we omit the
details.

6. A HDG framework for Friedrichs’ system. We have used our unified
HDG framework to constructively derive HDG schemes/families for three special
PDEs in Sections 3, 4, and 5. Our intention has been to show that by employing
our single abstract framework, namely hybridizing the upwind Godunov flux, one
could derive different classes of HDG methods by exploiting the special structure of
the underlying PDEs. This is then followed by the well-posedness analysis. As can
be seen, though there are differences in the detailed manipulations, the construction
and analysis are similar for all PDEs that we have considered. A natural question is
whether we can unify not only the construction, as we have done, but also the analysis
for a large abstract family of PDEs.

It is the purpose of this section that we generalize the analysis of our proposed
upwind HDG framework for a large class of differential operator (2.1) of Friedrichs’
type. We are interested in Friedrichs’s systems since they embrace a large class of
elliptic, parabolic, and hyperbolic PDEs. We start with the standard assumptions
(see, e.g., [24, 20,32]):

C ∈ [L∞ (Ω)]m,m , (6.1a)

Ak ∈ [L∞ (Ω)]m,m , k = 1, . . . , d, and
d∑
k=1

∂kAk ∈ [L∞ (Ω)]m,m , (6.1b)

Ak =
(
Ak
)T

a.e. in Ω, k = 1, . . . , d, , (6.1c)

C + CT +
d∑
k=1

∂kAk ≥ 2α0I a.e. in Ω, (6.1d)

where α0 > 0 is some coercivity constant. In this paper, we restrict our analysis to
the boundary condition defined by

(A− |A|) u = 0 on ∂Ω, (6.1e)
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and we assume that

N (A− |A|) +N (A + |A|) = Rm,

with N denoting the nullspace of its argument.
With this simple setting, one can show that the abstract PDE (2.1) with boundary

condition defined by (6.1e) is well-posed, i.e. T is an isomorphism from its domain
to its range [19]. More general settings with other boundary conditions can be found
in [23,1, 2, 3].

The abstract HDG framework in Section 2 is still applicable for the Friedrichs’
setting. In particular, the upwind HDG method for PDEs of Friedrichs’ type consists
of the local solver (2.15a), the conservation condition (2.15b) and the HDG flux (2.16).
Let us now write (2.15a) explicitly as

−
d∑
k=1

(
Aku, ∂kv

)
K

+ (Cu,v)K + 〈Au + |A| (u− û) ,v〉∂K = (f ,v)K , (6.2)

and similarly the explicit form of the conservation condition (2.15b) reads

〈[[Au + |A| (u− û)]],µ〉e = 0, ∀µ ∈ Λh (e) , e ∈ Eoh. (6.3)

We next describe how to enforce the boundary condition (6.1e) in our abstract
HDG setting. As can be seen in previous sections, we have first reduced the number of
trace unknowns using exact relationships of the Riemann solutions and exploiting the
structure of the PDE under consideration, and then enforced the boundary condition
directly on the reduced trace unknowns. However, at the abstract level of the HDG
flux (2.16), it is not clear how to do so and we have to deal with the full trace unknown
û. In particular, we still enforce the boundary condition through the trace unknown,
i.e.,

(A− |A|) û = 0 on E∂h ,

i.e., û ∈ span {R+} where R± are the collection of eigenvectors of A corresponding to
positive and negative eigenvalues, respectively. We assume span {R+}∩span {R−} =
{∅}. It is also sensible to require that

〈Au + |A| (u− û) ,µ〉e = 〈Aû,µ〉e , ∀µ ∈ Λh (e) , e ∈ E∂h , (6.4)

that is, the numerical flux must be the same of flux determined by the trace û on the
boundary ∂Ω. Equivalently,

〈(A + |A|) (u− û) ,µ〉e = 0, ∀µ ∈ Λh (e) , e ∈ E∂h ,

which, after taking µ = u− û, implies

u− û ∈ span
{
R−
}
,

but this can happen iff u = û on E∂h . That is, the condition (6.4) implies that u must
also satisfy the boundary condition.

As a result, the local solver with the boundary condition incorporated can be
written as

−
d∑
k=1

(
Aku, ∂kv

)
K

+ (Cu,v)K +
〈
Au + 1∂K\∂Ω |A| (u− û) ,v

〉
∂K

= (f ,v)K . (6.5)
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We are now in the position to analyze the local solver.
Lemma 6.1. The local solver (6.5) is well-posed.
Proof. It is sufficient to prove that f = 0 and û = 0 implies u = 0. To begin, in

(6.5) taking v = u, and integrating the first term by parts we obtain

1
2

([
C + CT +

d∑
k=1

∂kAk

]
u,u

)
K

+
〈

1
2
Au,u

〉
∂K∩E∂h

+
〈(

1
2
A + |A|

)
u,u

〉
∂K\E∂h

= 0,

which yields u = 0 in K since the left hand side is non-negative owing to the coercivity
condition (6.1d), the fact that u = û on E∂h , and 1

2A + |A| ≥ 0.
The well-posedness of the global solver for û is now established.
Theorem 6.2. Suppose |A|+ 1

2A > 0 a.e. on any e. There exist a unique trace
solution û for the HDG method defined by (6.5) and (6.3).

Proof. It is sufficient to prove that û = 0 is the only solution to the global system
if f = 0. To that end, we again employ the energy approach by taking v = u in (6.5),
integrating the first term by parts, and summing over all elements K to arrive at

1
2

([
C + CT +

d∑
k=1

∂kAk

]
u,u

)
Ωh

+
∑
K

〈
1
2
Au,u

〉
∂K∩E∂h

−
〈

1
2
Au,u

〉
∂K∩Eoh∑

K

〈Au,u〉∂K∩Eoh + 〈|A| (u− û) ,u〉∂K∩Eoh = 0. (6.6)

On the other hand, taking µ = û in (6.3), summing over all e ∈ Eoh, and then
subtracting the resulting equation from (6.6) we obtain

1
2

([
C + CT +

d∑
k=1

∂kAk

]
u,u

)
Ωh

+
∑
K

〈
1
2
Au,u

〉
∂K∩E∂h

−
〈

1
2
Au,u

〉
∂K∩Eoh

+
∑
K

〈A (u− û) ,u〉∂K∩Eoh + 〈|A| (u− û) ,u− û〉∂K∩Eoh = 0. (6.7)

On the other hand, by inspection, the following identity is true for any e:

〈A (u− û) ,u〉e =
1
2

[
〈Au,u〉e + 〈A (u− û) ,u− û〉e −

1
2

(Aû, û)e

]
.

Hence, (6.7) becomes

1
2

([
C + CT +

d∑
k=1

∂kAk

]
u,u

)
Ωh

+
∑
K

〈
1
2
Au,u

〉
∂K∩E∂h

−
〈

1
2
Aû, û

〉
∂K∩Eoh

+
∑
K

〈(
|A|+ 1

2
A
)

(u− û) ,u− û
〉
∂K∩Eoh

= 0,

whose left hand side is non-negative due to various reasons. The first term is positive
due to the coercivity condition (6.1d), the second term is clearly non-negative, i.e.,∑

K

〈
1
2
Au,u

〉
∂K∩E∂h

=
∑
K

〈
1
2
|A|u,u

〉
∂K∩E∂h

≥ 0,
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since u satisfies the boundary condition. Since û is single-valued on the skeleton, the
third term vanishes

−
〈

1
2
Aû, û

〉
∂K∩Eoh

= 0.

The fourth term is non-negative is obvious. Consequently, we conclude that u = 0 on
Ωh and û = u = 0 on Eh, and this completes the proof.

Again, u − û is the discrepancy between the HDG solution u restricted on the
skeleton and the trace unknown û. For exact solution this term vanishes. This
suggests that one can construct a family of HDG schemes by penalizing this term.
Doing so leads us to the following penalized HDG flux

F∗ · n = Au + T (u− û) ,

where T is some positive definite stabilization matrix. Clearly, when T = |A|, we
recover our upwind HDG scheme.

Remark 6.3. We have applied our constructive HDG framework to Friedrichs’
PDE systems with full coercivity condition (6.1d). In this light one can similarly
develop an HDG framework for mutlifield systems with partial coercivity [22]. We
nevertheless leave out the details here.

We would like to also emphasize that the analysis of this section is mainly of
theoretical interest, namely, a unified theory for the HDG framework is possible for
a large class of PDEs. However, in practice one typically faces a particular PDE of
interest, and in that case we suggest to follow our systematic construction of HDG
schemes in Sections 3–5 to exploit the structure of the underlying PDE to minimize the
number of trace unknowns, and hence arriving at the most economic HDG methods.

7. HDG schemes by hybridizing other numerical fluxes. Perhaps the
most popular upwind flux is that of Godunov’s with exact Riemann solutions, and
we have used it to motivate a constructive derivation of the HDG framework. At the
heart of our construction is the exploration of various identities satisfied by the exact
Riemann solutions to devise HDG methods with least possible trace unknowns. A
question that immediately arises is whether we can construct HDG method for other
existing numerical fluxes, for example those summarized in [53,36].

In this section, we restrict our derivation of HDG method for the Lax-Friedrichs
numerical flux (LF) whose standard form is given by

F∗ · n =
1
2
[
F
(
u−
)

+ F
(
u+
)]
· n− +

1
2

max
i
|θi|
(
u− − u+

)
. (7.1)

Clearly, for scalar problem, i.e. m = 1, LF flux becomes the Godunov flux. This
suggests us to hybridize the former in a similar manner as we have done for the latter.
A natural idea is to consider the following hybridized version of the LF flux

F∗ · n = Au + max
i
|θi| (u− u∗) . (7.2)

The hybridized LF flux is consistent with the upwind HDG flux in the sense that
the former is identical to the latter for scalar problem. Moreover, it is easy to see
that our hybridized LF flux (7.2) is identical to the original LF one (7.1) if pointwise
conservation condition (2.13) is enforced.

Let us now explicitly derive the HDG scheme with LF flux for the convection-
diffusion-reaction PDE and compare it with the hybridized Godunov counterpart.
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(The construction for the Maxwell and Stokes equations are similar, and hence omit-
ted.) For this case, it is easy to see that

θmax := max
i
|θi| =

|β · n|+
√
|β · n|2 + 4

2
,

and (7.2) becomes

F∗ · n =
[

un + θmax (σ − σ∗)
β · nu+ σ · n + θmax (u− u∗) .

]
(7.3)

Note that u∗,σ∗ are no longer the exact Riemann solutions, but we still can use the
conservation equation (2.13) to obtain the following identities

θmax (σ∗ − σ) = −θ
max

2
[[σ]] +

1
2

[[un]],

θmax (u∗ − u) =
(β · n− θmax)

2
[[u]] +

1
2

[[σ · n]].

Unlike the Godunov flux with exact Riemann solution in which we could find the re-
lationship between u∗ and σ∗ (see (3.5)), we have not yet found a “clean” relationship
between u∗ and σ∗ that does not require information from the neighbor element. As
a result, it is not clear how to eliminate either u∗ and σ∗ before introducing the HDG
flux.

In summary, the pure upwind flux with exact Riemann solution allows us to
reduce the number of trace unknowns, but deviating from that, using the LF flux
for example, does not seem to offer the same reduction. Thus, the hybridized LF
(7.3), though looks much simpler than the Godunov counterpart (3.2), it yields more
trace unknowns for HDG methods constructed using our framework, and hence more
expensive. For nonlinear PDEs, it is nevertheless a better choice since we cannot
reduce the number of trace unknowns for Godunov flux either.

8. Construction of other HDG variants. In this section, we will construct
a simple variant of our HDG framework that allows us to recover other existing HDG
methods. To that end, notice that we can write

Au + |A| (u− û) = Aû + (A + |A|) (u− û) .

This leads us to define a new family of HDG fluxes

F̂ · n = Aû + T (u− û) ,

which becomes our upwind HDG flux when T = (A + |A|). Clearly, we can revisit
all the examples in this paper with this HDG flux form to derive variants of HDG
schemes for various type of PDEs. For example, we can rewrite the HDG flux (3.6)
for the convection-diffusion-reaction PDE as

F̂ · n =


ûn1

ûn2

ûn3

β · nû+ σ · n + 1
2 (α+ β · n) (u− û)

 ,
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and deduce its penalized family as follows

F̂ · n =


ûn1

ûn2

ûn3

β · nû+ σ · n + τ (u− û)

 . (8.1)

A careful look at (8.1) shows that we have rediscovered the HDG family proposed
in [42]. One can follow the same exercise to derive families of HDG methods of this
type for other PDEs in a straightforward manner, so let us skip the details here.

9. HDG schemes for discontinuous material. In this section we present an
extension of our HDG framework for linear PDEs with discontinuous material, i.e.,
Ak are possibly discontinuous across e. The Godunov fluxes still have exactly the
same form as in (2.11) and (2.12), but A is computed using the information from the
appropriate element under consideration. For example,

F∗ · n− = F
(
u−
)
· n− +

∣∣A−∣∣ (u− − u∗
)
. (9.1)

One can then go through all the steps presented in this paper to derive the cor-
responding HDG family for each PDE of interest since the chief idea remains the
same. For example, one first seeks various relations between the exact Riemann so-
lution components in u∗ to eliminate their dependencies so that the Godunov fluxes
depend on the least number of components. One then defines the HDG flux by re-
placing these least components with the HDG trace unknowns. Together with the
local solver (2.15a) and conservation constraint (2.15b), one obtains desirable HDG
schemes. However, the arithmetic is more involved since we need to distinguish ma-
terials between neighbor elements. We omit the details here to avoid unnecessarily
lengthy paper.

It is important to realize that most of the theory for Friedrichs also holds for this
case. In particular, the well-posedness of the local solver remains true, but global
solver is well-posed if we additionally assume that A− + A+ ≤ 0 on e ∈ Eoh. At this
point, this assumption is merely mathematically convenient since using it allows us
to conclude

−
〈

1
2
Aû, û

〉
∂K∩Eoh

≥ 0, (9.2)

and hence the proof of Theorem 6.2 goes through. Whether this assumption is practi-
cal is out of the scope of the paper. Clearly, one may find a proof that does not require
(9.2) and in that case the assumption A− + A+ ≤ 0 can be completely discarded.

One can similarly define a penalized family of HDG flux with double-valued sta-
bilization matrix T , e.g.,

F̂ · n− = F
(
u−
)
· n− + T −

(
u− − û

)
.

HDG methods with double-valued stabilization parameters can be found, for example,
in [9, 42].

10. HDG schemes for nonlinear PDEs. In this section we extrapolate our
HDG schemes for linear PDEs to nonlinear ones. Specifically, based on the upwind
HDG flux (2.6) we define HDG flux for nonlinear PDEs as

F̂ · n = F (u) · n + |A| (u− û) ,
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where A is now a function of u, i.e.,

A =
d∑
k=1

∂kFk (u) nk,

with Fk denoting the kth component of the flux F.
Alternatively, one can follow the spirit of the Roe flux [51] to define the HDG flux

as

F̂ · n = F (u) · n + |A (û)| (u− û) , (10.1)

in which A (û) is computed using the trace unknown û, i.e.,

A (û) =
d∑
k=1

∂kFk (û) nk. (10.2)

Clearly, if we use the Roe-average state in place of û in (10.2) our HDG method, after
eliminating û, is identical to the standard DG approach using Roe flux. However,
using the Roe-average state in computing |A| requires extra state exchange for the
neighboring states, and hence increasing communication time in parallel computation.

We end this section by presenting a nonlinear HDG scheme with a hybridized Lax-
Friedrichs flux. Based on (7.2) and (10.1), we define a HDG flux of Lax-Friedrichs’
type as

F̂ · n = F (u) · n + max
i
|θi (A (û))| (u− û) , (10.3)

where we denote by θi (A (û)) the ith eigenvalue of A (û).
Alternatively, one can extrapolate the result in Section 8 to define the HDG flux

as

F̂ · n = F (û) · n + max
i
|θi (A (û))| (u− û) , (10.4)

or

F̂ · n = F (û) · n + |A (û)| (u− û) ,

and these are exactly HDG methods proposed in [48, 41] for compressible Euler and
Navier-Stokes equations.

11. Numerical results. It should be pointed out that there are vast existing
numerical results for HDG methods on Laplace/Poisson equation [34], convection-
diffusion equation [42, 43, 8, 18], Stokes equation [15, 9, 44], Euler and Navier-Stokes
equations [47,48,40], Maxwell equation [46,37,38], acoustics and elastodynamics [45],
Helmholtz equation [27, 17], and eigenvalue problem [14], to name a few. Instead of
reproducing these results, let us present numerical results to compare our upwind
HDG framework with some existing HDG schemes on transport equation, convection-
diffusion equation, compressible Euler equation, and shallow water equation.

11.1. Steady convection (transport) equation. In this section, we apply
our upwind HDG to convection equation of the form

∇ · (βu) + νu = f, in Ω,



36 T. Bui-Thanh

and compare its solutions with those of the upwind DG. As a numerical demonstration,
we take an example from [31] in which Ω = (0, 2) × (0, 1), β = (1 + sin (πy/2) , 2),
ν = 0, f = 0, and the inflow boundary condition

g =


1 x = 0, 0 ≤ y ≤ 1
sin6 (πx) 0 < x ≤ 1, y = 0
0 1 ≤ x ≤ 2, y = 0

.

This problem admits an exact solution using the method of characteristics.
Figure 11.1(a) shows the mesh that we use for both HDG and DG schemes.

To verify the theoretical result in Corollary 3.6, we compute the L2−norm of the
difference between the HDG trace solution û and the exact Riemann solution u∗

(used in the DG upwind flux), and of the difference between the HDG solution uHDG

and the DG solution uDG. Table 11.1 shows these differences for various solution
orders p = {1, 2, 3, 4, 5}. As can be seen, the differences are (machine) zeros for all
solution orders as expected by the theory.

We also show the HDG solution u with p = 3 in Figure 11.1(b) and its convergence
against the exact solution at the outflow boundary y = 1 in Figure 11.1(c). As
expected, as the solution order increases the HDG solution is more accurate in the
smooth regions, but oscillates in regions with high gradient since we do not employ
any limiter.

Recall that we have constructed HDG method by hybridizing the DG method
(in fact the Godunov flux). This procedure could be understood as a redesign of the
DG method. The beauty of this redesign is that the number coupled unknown is
substantially reduced and the usual DG unknowns are recovered element by element
independent of each other. It is therefore useful to compare the number of coupled
of unknowns and the execution time for both methods. We do so for the above
two dimensional transport equation on triangular meshes. The result is shown in
Figure 11.1(d) in which we plot the ratio of DG and HDG coupled unknowns and
similarly for the execution time. As can be seen, as the solution order increases these
ratios increase as well. For the mesh (h = 0.2) in Figure 11.1(a) and its one level
of refinement (h = 0.1), we gain (almost) an order of magnitude in solution time
and the number of coupled unknowns for p = 15; also the finer the mesh is, the the
more savings the HDG provides. Moreover, we have computed solution u in our HDG
scheme in a serial manner, element-after-element. The time gain would be even more
if we did it in parallel. These advantages are expected to more substantial for three
dimensional problems.

Table 11.1
Transport equation: ‖û− u∗‖L2(Eoh) and ‖uHDG − uDG‖L2(Ω) for various solution order p =

{1, 2, 3, 4, 5}.

p 1 2 3 4 5
‖û− u∗‖L2(Eoh) 5.7× 10−15 1.6× 10−14 3.4× 10−14 4.1× 10−14 4.8× 10−14

‖uHDG − uDG‖L2(Ω) 8.5× 10−16 3.1× 10−15 9.2× 10−15 1.1× 10−14 3.1× 10−14

11.2. Convection-diffusion equation. In this section we compare our upwind
HDG and both upwind and centered trace HDG methods proposed in [42, Section
3.6.3] for the convection-diffusion equation, i.e. (3.1) with ν = 0. We take β = (1, 2)
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(a) Mesh with h = 0.2 (b) HDG solution u with p = 3
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Fig. 11.1. Transport problem: the mesh with = 0.2 is in Figure 11.1(a), the HDG solution
u with solution order p = 3 in Figure 11.1(b), HDG solution u restricted on the outflow boundary
y = 1 in Figure 11.1(c), and the savings in time and number of coupled of unknowns of HDG relative
to DG in Figure 11.1(d).

and Ω = [0, 1]2. The right hand side f is chosen so that the exact solution is given by

ue = exp (x+ y) sin (πx) sin (πy) ,

and the Dirichlet boundary are taken as the restriction of the exact solution on the
domain boundary ∂Ω. In Figure 11.2(a) we show a plot of ∇·β inside elements and β
on element boundaries with h = 0.2, accompanied by our upwind HDG fourth order
(p = 3) solution u in Figure 11.2(b), σx in Figure 11.2(c), and σy in 11.2(d).

What we are interested in this example is the behavior of these three methods
for varying diffusion coefficients ε as the mesh is refined. Let us first examine the
convergence rate as ε decreases. In Figures 11.3(a), 11.3(c), and 11.3(e) we present
the observed convergence order of the three methods with p = 3 as the diffusion
coefficient ε changes. As can be seen, the convergence for both u and û is optimal,
with rate 4 and 3.5, respectively, for all methods when ε > 10−2. When the equation
is in convection-dominated regime, the behavior is different for the three methods.
In particular, both upwind trace and centered trace HDG methods are unstable for
ε < 10−2, while it is for the upwind HDG. This behavior is expected for the upwind
HDG by construction since it is equivalent to the standard upwind DG.
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Fig. 11.2. Solution of the upwind HDG method for convection diffusion problem: Figure 11.2(a)
is a plot of ∇ · β inside elements and β on element boundaries with h = 0.2, Figure 11.2(b) the
p = 3 solution u, Figure 11.2(c) the p = 3 solution σx, and Figure 11.2(d) the p = 3 solution σy.

To gain some understanding on why the unstability may happen for the others
let us recall that the stabilization for upwind trace HDG scheme is given by

τ = (ε+ |β · n|) |β · n|+ β · n
2 |β · n|

= (ε+ |β · n|) 1 + sgn(β · n)
2

and

τ = (ε+ |β · n|)

for the centered trace HDG scheme. In Figure 11.2(a), for edge e with β · n /
0 (negative but machine zero), then τ ≈ 0. On the other hand, though ∇ · β is
identically zero analytically, it is not numerically in our nodal implementation [28], in
fact machine zero with positive and negative signs, as shown in Figure 11.2(a). Now
recall from [42, Lemma 3.1 and Theorem 3.1] that a sufficient condition for the well-
posedness is that ∇ · β ≥ 0 and τ > 1

2β · n. It follows that the well-posedness is not
guaranteed in our implementation of the upwind and centered trace HDG methods.
Nevertheless, when ε is sufficiently large, it does not seem to be a problem, but this
does for ε < 10−2.
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Next, let us examine the dependence of actual L2-errors on ε, especially when ε
is large. As an example, we take p = 3 and h = 0.05 (two levels of refinement of the
mesh in Figure 11.2(a)). In Figures 11.3(b), 11.3(d), and 11.3(f) are the L2-errors
for u and û of the three methods as the diffusion coefficient ε increases. As can be
observed, the error in the trace unknown û for all methods is robust in ε, i.e., it is
independent of ε. And so is for the error in u of the upwind and centered trace HDG
methods. The error in u of the upwind HDG, however, increases as ε does.

In summary, our numerical results seem to suggest that either upwind or centered
trace HDG method is preferred if the robustness with large ε (diffusion-dominated)
is of importance. On the other hand, if the stable behavior for a wide range of ε is
desired, the upwind HDG is likely to be a better choice.

11.3. Compressible Euler equation. The purpose of this section is to com-
pare our proposed HDG flux (10.3) and Nguyen et al. flux (10.4) for nonlinear PDEs.
To that end, we next consider the unsteady Euler equation in the conservative form

∂u
∂t

+∇ · F (u) = f , (11.1)

where the conservative state u, and the x- and y− components of the flux F are given
by

u :=


ρ
ρu
ρv
E

 , Fx :=


ρu

ρu2 + P
ρuv

u (E + P )

 , Fy :=


ρv
ρuv

ρv2 + P
v (E + P )

 .
We assume that the pressure P satisfies the state equation

E =
P

γ − 1
+

1
2ρ

[
(ρu)2 + (ρv)2

]
,

with γ = 1.4 for monoatomic gas. Here, ρ is the density, u and v are the x− and y−
components of velocity, and E denotes the total energy. The domain under consider-
ation is Ω = [3.5, 5.5]× [−1, 1].

For numerical example, we choose the forcing function f so that the exact solution
is the following vortex [28]

ρ =
[
1− (γ − 1)

16γπ2
β2e2(1−R2)

] 1
γ−1

, u = 1− βe(1−R2) (y − y0)
2π

,

v = βe(1−R2) (x− x0)
2π

, P = ργ ,

with R2 = (x− t− x0)2 + (y − y0)2
, x0 = 0.5, y0 = 0, and β = 5. For simplicity, the

exact solution is used to enforce the boundary condition.
Since the Euler equation is nonlinear, both the local solver (2.15a) and the con-

servative constraint are nonlinear too. For time discretization, we use the Crank-
Nicholson method. Similar to [43, 41] we use Newton method to solve the resulting
nonlinear algebraic equations. The HDG solution with our proposed hybridized flux
(10.3) is shown in Figure 11.3 in which we plot the conservative variables (ρ, ρu, ρv, E)
after 100 time steps with stepsize 10−6. The small step size is deliberately chosen so
that the error is dominated by the spatial discretization by the HDG method. Also,
100 time steps is sufficient for convergence test that is discussed next.
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Fig. 11.3. Convection-diffusion equation: Figures 11.3(a) and 11.3(b) are the convergence
order and L2-errors of the upwind HDG method for p = 3, and similarly for the upwind trace HDG
method in Figures 11.3(c) and 11.3(d), and the centered trace HDG method in Figures 11.3(e) and
11.3(f).

In Figure 11.3, we present the convergence rate for HDG methods with our HDG
flux (10.3) and Nguyen et al. flux (10.4) by refining the mesh with h = {0.125, 0.25, 0.5}.
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(a) ρ (b) ρu

(c) ρv (d) E

Fig. 11.4. HDG solution with the Crank-Nicholson temporal discretization for the compressible
Euler equation with time stepsize of 10−6 after 100 time steps.

It is interesting to see that both methods give almost identical results. Moreover, the
convergence is p + 1 for all p = {2, 3, 4}, and hence optimal. We conclude that the
two methods do not seem to different numerically.

11.4. Shallow water equation. The last example we consider in this paper is
the shallow water equation written in the conservative form similar to (11.1), but now
the flux F and the forcing function f are given by

Fx :=

 Hu
Hu2 + 1

2gH
2

Huv

 , Fy :=

 Hv
Huv

Hv2 + 1
2gH

2

 , and f :=

 0
−gbx
−gby

 ,

while the conservative variables u are defined as

u := (H,Hu,Hv)T .

Here, H is the water depth, u the depth average velocity component in x-direction,
v the depth average velocity component in y−direction, b the bathymetry, and g the
gravity acceleration.

Following [25] we take γ = g = 2 so that the vortex solution in Section 11.3 is
also the exact solution for the shallow water equation with flat bathymetry (b = bx =
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Fig. 11.5. Compressible Euler equation: convergence rate for HDG methods with our HDG
flux (10.3) and Nguyen et al. flux (10.4).

by = 0). We choose this example to again compare the HDG methods with our HDG
flux (10.3) and Nguyen et al. flux (10.4). The rest of the setting is same as that
of the Euler equation. For example, we take Ω = [3.5, 5.5] × [−1, 1], and use Crank-
Nicholson temporal discretization with 100 time steps of stepsize 10−6. In Figure 11.4,
we again observe that both methods yield almost identical results. Furthermore, the
convergence rate in this case is p+ 1

2 which is typical for hyperbolic equations using
fluxes of Lax-Friedrichs’ type.

The next example we like to apply our HDG method to is that considered in
[52,55], namely, the water drop problem with the initial water depth

H (x, y, 0) := 1 + 0.1 exp
[
−100 (x− 0.5)2 − 100 (y − 0.5)2

]
,

and the flow is initial at rest, i.e.,

Hu (x, y, 0) = Hv (x, y, 0) = 0.

We first consider the case with flat bottom, i.e., b = bx = by = 0 and the
domain of interest is Ω = [0, 1]2. An unstructured triangular mesh with the mesh size
h = 0.12 is generated and we take p = 6. Wall (slip) boundary conditions are applied
to the entire boundary ∂Ω. Again, the Crank-Nicholson temporal discretization is
employed with time step equal to 0.0005 and the simulation is run up to 2000 time
steps. Presented in Figure 11.4 are the simulated water depth at various time instances
t = {0, 0.15, 0.3, 0.5, 0.7, 1}. As can be seen, the water depth evolution is very complex.
This is also confirmed in Figure 11.4 in which we plot the distribution of v (u is the
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Fig. 11.6. Shallow water equation: convergence rate for HDG methods with our HDG flux
(10.3) and Nguyen et al. flux (10.4).

same but rotated by 90 degrees) as a function of time. Though there is no analytical
solution to compare with, our HDG results look comparable to those in [52,55]. Note
that we don’t employ any special techniques to ensure the positivity-preserving and
well-balanced properties.

Next we consider the case with non-flat bathymetry used in [55] with

b (x, y) := 0.5 exp
[
−10 (x− 0.75)2 − 10 (y − 0.5)2

]
.

The initial condition, boundary conditions, and time stepping scheme are the same
as in the previous case but now with g = 9.812. We show the evolution of the water
depth H after 600 time steps (t = 0.3) in Figure 11.4, while the velocities u and v are
shown in Figures 11.4 and 11.4, respectively. As can be seen, due to the bathymetry,
the x− and y− components of the velocity vector are completely different and very
complex.

12. Conclusions. We have presented a unified framework for the emerging hy-
bridized discontinuous Galerkin (HDG) methods. At the heart of our construction is
the hybridization of the Godunov flux. In fact, we have shown that it is a natural
recipe to constructively and systematically establish a unified HDG framework for a
large class of PDEs including those of Friedrichs’ type. The unification is fourfold.
First, it provides a single constructive procedure to devise HDG schemes for elliptic,
parabolic and hyperbolic PDEs. Second, it reveals the nature of the trace unknowns
as the Riemann solutions. Third, it provides a parameter-free HDG framework, and
hence eliminating the “usual complaint” that HDG is a parameter-dependent method.
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(a) H at t = 0 (b) H at t = 0.15

(c) H at t = 0.3 (d) H at t = 0.5

(e) H at t = 0.7 (f) H at t = 1

Fig. 11.7. Evolution of the water depth H for flat bathymetry case.

Fourth, it allows us to construct the existing HDG methods in a natural manner. In
particular, using the unified framework we can rediscover most of the existing HDG
methods and furthermore discover new ones.

We apply the proposed unified framework to three different PDEs: the convection-
diffusion-reaction equation, the Maxwell equation in both frequency and time do-
mains, and the Stokes equation. The purpose is to present a step-by-step construc-
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(a) v at t = 0 (b) v at t = 0.15

(c) v at t = 0.3 (d) v at t = 0.5

(e) v at t = 0.7 (f) v at t = 1

Fig. 11.8. Evolution of depth average y-velocity v for flat bathymetry case.

tion of various HDG methods, including the most economic ones with least trace
unknowns, by exploiting the particular structure of the underlying PDEs. The well-
posedness of the resulting HDG schemes, i.e. the existence and uniqueness of the HDG
solutions, are proved. The well-posedness results are also extended and proved for
abstract Friedrichs’ systems. We also discuss variants of the proposed unified frame-
work and extend them to the popular Lax-Friedrichs flux and to nonlinear PDEs.



46 T. Bui-Thanh

(a) t = 0 (b) After 300 time steps

(c) After 400 time steps (d) After 450 time steps

(e) After 500 time steps (f) After 600 time steps

Fig. 11.9. Evolution of the water depth H for non-flat bathymetry case.

Numerical results for transport equation, convection-diffusion equation, compressible
Euler equation, and shallow water equation are presented to support the unification
of the HDG methods.
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(a) x-velocity after 0 time steps (b) x-velocity after 300 time steps

(c) x−velocity after 400 time steps (d) x-velocity after 450 time steps

(e) x−velocity after 500 time steps (f) x−velocity after 600 time steps

Fig. 11.10. Evolution of depth average velocities u for non-flat bathymetry case.
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