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Abstract

High-fidelity cardiac models using attribute-rich finite element based models have been developed to a very mature stage.
owever, such finite-element based approaches remain time consuming, which have limited their clinical use. There remains a
eed for alternative methods for novel cardiac simulation methods capable of high fidelity simulations in clinically relevant time
rames. Surrogate models are one approach, which traditionally use a data-driven approach for training, requiring the generation
f a sufficiently large number of simulation results as the training dataset. Alternatively, a physics-informed neural network can
e trained by minimizing the PDE residuals or energy potentials. However, this approach does not provide a general method to
asily using existing finite element models. To address these challenges, we developed a hybrid approach that seamlessly bridged
neural network surrogate model with a differentiable finite element domain representation (NNFE). Given its importance in

ardiac simulations, we applied this approach to simulations of the hyperelastic mechanical behavior of ventricular myocardium
rom recent 3D kinematic constitutive model (J Mech Behav Biomed Mater, 2020 doi: 10.1016/j.jmbbm.2019.103508). We
tilized a cuboidal domain and conducted numerical studies of individual myocardium specimens discretized by a finite element
esh and assigned with experimentally obtained myofiber architectures. Both parameterized Dirichlet and Neumann boundary

onditions were studied. We developed a second-order Newton optimization method, instead of using a stochastic gradient
escent method, to train the neural network efficiently. The resulting trained neural network surrogate model demonstrated
xcellent agreement with the corresponding “ground truth” finite element solutions over the entire physiological deformation
ange. More importantly, the NNFE approach provided a significantly decreased computational time for a range of finite element
esh sizes for online predictions. For example, as the finite element mesh size increased from 2744 to 175615 elements, the
NFE computational time increased from 0.1108 s to 0.1393 s, while the “ground truth” FE model increased from 4.541 s to
19.9 s. These results suggest that NNFE run times can be significantly reduced compared with the traditional large-deformation
ased finite element solution methods. The trade-off is to train the NNFE off-line within a range of anticipated physiological
esponses. However, training time would only have to be performed once before any number of application uses. Moreover,
ince the NNFE is an analytical function its computational performance will be amplified when the corresponding problem
ecomes more complex.
2022 Elsevier B.V. All rights reserved.
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Nomenclature

C̄ Isochoric part of the right Cauchy–Green tensor
Ī1 First invariant of C̄
Ī4f Fourth pseudo invariant of C for the fiber direction
Ī4s Fourth pseudo invariant of C for the sheet direction
Ī8fn Eighth pseudo invariant of C for fiber–normal interaction
Ī8fs Eighth pseudo invariant of C for fiber–sheet interaction
Ī8sn Eighth pseudo invariant of C for sheet–normal interaction
Γt Neumann boundary
Γu Dirichlet boundary
b Neural network biases
C Right Cauchy–Green tensor
F Deformation gradient
f0 Fiber direction in the reference configuration
h Hidden states of the neural network
M Input parameters for surrogate model
N Finite element basis functions
n0 Normal direction in the reference configuration
P First Piola–Kirchhoff stress
s0 Sheet direction in the reference configuration
T Prescribed traction field on the Neumann boundary
U Nodal displacements
u Displacement
u0 Prescribed displacement on the Dirichlet boundary
UFE Finite element solution
UNN Neural network prediction
W Neural network weights
X Coordinates in the reference domain
x Coordinates in the current domain
Dtr Training dataset
Dval Validation dataset
Ω Current configuration
Ω0 Reference configuration
φ Activation function
Π Total potential energy
Ψ Strain energy density function
Ψf Fiber contribution of strain energy density function
Ψint Interaction contribution of strain energy density function
Ψm Matrix contribution of strain energy density function
Ψvol Volumetric contribution of strain energy density function
θ Neural network parameters
eL∞ Average L∞ error of the neural network predictions
J The Jacobian determinant of the deformation gradient
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1. Introduction

The human heart is an inherently complex organ and is often cited as a paradigm of functional efficiency.
evertheless, it can experience a wide range of pathologies often presented as patient-specific lesions. Imaging
ased diagnostic methods have made great strides in recent years in the accurate diagnosis of cardiac disease.
et our ability to predict disease progression and treatment outcomes still rests on our understanding of cardiac

unction. It is thus of no surprise that computational methods continue to demonstrate great utility in improving our
nderstanding of cardiac pathophysiology and treatment [1–3]. The finite element method (FEM) has been widely
sed to develop high-fidelity cardiac models as it can easily simulate such important aspects as detailed cardiac
eometry at multiple scales (e.g., ventricular and atrial geometry, local myofiber structure), time varying boundary
onditions, and related functional aspects [4].

A critical part of developing high-fidelity cardiac models is the accurate simulation of the full three-dimensional
3D) mechanical behavior of the myocardium. This is especially important in the prediction of onset and time
rogression of cardiac diseases such as response to pulmonary hypertension and left ventricular infarction [5–7].
he development of mathematically rigorous and robust estimators of myocardial mechanical behavior has been the
ubject of intense research [8–19]. This has been a challenging task as myocardium possesses an unusually complex
tructural and functional hierarchy. These occur at various length scales and dictate local anisotropic mechanical
ehaviors, with the spatial variations in fiber structure giving rise to functional heterogeneity [20]. To address these
ssues in a full 3D context, we have previously developed a novel approach to determine the optimal parameters for
andidate continuum constitutive models of myocardium [19,21]. This approach utilized optimal experimental design
f the full 3D kinematic approach coupled to an inverse model to perform robust parameter estimation. Our findings
ndicated a previously unreported coupling behavior via shearing of myofibers and extracellular collagen fibers. This
esulted in development of an extended invariant based material model that included additional terms to describe
ber–normal and sheet–normal coupling in the constitutive model. The modified model accurately reproduced all
ptimal loading paths and exhibited improved predictive capabilities.

Clearly, such approaches are crucial for improved understanding and performance in cardiac modeling in healthy,
iseased, and treatment scenarios. However, even with increasingly accurate models of myocardial mechanical
ehaviors, electromechanical coupling [22–26], and biophysical contraction [27–30]—all integrated into high-
delity finite element based simulations, they remain computationally too intensive to explore patient outcomes in
linically relevant time-frames. Thus, while high-fidelity cardiac simulations have been developed both in general
nd for specific aspects (e.g. cardiac mechanics) emerging simulation challenges require development of alternative
omputational approaches that can provide the requisite simulations with improved computational efficiency.

In considering how to approach this problem, it should be noted that at a fundamental mathematical level all
nite element methods based cardiac mechanics simulations attempt to solve the associated non-linear hyperelastic
yocardium mechanical behaviors. This involves a parametric map from the input (i.e., the model, boundary

onditions, etc.) to the output, via solution of the underlying governing partial differential equations (PDEs). Each
valuation of the parametric map thus involves finding the PDE solution for a given instance of input model
arameters. Given the need for a very large number of clinical scenarios for a single patient specific therapy, the
eed for computational efficiency becomes obvious. There are many potential approaches possible to reduce the
omputational challenges for high-fidelity cardiac simulations associated with evaluations of the parametric map.
rojection-based model reduction methods extract the reduced bases from the snapshots of the simulation results to
educe the complexity of the original methods [31,32]. Alternatively, the parametric map can be approximated by a
urrogate model using polynomials [33], Gaussian process models [34,35], or polynomial chaos expansion [36,37].
or high-dimensional problems, Gaussian process and polynomial chaos expansion models are intractable due to the
urse of dimensionality. While these approaches are on a rigorous mathematical foundation and have demonstrated
romising improvements in computational efficiency, none of these approaches have yet shown the necessary
imulation speed improvements required for routine clinical applications.

Continued improvements in computational power, software, and massive data availability over the past two
ecades have led to an increasing interest in neural networks (NN) as universal function approximators [38]. While
ommonly associated with image processing and informatics, NN have also been used to directly represent PDE
olutions by minimizing the residual norm [39] or via a variational functional [40] using physics-informed neural
etworks (PINNs). PINNs are also applied to finite deformation hyperelasticity [41]. The relationship with the finite
lement method has also been studied for rectified linear unit (ReLU) and linear finite elements [42].
3
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Neural networks have been used to approximate the parametric map to form an analytical function when
umerous evaluations of the parametric map are required. To this end, utilizing neural networks to reduce the
omputational cost has a long and rich history in the context of structural analysis and design optimization [43].
his approach, often termed a “neural network surrogate model” (NNSM) for parametric PDEs, can be trained by
data-driven approach or a physics-informed approach [44–49]. A data-driven approach needs the finite element

FE) solutions for a set of realizations of the inputs parameters, collected as the training dataset by solving the
orresponding FE equations. Dimension reduction methods can be used to represent the inputs and outputs for the
eural network surrogate model in the dominant subspace [46]. Neural networks can also enhance the accuracy of
reduced order model [47].
Alternatively, physics-based approaches seek to directly minimize the residual norm or the variational functional

f the governing PDE without the need to generate and train on a wide range of FEM solutions. In other words, the
hysics-based approaches attempt to solve without the labels or the FE solutions. In the present work we utilized a
ybrid approach that couples a neural network to a differentiable finite element domain map (a neural network-finite
lement or NNFE) model to approximate the parametric map. In our approach we essentially shift the computational
xpense offline, allowing for extremely rapid simulations of passive mechanical behaviors.

The physics-based approach for NNFE can be based on fully-connected networks (FCNs) [50] or convolutional
eural networks (CNNs) [45,51]. FCNs directly approximate the PDE solutions while the CNNs use a rectangular
rid to discretize the solution field, and have been developed and demonstrate superior capability for capturing
ocal variations of the solution field. However, the potential of CNNs is limited by the regular domain where the
onvolutional layers are defined. For example, the convolutional operators in 2D are defined for the rectangular
omain. The restriction of the CNNs on the regular domain can be alleviated by applying a coordinate map [52].
ince it assumes the reference domain is regular, this limitation is still not fully resolved for a problem defined
n a geometry with complex topology. Thus, FCNs remain the NN topological design of choice in the present
tudy. We also note that in the implementation by Zhu et al. [45,51] the differential operators were evaluated based
n a smooth finite difference method. In comparison with the finite difference method, the FEM can easily tackle
rbitrary complex geometries and boundary conditions. In general, FCNs that directly approximate the solution
elds do not need conventional domain discretization. There are also efforts based on PINNs, using non-uniform
ational basis spline (NURBS) basis functions to map the reference domain to physical domain [53]. However,
his is not an isoparametric mapping approach since the solution field is approximated by a FCN, while the
eometry is approximated by NURBS. In the present study, we utilized an isoparametric FE discretization approach.
his allowed us to leverage mature finite element meshing tools and quadrature schemes. This approach also

acilitated utilization of FE meshes developed from clinical imaging data for cardiac modeling, which is our main
pplication goal. These studies suggest that physics-based surrogate modeling approaches are a promising alternative
o conventional finite element approaches for many-query problems wherein a minimal application computation time
s critical.

As a first step in exploring the feasibility of a NNFE modeling approach for cardiac mechanics simulations,
e developed a specialized implementation for the simulation of the passive behavior of myocardium. This was
one using a previously developed advanced model material model under generalized 3D deformations, using
ocal myofiber structures to define local material axes [8,19,21,53]. This approach utilized well defined boundary
onditions as a means to rigorously evaluate the approach prior to larger scale simulations. Actual specimen-specific
aterial parameters and local myofiber structures were utilized to increase the realism of the simulations, with

esults compared to “ground truth” FE simulations using identical FE meshed domains. We then addressed several
umerical challenges arising from the training algorithms, scaling and transfer learning behaviors, and the effects
f varying neural network architectures.

. Methods

.1. Overview

We present a comprehensive computational pipeline to develop an efficient neural network finite element based
epresentation of the solutions of hyperelastic PDEs that describe the 3D passive response of myocardium under
hysiological deformations. We utilized a model developed in [21] for a set of four 1 cm3 cuboidal specimens, each
valuated using precisely defined fully 3D kinematic boundary conditions, constitutive model form, and parameter
4
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set that integrated local 3D myofiber structural information. This approach provided for a well defined, rich passive
myocardium mechanical behavior dataset for NNFE model development. To develop the NNFE approach we utilized
a fully-connected neural network. A novel aspect of our NNFE approach is that the neural network output is linked
to the problem domain defined over a finite element mesh. The resulting NNFE model was trained by minimizing an
energy functional for each of the four specimens’ material parameters sets. We then demonstrated the efficacy and
robustness of this approach as compared to “ground truth” finite element solutions performed on identical meshed
domains. We then demonstrate scalability of the approach, as well as the use of transfer learning to reduce training
time.

2.2. 3D hyperelastic constitutive models of myocardium

We start by summarizing our anisotropic hyperelastic material model of myocardium [21]. This approach was
ased on earlier work by Holzapfel et al. [16,54], and utilized an extended form to fully capture unique coupling
henomena observed in 3D triaxial deformation. First, consider the domain Ω0 occupied by myocardium with the

reference configuration defined as X. We denote the current configuration x and the displacement u = x−X. Then
we denote the deformation gradient by F = ∂x/∂X, and the right Cauchy–Green tensor C = FTF, and the Jacobian
determinant J = det F. The isochoric part of the right Cauchy–Green tensor is given by C̄ = J−2/3C. We model
he myocardium as a nearly incompressible hyperelastic materials by penalizing the volumetric deformation. To
void the computationally expensive mixed formulation along with the augmented Lagrangian method to enforce
ncompressibility, we adapted the formulation in [55] using the invariants of C̄ to describe the isotropic contribution

to the strain energy density function and pseudo-invariants of C to describe the anisotropic contribution to the strain
energy density function. Note that in [55] it was demonstrated that the formulations that treat the isotropic part and
the anisotropic parts differently can be up to 20 times faster than the augmented Lagrangian method to enforce
incompressibility, with only a 5% difference in results from the augmented Lagrangian method. This approach also
simplifies the formulation for training and avoids the complexity involving with the augmented Lagrangian method.

Next, we define the first invariant of C̄

Ī1 = Tr C̄. (1)

We denote the material axes of myocardium in the local Cartesian material coordinate system in the reference
configuration as the fiber direction f0, the sheet direction s0, and the normal direction n0. Two diagonal components

f C on the material axes are

I4f = f0 · C · f0, I4s = s0 · C · s0. (2)

he pseudo-invariants I4f and I4s represent the square of the stretch for each fiber family. Due to the symmetry of
, we consider three off-diagonal components of C on the material axes

I8fs = f0 · C · s0, I8fn = f0 · C · n0, I8sn = s0 · C · n0. (3)

he pseudo-invariants I8fs, I8fn, I8sn describe the interactions between material axes.
We consider the extracellular matrix (ECM), the fiber families, and their interactions are exponentially stiffening.

he strain energy density function of the myocardium is given by

Ψ =Ψm( Ī1)+Ψf(I4f, I4s)+Ψint(I8fs, I8fn, I8sn)+Ψvol(J )

=
a
2b

(exp (b (I1 − 3))− 1)+
∑
i=f,s

ai

2bi

(
exp

(
bi (I4i − 1)2)

− 1
)

+

∑
i=fs,fn,sn

ai

2bi

(
exp

(
bi I 2

8i

)
− 1

)
+ κ (J − 1− ln J ) .

(4)

he first three terms Ψm, Ψf and Ψint correspond to the isotropic contribution, the fiber contribution, the interaction
ontribution. The last term Ψvol penalizes the violation of the incompressibility constraint. There are a total of

welve model parameters for each specimen (Table 1), and κ was set to 5000 Pa.

5



W. Zhang, D.S. Li, T. Bui-Thanh et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114871

S

p
t
n

w
o
n
n

2

E
i

2

w
fi

2

w
S
l
f

Table 1
Model parameters of 9 for each specimen simulated.

ource: Taken from [21].

a (Pa) b af (Pa) bf as (Pa) bs afs (Pa) bfs afn (Pa) bfn asn (Pa) bsn

S1 4.81 5.05 1175 0.276 1665 6.93 135.5 0.024 3440 2.01 3278 20.4
S2 0.100 0.346 2936 0.045 989.1 0.190 548.6 0.0020 384.0 1.47 6397 0.004
S3 6.07 4.90 2892 0.0300 178.2 0.0500 1553 0.78 4174 40.3 1791 44.6
S4 1.05 12.0 2964 3.10 496.0 0.0870 369.0 0.011 1712 68.8 547.7 1.17

2.3. Parameterization of boundary conditions

As part of our motivation for the development of the NNFE model, we consider application of the many-query
roblem. In the context of the present problem, we are solving over multiple boundary conditions defined by
he parametric PDE associated with the myocardium hyperelasticity problem. In order to define and perform the
ecessary computations, we discretized the reference domain of the cuboidal body Ω0 using a finite element mesh

with dn nodes. This allowed the displacement field u(X) : Ω0 ↦→ R3 to be conventionally represented by the
associated finite element basis functions

ui (X) =
dn∑

A=1

UAi NA(X), (5)

here UAi is a component of U ∈ Rdn×3 that denotes the coefficient at the Ath node in the i th direction (i = 1, 2, 3)
n a mesh of dn nodes, and NA(X) is a component of N(X) that denotes the finite element basis function at the Ath
ode. Next, we treat the parameterized boundary conditions as the two classic types: Neumann and Dirichlet. For
otational simplicity, we define M ∈ Rdm to represent both types.

.3.1. Parameterization of Dirichlet boundary conditions
Consider the Dirichlet boundary conditions on (∂Ω0)u are parameterized by M ∈ Rdm , using

u(X) = u0(X, M) on (∂Ω0)u . (6)

ach instance of M corresponds to a prescribed displacement field u0 on (∂Ω0)u . At the discrete mesh level, this
mplies the nodal displacement UA (the Ath row of U) at the Ath node with coordinates XA on (∂Ω0)u satisfies

UA = u0(XA, M). (7)

.3.2. Parameterization of Neumann boundary conditions
Next, we consider Neumann boundary conditions on (∂Ω0)t are parameterized by M ∈ Rdm , using

PT(X)n0(X) = p(X, M) on (∂Ω0)t , (8)

here P is the first Piola–Kirchhoff stress tensor, n0 is the surface normal direction, and p is the traction vector
eld defined on (∂Ω0)t .

.4. Neural network surrogate for the parametric PDE

We start the formulation of the NNFE model using

U = fNN(M) = fFCN(M)+WsM, (9)

here fFCN is a fully connected neural network and Ws ∈ Rdn×3×dm is the weight matrix for the skip connection [56].
kip connections are extra connections between nodes in different layers of a neural network that skip one or more

ayers. The introduction of skip (or residual) connections is used to directly back-propagate the gradients linearly
rom the output to the inputs, which improves the convergence of the training. The fully connected neural network
6
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with L hidden layers is thus a sequence of composite functions of element-wise nonlinear functions φ and affine
ransformations Al (l = 0, . . . , L), given by

fFCN = AL ◦ φ ◦ AL−1 · · · ◦ φ ◦ A0, (10)

here ◦ represent function composition, e.g., f ◦ g(x) = f (g(x)) for functions f and g. The affine transformation
l (l = 0, . . . , L) is defined as

Al(h) =Wlh+ bl , (11)

here h are the inputs of the neural network for l = 0 or the hidden state for lth layer. Specifically, Al : Rdl−1 ↦→ Rdl

l = 1, . . . , L) is determined by its weight Wl ∈ Rdl×dl−1 and bias bl ∈ Rdl , AL : RdL ↦→ R3×dn is determined
by its weight WL ∈ R3×dn×dL and bias bL ∈ R3×dn , dl (l = 0, . . . , L) is the number of neurons at each layer.
To simplify notation, the collection of all parameters of the NNFE model is denoted as θ . We also note that for
notational simplicity we denote the function Ψ through its dependence on u as (Eq. (4)) as Ψ (u).

In order to train the resulting fNN, we generate Ntrain samples of M using a Quasi-Monte Carlo method,
ow-discrepancy Halton sequence [57,58] to cover the training space more evenly. Given each sample M(i)

i = 1, . . . , Ntrain), the neural network will produce a corresponding U(i). Next, we assign the Dirichlet boundary
ondition to U(i) and construct the FE function û(i). We then minimize the average potential energy H using

min
θ

H def
=

1
Ntrain

Ntrain∑
i=1

Π (û(i)
;M(i)), (12)

here we evaluate the potential energy via

Π (û(i)
;M(i)) =

∫
Ω0

Ψ (û(i))dΩ −
∫

∂(Ω0)t

p(M(i)) · û(i)d(∂Ω ) (13)

û(i)
= NU(i), (14)

U(i)
= fNN(M(i)

; θ ), (15)

U(i)
A = u0(XA;M). (16)

We note that our approach is fundamentally different from the Deep Ritz approach [40]. In particular, our
pproach seamlessly bridges the neural network surrogate model with a model of the domain defined by finite
lements. This allows the Dirichlet boundary to be discretized with a conforming mesh and interpolation basis
unctions so that it can be imposed strongly by constraint U(i) to satisfy U(i)

A = u0(XA;M(i)). In turn, the Neumann
oundary conditions can be naturally satisfied when the potential energy is minimized. The resulting computational
lgorithm for evaluation of the potential energy is illustrated in Fig. 1. In the computational algorithm, the nodes
epresent operators and the edges represent data or variables. Each operator is applied on the variables that flow into
he node to generate outputs. The implementation consists of two parts, the FE part and the NN part. An example
or the correspondence between the NN outputs and the FE nodal values is shown in Fig. 2. These two parts are
mplemented in a single machine learning pipeline to have a seamless integration, as discussed in the next section.

.5. Differentiable implementation of the NNFE model

In light of the ability to utilize automatic differentiation we took a functional approach to implement differentiable
nite elements that can be seamlessly integrated with the NNFE in a machine learning framework. The automatic
ifferentiation library we used in this work is Jax [59]. In the context of differentiable implementation, first-order
r high-order derivatives can be obtained by applying differential operators to the associated functions. Automating
he construction of the computational graph for evaluating the derivatives can be achieved by applying automatic
ifferentiation. It is important to properly construct the computational graph for the function that needs to be
ifferentiated. To this end, this section focuses on the technical details of the differentiable implementation of

nite elements.

7
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d
l

Fig. 1. The computational algorithm for evaluation of the energy function using neural network surrogate model (green) and finite element
iscretization (blue) for hyperelastic problem with varying boundary conditions. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 2. Schematic illustration of a neural network surrogate model and its corresponding FE discretization.
8
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2.5.1. Differential operators
Without loss of generality, we consider a scalar FE-represented function v(X), which can also be similarly applied

or a vector FE function, such as the displacement field u(X). We denote Ωe as the reference element, and ξ ∈ Ωe
s a point in the reference element. With a given coordinate map X(ξ ), the evaluation of v at a certain Quadrature
oint ξ can be performed by

v(ξ ) =
∑

α

Vα Nα(ξ ), (17)

here α is the local degree-of-freedom, Nα are the basis functions of which the support includes ξ . From the
unctional perspective, the FE function v(ξ ) is not aware of the physical point X. The differential operators that are
ommonly used in the PDEs, such as ∂/∂X, are the differentiation with respect to the physical coordinates. Since
he inverse of the coordinate map ξ (X) is undetermined in the context of finite elements, we cannot construct a
omputational graph corresponding to v(ξ (X)) so that v is aware of X.

To address this issue, we use the inverse of the Jacobian of the coordinate map

J−1
=

(
∂X
∂ξ

)−1

(18)

s in the classical finite element methods. Then we can apply the linear transformation determined by J−T locally
sing

∂

∂X
= J−T ∂

∂ξ
(19)

o evaluate ∂/∂X.

.5.2. Application of the boundary conditions
irichlet boundary conditions. There are multiple approaches to apply the Dirichlet boundary conditions in the

raditional finite element method (for example, modifying the stiffness matrix and the force vector). In the context
f differentiable implementation, the Dirichlet boundary conditions can be imposed explicitly by fixing the value of
he corresponding components associated with the Dirichlet boundary conditions. By fixing the values, the partial
erivatives of the objective function with respect to the corresponding components will be zero. Thus, the back-
ropagation algorithm will propagate zero gradient through the fixed components. The efficacy of this simple scheme
ill be demonstrated in the numerical examples with Dirichlet boundary conditions.

eumann boundary conditions. The Neumann boundary conditions were imposed weakly as an external potential
n the objective function of the training algorithm. In classical finite element theory [60] the stationary condition
f principle of potential energy leads to the weak form of the governing equations or the variational equations.
he Neumann boundary conditions are naturally imposed when the potential energy is stationary. In the training
lgorithm, we minimize the potential energy on the sampled input parameters to weakly impose the Neumann
oundary conditions in an average sense.

.5.3. Software implementation
Jax [59] is the automatic differentiation backend in the present study. It includes composable function transfor-

ations, such as just-in-time compilation, automatic differentiation, automatic vectorization, parallel programming
f multiple accelerators. Its capability to interleave these transformations enabled the implementation of the
ifferentiable finite elements intuitively. The just-in-time compiler provides efficiency optimization for the resulting
omputational graph. We also note that the use of automatic differentiation eliminated the need for tedious and error
rone manual derivation of the mathematical expressions of derivatives. The automatic vectorization also allowed
s focus on the implementation at each quadrature point. The communication primitives provided a convenient
ay for distributed learning using the single-program multiple-data (SPMD) paradigm. One drawback related to
ack-propagation is that it is essentially the adjoint method, so that the intermediate results of the computational
raph need to be cached in order to propagate back the gradient information using the Jacobian transpose. This leads
o an increased memory requirement for complex problems with a deep computational graph. In this study we stored
ll intermediate results for back-propagation. In the future work we plan to use a divide-and-conquer approach to
educe the complexity of the memory requirement [61]. The resulting computational pipeline was implemented to
un on multiple GPUs leveraging the computational resources of Frontera at the Texas Advanced Computing Center.
9
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2.6. Training scheme

The averaged energy potential for a number of realizations of the parameters H is the objective function for
training the neural network representation of the parameter-to-state map. In the discretized setting, we aggregate
the potentials for a set of realizations of M(i) (i = 1, . . . , Ntr) within a prescribed range or box [MLB, MUB] and
find the optimal parameters for the neural network that minimizes the aggregated potential. Sampling M(i) can be

one by stochastic methods such as Monte Carlo methods, or pseudo-stochastic methods such as quasi-Monte Carlo
ethods, or deterministic methods such as quadrature schemes using weighted sum. The quasi-Monte Carlo method

as a faster rate of convergence in comparison with Monte Carlo methods when the variation of the functions is
imited and low-discrepancy sequence is used. Moreover, quadrature schemes are intractable for high-dimensional
roblems. In this work, we thus used a Halton sequence to generate samples for M. To facilitate the training process,
e gradually expanded the training range [Mlb, Mub] to avoid mesh distortions until Mub

=MLB and Mub
=MUB.

or a given training range [Mlb, Mub], we sample the training dataset Dtr = {M(i)
}

Ntr
i=1 of realizations of M and

djust the parameters of the neural network θ by using inexact Newton-Conjugate Gradient (Newton-CG) method
ith Armijo line search [62]. This is a matrix-free algorithm in the sense that it only needs the Hessian action
ithout constructing the full Hessian matrix.

nitialize a random initial guess θ0;
or k = 1 to K do

Mlb
← kMLB/K , Mub

← kMUB/K , θk ← θk−1;
sampling Dtr = {M(i)

}
Ntr
i=1 within [Mlb, Mub];

for j = 1 to J do
pk = newton cg(θk);
αk = linear search(H(θk + αpk));
θk = θk + αk pk ;
if ||∇θH(θk)||/||∇θH(θ0)|| < ϵg then

return ;
end

end
nd
lgorithm 1: Stepping scheme for training the neural network surrogate model. In the k-th iteration (k =
, . . . , K ), scale the training upper bound training range [Mlb, Mub] until it reaches the limit [MLB, MUB].

Sample the training dataset Dtr with Ntr samples. Construct the search direction pk using Newton-CG method,
using Armijo line search to find the step size αk for the objective function H. Finally, update the neural network
parameters θk until the J -th iteration or the relative gradient is below a prescribed threshold ϵg .

The initialization of the parameters θ has a significant impact to the convergence of the training. To avoid ill-
onditioning, the weight matrices Wi (l = 1, . . . , L − 1) are initialized as orthonormal. To avoid mesh distortions
t the initial step, we restrict the neural network functions to satisfy that fN N → 0 when U→ 0. This asymptotic
ondition can be achieved by initializing biases bi (l = 1, . . . , L) to be zeros, and the weight matrix WL in the last
ayer to be zeros and using continuous activation function φ that satisfies condition φ(x = 0) = 0. We choose the
angent hyperbolic function due to its boundedness and tanh(x = 0) = 0.

.7. Transfer learning

A final trained NNFE for a specific specimen (or more generally an individual) is typically only predictable for
hat case only. However, although the responses vary with the corresponding individual data, they tend to share
imilar behaviors. In the present application, the mechanical behavior of passive myocardium will vary but within a
efinable range. A natural extension of the present methods is to fine-tune the weights and biases with a different set
f data, a form a transfer learning, which as the potential to significantly reduce training time. A transfer learning
trategy is presented to leverage a trained neural network to reduce the net training time of subsequently trained
pecimens or individuals.
10
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Without loss of generality, the varying individual data considered is the set of material parameters and the fiber
tructures. We denote such data as D for notation simplification, the αth realization of D as Dα . We assume a pre-
rained NN fNN(M; θα) has been optimized. Its parameters θα are indexed by α as well to highlight its relationship
ith Dα , and θα is the optimizer in the sense

θα = arg min
θ

1
Ntr

Ntr∑
i=1

Π (θ;M(i), Dα), (20)

here we unfold the dependence of Π on θ through û to highlight the optimization variable, i.e. the neural network
arameters θ . For another individual, we denote the corresponding realization as Dβ . To avoid finding the optimizer
β from a random initial guess, we can transfer our knowledge of the learned θα to θβ that dictates similar responses

of fNN. The transfer learning in this context is thus to fine-tune θα to adapt to Dβ by Algorithm 2. We keep all
the hyperparameters, the neural network architecture and the sampled training dataset the same as the pre-trained
model while only the neural network parameters are fine-tuned with a different combination of fiber architecture
and material parameters.

Initialize θ0 ← θα;
for k = 1 to K do

Mlb
← kMLB/K , Mub

← kMUB/K , θk ← θk−1;
sampling Dtr = {M(i)

}
Ntr
i=1 within [Mlb, Mub];

θk = arg min
θ

1
N

∑N
i=1 Π (θ;M(i), Dβ)

nd
β ← θK
lgorithm 2: Transfer learning scheme for finding the optimizer θβ on Dβ using θα that is trained on Dα as

n initial guess. We fold the details of the optimization algorithm to highlight the important aspect of transfer
earning.

.8. Numerical simulations

In summary, we considered a cuboidal tissue specimen of dimensions 1 cm × 1 cm × 1 cm, emulating the
triaxial experiments. The domain is discretized by tri-linear Lagrange elements. The element-wise second order
Gaussian quadrature is used for numerical integration of the element potential energy, and the first order Gaussian
quadrature for volumetric contribution of the strain density energy function. To demonstrate the performance of the
neural networks, we examined an error metric on the validation dataset Dval = {M(i)

}
Nval
i=1 . The concrete examples

of Dval are presented in the rest of this section for Neumann and Dirichlet boundary conditions. Dval is a set of
different boundary conditions for which we will examine the discrepancy between the neural network predictions
and the FE solutions. With a given realization of M, the neural network prediction of the displacement nodal values
is denoted as U(i)

NN and the FE solution U(i)
FE. The L∞ norm of the nodal errors U(i)

NN − U(i)
FE is the maximum value

f |U(i)
NN − U(i)

FE|. The average L∞ error eL∞ on Dval is defined as

eL∞ =
1

Nval

∑
M(i)∈Dval

∥U(i)
NN − U(i)

FE∥∞, (21)

hich is the average of the maximum displacement errors for all boundary conditions in Dval.
We note that our “training” data is simply the prescribed displacements (in units of cm) or tractions (in units

f Pa). Normalization of training data is important in applications wherein actual data is used. In contrast, in our
pproach we did not need to consider input parameters with different physical units or wide range of values in the
ame surrogate modeling problem. The two separate problems we considered are parameterized Dirichlet boundary
onditions and parameterized Neumann conditions. Thus, we did not need to explicitly normalize the inputs and
utputs of the neural network.
11
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Fig. 3. Parameterization of boundary conditions applied to the yellow areas for (a) single loading path using t = T e1, T ∈ R, and (b) full
physiological range using u0(X) = HX, H ∈ R3×3. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.8.1. Single loading path parameterized by a Neumann boundary condition
The traction field applied to the facets that are normal to one of the coordinate basis e1 is parameterized by

a scalar T ∈ R using T = T e1, T ∈ [0, 1500] Pa (Fig. 3-a). In this concrete example, T serves as the input
parameter M for the surrogate model. The training dataset includes 12 uniformly spaced points in [0, 1500]. The
fiber structure is homogeneous and the material axes are aligned with the Cartesian basis as f0 = e1, s0 = e2

and n0 = e3. Since this becomes a pure Neumann problem, we need to restrict the rigid body motion. Due to
the symmetry of the problem, we can apply symmetric boundary conditions to three mid-planes that are across the
center point and normal to Cartesian bases ei (i = 1, 2, 3). The symmetric boundary conditions restrict the nodes on
these mid-planes to move within the planes only to eliminate the rigid body rotation and translation. For validation
purposes, Dval includes 10 uniformly spaced points within the training range [0, 1500 Pa]. We start with a mesh of
14 × 14 × 14 elements to demonstrate the expressiveness of the neural network. The fibers are orientated in the
e1 direction uniformly. The NNFEs were trained on a NVIDIA(R) GeForce RTX 2080 Ti GPU. Then, we further
demonstrate the speed-up of the neural network forward pass compared with the finite element solutions with two
refined meshes with 28 × 28 × 28 elements and 56 × 56 × 56 elements. To compare the run times on the same
hardware, we use a serial single-core program on a Intel(R) Core(TM) i9-9920X on a System 76 Thelio Major
computer.

2.8.2. Full physiological deformations parameterized by Dirichlet boundary conditions
The Dirichlet boundary conditions are parameterized using affine deformation modes parameterized by H ∈ R3×3

using

u0 = H · X, (22)

where X is the reference configuration. H is physically the displacement gradient tensor applied as a Dirichlet
boundary condition and serves as M for the surrogate model training (Fig. 3-b). Without loss of generality, we
remove the rigid body rotation by restricting H to be upper diagonal as

H =

⎡⎣H1 H4 H5
H2 H6

H3

⎤⎦ . (23)

The deformation modes of the corresponding components of H are illustrated in Fig. 4. The off-diagonal terms
represent the magnitudes of shear deformation modes. The diagonal terms represent the magnitudes of the
extension deformation modes, and H needs to respect the incompressibility constraint of the myocardium to avoid
unrealistic deformation modes and resulting divergence issues. To generate physically feasible training data, the

incompressibility constraint is imposed by restricting H + I to be unimodular where I is the identity matrix. We

12
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Fig. 4. Component-wise deformation modes of the upper diagonal matrix H. The diagonal components Hi (i = 1, 2, 3) represent the
deformation magnitude of the extension modes. The diagonal components Hi (i = 4, 5, 6) represent the deformation magnitude of the simple
hear modes.
ource: Adapted from [21].

Table 2
Hyperparameters for training neural network surrogate model and its transfer learning.

Neural network architecture

Number of neurons 10
Number of hidden layer 1
Activation function Tangent hyperbolic function

Algorithm 1

Maximum number of CG iterations 300
Maximum number of Armijo line search iterations 30
Initial step size for Armijo line search 1.0
Number of iteration K 1–12

parameterize H using

H =

⎡⎣1/t1 − 1 t3 t4
1/t2 − 1 t5

t1t2 − 1

⎤⎦ , (24)

here t1, . . . , t5 ∈ R. Thus, H automatically satisfies the incompressibility constraint det(H + I) = 1. We restrict
he diagonal components of H within [−0.2, 0.2] and the off-diagonal components within [−0.3, 0.3] to cover the
hysiological deformation range. To demonstrate the learnability of the NNSM, we considered four combinations of
ber architectures and sets of material parameters obtained from a numerical experimental approach [21] (Fig. 5).
he validation is performed using a optimal set of six loading protocols including pure shear deformations and
imple shear deformations: (1) H1 ∈ [0, 0.2] cm, H2 ∈ [−0.167, 0] cm; (2) H1 ∈ [0, 0.2] cm, H3 ∈ [−0.167, 0]

cm; (3) H2 ∈ [0, 0.2] cm, H3 ∈ [−0.167, 0] cm; (4) H4 ∈ [0, 0.3] cm; (5) H5 ∈ [0, 0.3] cm; (6) H6 ∈ [0, 0.3] cm
(if not mentioned the other components of H are zeros). Each protocol has 10 uniformly spaced points within the
training range.

2.8.3. Transfer learning for different combination of material parameters and fiber architectures
We leveraged the transfer learning techniques to speed up a consequence training process by initialization using

a trained neural network. We start with a trained neural network for specimen 1 (S1). The trained neural network
then served as a initial guess for learning the NNSMs for the other three different combinations (S2–S4) of material
parameters and fiber architectures in Fig. 5. To demonstrate the usage of the transfer learning, we compared the
accuracy and the training run time for random initialization and initialization using transferred parameters.

3. Results

The hyperparameters used are summarized in Table 2. As described in Section 2.6, the shallow neural network is
activated by tangent hyperbolic function which satisfies the condition tanh(x = 0) = 0 and the weights and biases
in the last layer are zeroed to avoid mesh distortion at the beginning of training. The training using the inexact
13
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n

Fig. 5. The fiber directions are represented with respect to the circumferential–longitudinal planes of the left ventricle. The in plane angles
φ and the out of plane angles θ for four myocardium specimens computed from the diffusion tensor imaging are represented as colored
arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from [21].

Newton-CG optimizer with line search is relatively robust with the hyperparameters listed in Table 2. To avoid
pathological behavior at the beginning of training and train the model gradually, K in Algorithm 1 varies from 1
to 12 to refine the stepping scheme and make the training stable, without the knowledge of the validation error.

We first examined the proposed solution for parameterized Neumann boundary conditions. The trained neural
network surrogate model with only 10 hidden neurons associated with a mesh of 14 × 14 × 14 elements
demonstrated well alignment with the corresponding finite element solution (Fig. 6). The run time for a single
prediction of the neural network surrogate model increases minimally with increasing number of elements, while
the finite element assembly and solution for a single step increases super-linearly with the number of elements
(Fig. 7). The neural network surrogate model can give predictions in parallel while the finite element solver needs
a stepping scheme to incrementally obtain the solutions for the fully loaded state which would multiply the cost
with the number of steps.

Next, we examined the proposed approach for parameterized Dirichlet boundary conditions. With 10 hidden
neurons and 14 × 14 × 14 elements and 140 training data points in the full physiological range, the trained neural

etwork surrogate model has an average L∞ error of 0.1201 mm on the validation dataset (Fig. 8). We then varied
the number of samples for M or H in this concrete example generated using Halton sequence to study its effects
to the accuracy of the neural network. The average L∞ validation error quickly reduces to 0.1682 mm for 20 H
samples and then gradually reduces to 0.1201 mm for 140 H samples (Fig. 9). The average L∞ validation errors for
each specimen, each one with its unique set of material parameters and fiber architectures, are listed in Table 3. Note
that all specimens demonstrated similar errors. Using the same neural network architecture and training algorithm,
the neural network surrogate model is expressive for the responses of all these four specimens, which demonstrates
the efficacy of the proposed approach for the complex mechanical behavior of myocardium.

Lastly, we applied the transfer learning techniques to reuse a trained neural network surrogate model for a
different combination of material parameters and fiber architectures for S2–S4. We examined two metrics: the
average L∞ error eL∞ to quantify the accuracy on the validation dataset and the training time Ttr to quantify
the computational expense for training. The ones using transfer learning are denoted by a superscript (·)transfer to
differentiate from the ones using random initialization. Due to the similarity between the responses of S1 and those

of S2–S4, the training time using transfer learning was significantly reduced while the accuracy retained (Table 4).
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a

Fig. 6. Validation of the NN prediction (blue wire frames) with the FE solution (red points) for parameterized Neumann boundary conditions
t 1500 Pa. The average L∞ error is 0.04501 mm for the cube with 1 cm on each side.

Fig. 7. Observed simulations times of the NNSM predictions compared with the equivalent FE solutions for three levels of mesh size. The
NNSM provided a significantly decreased computational time in all cases, with up to 5168 fold decrease with the finest mesh. Note too
that as the mesh sized increased from 2744 to 175 615 elements, the NNSM computational time only increased 1.257 times from 0.1108 s
to 0.1393 s while the FE increased 158.5 times from 4.541 s to 719.9 s.

Table 3
The average L∞ error of neural network predictions using the corresponding FE solutions as
ground truth on the validation datasets.

S1 S2 S3 S4

Average L∞ error 0.1201 mm 0.1171 mm 0.1639 mm 0.2012 mm
15
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Fig. 8. Comparison between FE solutions (red points) and NN predictions (blue wire frames). The average L∞ error is 0.1201 mm. The
plotted six loading protocols are same as the original model in [21] in terms of the deformation. Abbreviations: pure shear (PS), simple
shear (SS), longitudinal (L), circumferential (C), radial (R).

Fig. 9. The number of samples for the input parameter H that parameterized the Dirichlet boundary conditions vs. the average L∞ validation
error of the displacement nodal values.

4. Discussion

4.1. Approach and major findings

In this study we developed a neural network finite element (NNFE) model approach to represent the fully
three dimensional behavior of hyperelastic behavior of passive ventricular myocardium. Our method utilized a
finite element discretization of the domain to compute the local potential energy for a given displacement field,
16
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Table 4
The validation errors e∞ and the training run time Ttr for transfer learning using the trained
NN parameters from S1 compared with the ones with random initialization. The ones using
transfer learning is indicated by a superscript (·)transfer.

S2 S3 S4

etransfer
∞ 0.1005 mm 0.1639 mm 0.1819 mm

e∞ 0.1171 mm 0.1639 mm 0.2012 mm

T transfer
tr 6 min 19 min 37 min

Ttr 35 min 58 min 93 min

with the solution—the FE nodal vector—represented by a neural network. To exploit automatic differentiation the
gradient information was back-propagated from the potential energy to the neural network, with the potential energy
computed using the numerical integration for each finite element. Note that as in the classical finite element theory,
the spatial gradients are evaluated by chain rule on the reference element. Dirichlet boundary conditions were
directly imposed by fixing the corresponding components of the finite element vector. Inspired by the underlying
physical principle, the optimization problem for training NNFE (Eqs. (12)–(16)) is based on the minimum potential
energy principle for hyperelasticity. The objective function is the average potential energy on the sampled boundary
conditions in the training dataset. For given boundary conditions, the NNSM predicts a trial solution and the
corresponding potential energy is evaluated by the FE part. These techniques enabled us to seamlessly use gradient-
based optimization algorithms to find the optimal neural network parameters that minimize the potential energy for
a range of input parameters. An advanced optimization method with inexact Newton-CG and globalization with
Amijo line search was developed and implemented for our NNFE framework. In our numerical tests we utilized
actual myocardial cuboidal specimen geometry, boundary conditions, fiber structure, and an orthotropic constitutive
model to carefully evaluate this method for cardiac tissue simulations as a directed application. This was a much
more rigorous test compared to other studies, which tended to focus on isotropic (e.g., neo Hookean) material
models with homogeneous internal structures.

The trained NNFE not only faithfully represented the complete 3D mechanical response very well (Fig. 8),
ut also exhibited extremely fast run times, with up to 5168-fold decrease in computation time as compared to a
onventional FE solution using the same mesh and material model (Fig. 7). One of the major practical advantages
f the present approach is its scalability. In the present study, as the mesh size was increased from 2744 to 175,615
lements (a 64 fold increase) the NNFE computational time only increased from 110.8 ms to 139.3 ms. This
s in contrast with the conventional FE approach which increased from 4.541 to 719.9 s (Fig. 7). This result
uggests that with the use of a NNFE the run times can be significantly reduced compared with the traditional

large-deformation based finite element solution methods. This is especially important for many-query problems,
where hundreds to thousands of simulations may be undertaken. The trade-off is to train the NNFE offline within a
range of anticipated physiological responses. However, training time would only have to be performed once before
any number of application uses. Moreover, since the NNFE is an analytical function its computational performance
will be amplified when the corresponding problem becomes more complex and more computationally expensive.
We need to emphasize that our goal in the present study was not to compare a single deformation path simulation
between the FE and NNFE methods, including all training and pre-processing steps. Rather, our goal is that, once
trained over a range of all anticipated deformation states, the NNFE method can reproduce any deformation state
within the trained range accurately and quickly. Thus, our focus is on the end point applications of the heart, wherein
a fully trained NNFE model is exclusively used (with no further training required). The transfer learning methods
further allow us to reduce training time in multi-specimen scenarios.

4.2. Use of transfer learning to decrease training time

Transfer learning is a technique for transferring knowledge to the target domain from a different source domain(s).
Transfer learning has been applied to text/image classification, medical imaging, etc. [63]. In the present application,
we applied transfer learning to utilize pre-trained NNFE from one test specimen as an initial guess for a different
specimen, which has a different combination of material parameters and fiber structures. The training time can be
17
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significantly reduced by using transfer learning techniques when the original responses and the targeting responses
are similar. The transfer learning approach fine-tuned the predictions of the NNFE. In the context of cardiac
modeling, the material parameters and the fiber structures cannot be incorporated into the input parameters of the
NNFE due to the insufficient training data.

4.3. Broader motivations for improved cardiac simulations

The ultimate application goal of the present approach is surgical planning and clinical diagnosis in clinically
elevant time frames. The nature of these applications is time-sensitive and they usually involve many outcome
valuations (potentially thousands). Traditional finite element methods that have been extensively used are quite
ell established for cardiac modeling [64,65]. While the cardiac models become more sophisticated to achieve
igh-fidelity solutions, the computational time associated with the finite element simulations becomes prohibitive
or such time-sensitive clinical applications. To tackle the challenges for efficient online predictions, we developed
NNFE approach. Surrogate modeling in general can shift the computational cost from solving FE equations to

raining surrogate models. By front-loading the computational cost, significant performance gains can be achieved
or online predictions using surrogate models.

.4. Additional considerations and limitations

In this work, we considered the finite element solutions as the ground truth for accuracy evaluations. Using the
ame mesh and finite element function space, the neural network predictions in general reproduced the corresponding
nite element solutions very closely. It should be stated that the NNFE is not a more accurate or robust method in
omparison with traditional FE approaches, but rather represents a means to achieve nearly instantaneous solutions
nce trained. The source of errors for the NNFE includes approximation errors, optimization errors, and sampling
rrors [46]. With the advent of automatic differentiation techniques, the neural network training can be guided
y back-propagation of the gradients of potential energy in the present approach. To this end, the differentiable
mplementation of finite elements that we have developed is crucial. We further note that traditional surrogate

odeling approaches are usually data-driven, which require evaluations of the simulation results in data fitting,
dding additional training time. As we train on the PDE itself, this decreases training time.

The current study remains in the realm of elasticity using the potential-based formulation. This can limit its
pplicability for general problems such as modeling active behavior of ventricular myocardium. The neural network
ightly coupled with the finite element discretization since the output of the neural network corresponds to the
omponents of the finite element nodal values. However, the neural network parameters for the last layer can
e interpolated if using a different mesh for the same domain. The back-propagation algorithm requires check-
ointing intermediate results of the computational graph from the input parameters to the objective function value.
his results in the memory requirement increasing with the number of operations in the computational graph.
hus, the complexity of the computation is bounded by the memory resources. This issue can be alleviated by
ivide-and-conquer strategies [61].

In addition to the above theoretical and numerical considerations, there are a number of practical issues
ncountered when dealing with biological structures such a myocardium. As noted above, we “train” the NNFE
sing a known passive myocardial constitutive model [21]. It may seem better to train the NNFE on the experimental
ata directly. However, these approaches are only possible when large amounts of mechanical responses can be
btained experimentally. In general, practical considerations greatly limit the amount of mechanical response data
hat can be collected, due to the limited time explanted myocardium can be kept viable. More importantly, we
ave demonstrated with the appropriate choice of constitutive model, robust parameter estimation can be achieved
sing a minimal number of selected loading paths that optimize the D-optimality criteria for a generalized 3D
eformation state [19]. In addition to basic force–displacement information, constitutive modeling of any biological
tructures also requires detailed maps of the internal microstructure (e.g., muscle fiber orientation), which is usually
nly available in a limited manner (e.g., only in the referential configuration). Along these lines, meso-structural
onstitutive models have been extensively used and have very good predictive capability, and can be developed
ith minimal experimental data requirements [66,67]. Thus, our approach exploits use of extant robust constitutive
odels that optimize parameter estimation, allowing focus on optimizing the computational implementation.
oreover, our approach will intrinsically incorporate all necessary convexity and related features, since it is trained
n a mathematically correct constitutive formulation.
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4.5. Future directions

Physics-guided NNFE, finite elements, and cardiac physiology-guided training regimes are the integrated parts
f the present approach. The essential component of cardiac modeling we are addressing is simulation of the
yperelastic behavior of myocardium, so that we can employ a potential formulation for model training. Although we
onsider a specific type of hyperelastic material model we developed before, it does not restrict the applicability of
he present approach for other types of hyperelastic materials. As an example, the present approach can incorporate
ocal fiber structures to inform the anisotropy of any hyperelastic material. While the present approach assumes the
nderlying physics problem of the PDEs has a potential formulation, it does not restrict its extensibility for other
ypes of PDEs. For example, the L2 norm of the PDE residuals can be used in the objective function as discussed

in [39,45] when there is no potential formulation for the PDEs. As we consider hyperelastic based problems, there
are rich contents in the hyperelasticity theory and the optimization theory for further studies. One possible direction
is to consider the trainability of an analysis tractable neural network architecture. The convergence analysis for the
simplified elastic problem might provide insights on the underlying mechanism or directions to improve the neural
network architecture for a specific physics process.

More complex cardiac simulations will need further development. Specifically, the active contraction is an
essential mechanism for driving the motion of the heart. The present formulation needs to be extended to
incorporate the associated active stress. In the organ level, the patient-specific cardiac models involve much more
complex geometry directly imported from medical imaging data. The complex geometry is usually discretized in
an unstructured mesh which needs further technical development. The full cardiac models involve multi-physics
in nature. The active contraction of myocardium is electrophysiologically-driven. The pressures applied in the
chambers of the heart are induced by the fluid dynamics. Ultimately, the coupling of the electromechanical and fluid
dynamics constitutes the underlying mechanisms. In addition, incorporating the potential pathophysiological changes
of the myocardium in the cardiac models is also important for long-term predictions of myocardium remodeling.
Such future directions will likely include the fundamental studies on the NNFEs. In this work, we use a simple
neural network architecture heuristically. More rational basis on design of the architecture for specific physical
problems is necessary. Since the neural network is tightly coupled with the finite elements, it might be possible
to exploit the corresponding mathematical structure to guide the architecture design. As mentioned in Section 4.3,
the approximation errors, optimization errors, and sampling errors affect the accuracy of the trained neural network
model.

4.6. Conclusion

In this work, we developed a NNFE approach to learn the responses of myocardium within a range of
physiologically guided boundary conditions. The NNFE is integrated with the finite element discretization to
streamline the existing finite element models. The use of automatic differentiation enabled the back-propagation of
the gradient information which facilitates the implementation. This enables us to develop an advanced second order
inexact Newton-CG optimization method instead of using the standard at most first order stochastic gradient descent
approaches. The potential-based formulation is based on the physical principle of the elasticity problem without
relying on the finite element solutions to train the NNFE. Both Neumann and Dirichlet boundary conditions were
considered to demonstrate the efficacy of the present approach. The efficiency and accuracy of online predictions of
the surrogate model were examined using the corresponding finite element solutions as reference. By training the
neural network offline, significant speed up gain can be achieved for online predictions, which is further amplified
for a finer mesh. We also demonstrated that usage of transfer learning techniques can further reduce the training
time. We believe this work is a first step towards our ultimate application goal of surgical planning and clinical
diagnosis in clinically relevant time frames.
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