
Journal of Computational Physics 367 (2018) 295–321
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An improved iterative HDG approach for partial differential 
equations ✩

Sriramkrishnan Muralikrishnan a,∗, Minh-Binh Tran c, Tan Bui-Thanh a,b

a Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, TX 78712, USA
b The Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX 78712, USA
c Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 November 2017
Received in revised form 23 March 2018
Accepted 18 April 2018
Available online 23 April 2018

Keywords:
Iterative solvers
Schwarz methods
Hybridized Discontinuous Galerkin methods
Transport equation
Shallow water equation
Convection–diffusion equation

We propose and analyze an iterative high-order hybridized discontinuous Galerkin (iHDG) 
discretization for linear partial differential equations. We improve our previous work [45]
in several directions: 1) the improved iHDG approach converges in a finite number of 
iterations for the scalar transport equation; 2) it is unconditionally convergent for both the 
linearized shallow water system and the convection–diffusion equation; 3) it has improved 
stability and convergence rates; 4) we uncover a relationship between the number of 
iterations and time stepsize, solution order, meshsize and the equation parameters. This 
allows us to choose the time stepsize such that the number of iterations is approximately 
independent of the solution order and the meshsize; and 5) we provide both strong and 
weak scalings of the improved iHDG approach up to 16,384 cores. A connection between 
iHDG and time integration methods such as parareal and implicit/explicit methods are 
discussed. Extensive numerical results for linear (and nonlinear) PDEs are presented to 
verify the theoretical findings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Originally developed [1] for the neutron transport equation, first analyzed in [2,3], the discontinuous Galerkin (DG) 
method has been studied extensively for virtually all types of partial differential equations (PDEs) [4–8]. This is due to the 
fact that DG combines advantages of finite volume and finite element methods. As such, it is well-suited to problems with 
large gradients including shocks and with complex geometries, and large-scale simulations demanding parallel implemen-
tations. In spite of these advantages, DG methods for steady state and/or time-dependent problems that require implicit 
time-integrators are more expensive in comparison to other existing numerical methods since they typically have many 
more (coupled) unknowns.

As an effort to mitigate the computational expense associated with DG methods, the hybridized (also known as hy-
bridizable) discontinuous Galerkin (HDG) methods are introduced for various types of PDEs including Poisson-type equation 
[9–14], Stokes equation [15,16], Euler and Navier–Stokes equations, wave equations [17–23], to name a few. In [24–26], we 
have proposed an upwind HDG framework that provides a unified and a systematic construction of HDG methods for a 
large class of PDEs. We note that the weak Galerkin methods in [27–30] share many similar advantages with HDG.
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Besides the usual DG volume unknown, HDG methods introduce extra single-valued trace unknowns on the mesh skele-
ton to reduce the number of coupled degrees of freedom and to promote further parallelism. This is accomplished via a 
Schur complement approach in which the volume unknowns on each elements are independently eliminated in parallel to 
provide a system of equations involving only the trace unknowns. Moreover, the trace system is substantially smaller and 
sparser compared to a standard DG linear system. Once the trace unknowns are solved for, the volume unknowns can be 
recovered in an element-by-element fashion, completely independent of each other. For small and medium sized problems 
the above approach is popular. However, for practically large-scale applications, where complex and high-fidelity simulations 
involving features with a large range of spatial and temporal scales are necessary, the trace system is still a bottleneck. In 
this case, matrix-free iterative solvers/preconditioners [31–33] which converge in reasonably small number of iterations are 
required.

Schwarz-type domain decomposition methods (DDMs) have become popular during the last three decades as they pro-
vide efficient algorithms to parallelize and to solve PDEs [34–36]. Schwarz waveform relaxation methods and optimized 
Schwarz methods [37–43] are among the most important subclasses of DDMs since they can be adapted to the underlying 
physics, and thus lead to powerful parallel solvers for challenging problems. While, scalable iterative solvers/preconditioners 
for the statically condensed trace system can be developed [44], DDMs and HDG have a natural connection which can be 
exploited to create efficient parallel solvers. We have developed and analyzed one such solver namely iterative HDG (iHDG) 
in our previous work [45] for elliptic, scalar and system of hyperbolic equations. Independent and similar efforts for elliptic 
and parabolic equations have been proposed and analyzed in [46,39,47].

In the following, we discuss in section 2 an upwind HDG framework [24] for a general class of PDEs and also our 
notations used in this paper. The iHDG algorithm and significant improvements over our previous work [45] are explained 
in section 3. The convergence of the new iHDG algorithm for the scalar and for system of hyperbolic PDEs is proved in 
section 4 using an energy approach. In section 5 we applied the iHDG approach for the convection–diffusion PDE considered 
in the first order form. The convergence and the scaling of the number of iHDG iterations with meshsize and solution order 
are derived. Section 6 presents various steady and time dependent examples, in both two and three spatial dimensions, to 
support the theoretical findings. We also present both strong and weak scaling results of our algorithm up to 16,384 cores 
in section 6. We finally conclude the paper in section 7.

2. Upwind HDG framework

In this section we briefly review the upwind HDG framework for a general system of linear PDEs and introduce necessary 
notations. To begin, let us consider the following system of first order PDEs

∂tu +
d∑

k=1

∂kFk (u) + Cu := ∂tu +
d∑

k=1

∂k (Aku) + Cu = f, in �, (1)

where d is the spatial dimension (which, for the clarity of the exposition, is assumed to be d = 3 whenever a particular 
value of the dimension is of concern, but the result is also valid for d = {1,2}), Fk the kth component of the flux vector (or 
tensor) F, u the unknown solution with values in Rm , and f the forcing term. For simplicity, we assume that the matrices 
Ak and C are continuous across �. Here, ∂k stands for the kth partial derivative, in which k represents the kth component 
of a vector/tensor, and ∂t is the temporal derivative. We adopt a semi-discretization strategy in which the HDG method is 
employed to discretize the spatial derivatives, while standard discretizations such as backward Euler and/or Crank–Nicolson 
are used for the temporal derivative.

Let us start with notations and conventions. We partition � ∈ R
d , an open and bounded domain, into Nel non-

overlapping elements K j, j = 1, . . . , Nel with Lipschitz boundaries such that �h := ∪Nel
j=1 K j and � = �h . The meshsize h

is defined as h := max j∈{1,...,Nel} diam 
(

K j
)
. We denote the skeleton of the mesh by Eh := ∪Nel

j=1∂ K j , the set of all (uniquely 
defined) faces e. We conventionally identify n− as the outward normal vector on the boundary ∂ K of element K (also 
denoted as K −) and n+ = −n− as the outward normal vector of the boundary of a neighboring element (also denoted as 
K +). Furthermore, we use n to denote either n− or n+ in an expression that is valid for both cases, and this convention is 
also used for other quantities (restricted) on a face e ∈ Eh . For convenience, we denote by E∂

h the sets of all boundary faces 
on ∂�, by Eo

h := Eh \ E∂
h the set of all interior faces, and ∂�h := {∂ K : K ∈ �h}.

For simplicity in writing we define (·, ·)K as the L2-inner product on a domain K ∈R
d and 〈·, ·〉K as the L2-inner product 

on a domain K if K ∈ R
d−1. We shall use ‖·‖K := ‖·‖L2(K ) as the induced norm for both cases and the particular value of 

K in a context will indicate the inner product from which the norm is coming. We also denote the ε-weighted norm of a 
function u as ‖u‖ε,K := ∥∥√εu

∥∥
K for any positive ε. We shall use boldface lowercase letters for vector-valued functions and 

in that case the inner product is defined as (u,v)K :=∑m
i=1 (ui,vi)K , and similarly 〈u,v〉K :=∑m

i=1 〈ui,vi〉K , where m is the 
number of components (ui, i = 1, . . . , m) of u. Moreover, we define (u,v)�h

:=∑
K∈�h

(u,v)K and 〈u,v〉Eh
:=∑

e∈Eh
〈u,v〉e

whose induced (weighted) norms are clear, and hence their definitions are omitted. We employ boldface uppercase letters, 
e.g. L, to denote matrices and tensors. We conventionally use u (v and û) for the numerical solution and ue for the exact 
solution.
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We denote by P p (K ) the space of polynomials of degree at most p on a domain K . Next, we introduce two discontinu-
ous piecewise polynomial spaces

Vh (�h) :=
{

v ∈
[

L2 (�h)
]m : v|K ∈ [P p (K )

]m
,∀K ∈ �h

}
,

�h (Eh) :=
{
λ ∈

[
L2 (Eh)

]m : λ|e ∈ [P p (e)
]m

,∀e ∈ Eh

}
,

and similar spaces Vh (K ) and �h (e) on K and e by replacing �h with K and Eh with e. For scalar-valued functions, we 
denote the corresponding spaces as

Vh (�h) :=
{

v ∈ L2 (�h) : v|K ∈ P p (K ) ,∀K ∈ �h

}
,

�h (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P p (e) ,∀e ∈ Eh

}
.

Following [24], an upwind HDG discretization for (1) in each element K involves the DG local unknown u and the extra 
“trace” unknown û such that

(∂tu,v)K − (F (u) ,∇v)K +
〈
F̂
(
u, û

) · n,v
〉
∂ K

+ (Cu,v)K = (f,v)K , (2a)〈[[
F̂
(
u, û

) · n
]]

,μ
〉
e
= 0, ∀e ∈ Eo

h , (2b)

where we have defined the “jump” operator for any quantity (·) as [[(·)]] := (·)− +(·)+ . We also define the “average” operator 
{{(·)}} via 2 {{(·)}} := [[(·)]]. For simplicity, we have ignored the fact that equations (2a), (2b) must hold for all test functions 
v ∈ Vh (K ) and μ ∈ �h (e) respectively. This is implicitly understood throughout the paper. Here, the HDG flux is defined as

F̂ · n = F (u) · n + |A| (u − û
)
, (3)

with the matrix A :=∑d
k=1 Aknk = RSR−1, and |A| := R |S|R−1. Here nk is the kth component of the outward normal vector 

n and |S| represents a matrix obtained by taking the absolute value of the main diagonal of the matrix S. We have assumed 
that A admits an eigen-decomposition, and this is valid for a large class of PDEs of Friedrichs’ type [48].

The typical procedure for computing HDG solution requires three steps. We first solve (2a) for the local solution u
as a function of û. It is then substituted into the conservative algebraic equation (2b) on the mesh skeleton to solve 
for the unknown û. Finally, the local unknown u is computed, as in the first step, using û from the second step. 
Since the number of trace unknowns û is less than the DG unknowns u [26], HDG is more advantageous. For large-
scale problems, however, the trace system on the mesh skeleton could be large and iterative solvers are necessary. In 
the following we construct an iterative solver that takes advantage of the HDG structure and the domain decomposition 
method.

3. iHDG methods

To reduce the cost of solving the trace system, our previous effort [45] is to break the coupling between û and u in 
(2) by iteratively solving for u in terms of û in (2a), and û in terms of u in (2b). We name this approach iterative HDG 
(iHDG) method, and now let us call it iHDG-I to distinguish it from the approach developed in this paper. From a linear 
algebra point of view, iHDG-I can be considered as a block Gauss–Seidel approach for the system (2) that requires only 
independent element-by-element and face-by-face local solves in each iteration. However, unlike conventional Gauss–Seidel 
schemes which are purely algebraic, the convergence of iHDG-I [45] does not depend on the ordering of unknowns. From 
the domain decomposition point of view, thanks to the HDG flux, iHDG can be identified as an optimal Schwarz method in 
which each element is a subdomain. Using an energy approach, we have rigorously shown the convergence of iHDG-I for 
the transport equation, the linearized shallow water equation and the convection–diffusion equation [45]. For the sake of 
completeness we provide the iHDG-I algorithm below. The approximation of the HDG solution at the (k + 1)th iteration is 
governed by the local equation (2a) as(

∂tuk+1,v
)

K
−
(

F
(

uk+1
)

,∇v
)

K
+
〈
F
(

uk+1
)

· n + |A| (uk+1 − ûk),v
〉
∂ K

+
(

Cuk+1,v
)

K
= (f,v)K , (4)

where the weighted trace |A| ûk is computed using information at the k-iteration via the conservation condition (2b), i.e.,〈
|A| ûk,μ

〉
∂ K

=
〈{{

|A| uk
}}

+
{{

F
(

uk
)

· n
}}

,μ
〉
∂ K

. (5)

Algorithm 1 summarizes the iHDG-I approach. Nevertheless, a number of questions need to be addressed for the iHDG-I approach. 
First, with the upwind flux it theoretically takes infinite number of iterations to converge for the scalar transport equation. 
Second, it is conditionally convergent for the linearized shallow water system; in particular, it blows up for fine meshes 
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Algorithm 1 The iHDG-I approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0 using (5).
1: while not converged do
2: Solve the local equation (4) for uk+1 using the weighted trace |A| ûk .
3: Compute |A| ûk+1 using (5).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

and/or large time stepsizes. Furthermore, we have not been able to estimate the number of iterations as a function of 
time stepsize, solution order, and meshsize. Third, it is also conditionally convergent for the convection–diffusion equation, 
especially in the diffusion-dominated regime.

The iHDG approach constructed in this paper, which we call iHDG-II, overcomes all the aforementioned shortcomings. 
In particular, it converges in a finite number of iterations for the scalar transport equation and is unconditionally con-
vergent for both the linearized shallow water system and the convection–diffusion equation. Moreover, compared to our 
previous work [45], we provide several additional findings: 1) we make a connection between iHDG and the parareal 
method, which reveals interesting similarities and differences between the two methods; 2) we show that iHDG can 
be considered as a locally implicit method, and hence being somewhat in between fully explicit and fully implicit ap-
proaches; 3) for both the linearized shallow water system and the convection–diffusion equation, using an asymptotic 
approximation, we uncover a relationship between the number of iterations and time stepsize, solution order, meshsize 
and the equation parameters. This allows us to choose the time stepsize such that the number of iterations is ap-
proximately independent of the solution order and the meshsize; 4) we show that iHDG-II has improved stability and 
convergence rates over iHDG-I; and 5) we provide both strong and weak scalings of the iHDG-II approach up to 16,384 
cores.

We now present a detailed construction of the iHDG-II approach. We define the approximate solution for the volume 
variables at the (k + 1)th iteration using the local equation (2a) as(

∂tuk+1,v
)

K
−
(

F
(

uk+1
)

,∇v
)

K
+
〈
F
(

uk+1
)

· n + |A| (uk+1 − ûk,k+1),v
〉
∂ K

+
(

Cuk+1,v
)

K
= (f,v)K , (6)

where the weighted trace |A| ûk,k+1 is computed from (2b) using volume unknown in element K at the (k + 1)th iteration, 
i.e. 

(
uk+1

)−
, and volume solution of the neighbors at the (k)th iteration, i.e. 

(
uk
)+

:〈
2 |A| ûk,k+1,μ

〉
∂ K

=
〈
|A|

{(
uk+1

)− +
(

uk
)+}

,μ

〉
∂ K

+
〈
F
{(

uk+1
)−} · n− + F

{(
uk
)+} · n+,μ

〉
∂ K

. (7)

Algorithm 2 summarizes the iHDG-II approach. Compared to iHDG-I, iHDG-II improves the coupling between û and 
u while still avoiding intra-iteration communication between elements. The trace û is double-valued during the course 
of iterations for iHDG-II and in the event of convergence it becomes single valued upto a specified tolerance. Another 
principal difference is that while the well-posedness of iHDG-I elemental local solves is inherited from the original HDG 
counterpart, it has to be shown for iHDG-II. This is due to the new way of computing the weighted trace in (7) that in-
volves uk+1, and hence changing the structure of the local solves. Similar and independent work for HDG methods for 
elliptic/parabolic problems have appeared in [46,39,47]. Here, we are interested in pure hyperbolic equations/systems and 
convection–diffusion equations. Unlike existing matrix-based approaches, our convergence analysis is based on an energy 
approach that exploits the variational structure of HDG methods. Moreover we provide, both rigorous and asymptotic, re-
lationships between the number of iterations and time stepsize, solution order, meshsize and the equation parameters. We 
also make connection between our proposed iHDG-II approach with parareal and time integration methods. Last but not 
least, our framework is more general: indeed it recovers the contraction factor results in [46] for elliptic equations as one 
of the special cases.

Algorithm 2 The iHDG-II approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0,1 using (7).
1: while not converged do
2: Solve the local equation (6) for uk+1 using the weighted trace |A| ûk,k+1.
3: Compute |A| ûk+1,k+2 using (7).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

4. iHDG-II for linear hyperbolic PDEs

In this section we show that iHDG-II improves upon iHDG-I in many aspects discussed in section 3. The PDEs of interest 
are (steady and time dependent) transport equation, and the linearized shallow water system [45].
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4.1. Transport equation

Let us start with the (steady) transport equation

β · ∇ue = f in �, (8a)

ue = g on ∂�−, (8b)

where ∂�− is the inflow part of the boundary ∂�, and again ue denotes the exact solution. Note that β is assumed to be 
continuous across the mesh skeleton.

Applying the iHDG-II Algorithm 2 to the upwind HDG discretization [24] for (8) we obtain the approximate solution uk+1

at the (k + 1)th iteration restricted on each element K via the following independent local solve:

−
((

uk+1
)−

,∇ · (βv)

)
K

+
〈
β · n− (uk+1

)− + |β · n|
{(

uk+1
)− − ûk,k+1

}
, v

〉
∂ K

= ( f , v)K , (9)

where the weighted trace |β · n| ûk,k+1 is computed using information from the previous iteration and current iteration as

2 |β · n| ûk,k+1 =
{
β · n− (uk+1

)− + β · n+ (uk
)+}+ |β · n|

{(
uk+1

)− +
(

uk
)+}

. (10)

Next we study the convergence of the iHDG-II method (9), (10). Since (8) is linear, it is sufficient to show that the algo-
rithm converges to the zero solution for the homogeneous equation with zero forcing f = 0 and zero boundary condition 
g = 0. Let us define ∂ K out as the outflow part of ∂ K , i.e. β · n− ≥ 0 on ∂ K out, and ∂ K in as the inflow part of ∂ K , i.e. 
β · n− < 0 on ∂ K in. First, we will prove the well-posedness of the local solver (9).

Lemma 1. Assume −∇ · β ≥ α > 0, i.e. (8) is well-posed. Then the local solver (9) of the iHDG-II algorithm for the transport equation 
is well-posed.

Proof. Taking v = (
uk+1

)−
in (9), substituting (10) in (9) and applying homogeneous forcing condition yield

−
((

uk+1
)−

,∇ ·
{
β
(

uk+1
)−})

K
+ 1

2

〈(
β · n− + |β · n|)(uk+1

)−
,
(

uk+1
)−〉

∂ K

= 1

2

〈(
β · n+ + |β · n|)(uk

)+
,
(

uk+1
)−〉

∂ K
. (11)

Since ((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,∇ · β
(

uk+1
)−)

K
+
((

uk+1
)−

,β · ∇
(

uk+1
)−)

K
,

integrating by parts the second term on the right hand side((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,∇ · β
(

uk+1
)−)

K

−
((

uk+1
)−

,∇ ·
{
β
(

uk+1
)−})

K
+
〈
β · n− (uk+1

)−
,
(

uk+1
)−〉

∂ K
,

yields the following identity, after rearranging the terms((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,
∇ · β

2

(
uk+1

)−)
K

+ 1

2

〈
β · n− (uk+1

)−
,
(

uk+1
)−〉

∂ K
. (12)

Using (12) in (11) we get∥∥∥∥(uk+1
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
= 1

2

〈(
β · n+ + |β · n|)(uk

)+
,
(

uk+1
)−〉

∂ K
. (13)

In equation (13) all the terms on the left hand side are positive. Since 
(
uk
)+

is the “forcing” for the local equation, by taking (
uk
)+ = 0 the only solution possible is 

(
uk+1

)− = 0 and hence the local solver is well-posed. �
Having proved the well-posedness of the local solver we can now proceed to prove the convergence of Algorithm 2 for 

the transport equation.
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Theorem 1. Assume −∇ · β ≥ α > 0, i.e. (8) is well-posed. There exists J ≤ Nel such that the iHDG-II algorithm for the homogeneous 
transport equation converges to the HDG solution in J iterations.

Proof. Using (13) from Lemma 1 and β · n+ > 0 on ∂ K in, β · n+ ≤ 0 on ∂ K out we can write∥∥∥∥(uk+1
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
=
〈
|β · n|uk

ext,
(

uk+1
)−〉

∂ K in
, (14)

where uk
ext is either the physical boundary condition or the solution of the neighboring element that shares the same inflow 

boundary ∂ K in.
Consider the set K1 of all elements K such that ∂ K in is a subset of the physical inflow boundary ∂�in on which we 

have uk
ext = 0 for all k ∈ N. We obtain from (14) that∥∥∥∥(uk+1

)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
= 0, (15)

which implies u1 = 0 on K ∈K1, i.e. our iterative solver is exact on K ∈K1 at the first iteration.
Next, let us define �1

h := �h and

�2
h = �1

h\K1.

Consider the set K2 of all K in �2
h such that ∂ K in is either (possibly partially) a subset of the physical inflow boundary 

∂�in or (possibly partially) a subset of the outflow boundary of elements in K1. This implies, on ∂ K in ∈K2, uk
ext = 0 for all 

k ∈N \ {1}. Thus, ∀K ∈K2, we have∥∥∥∥(uk
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk

)−∥∥∥∥2

|β·n|/2,∂ K
= 0, ∀k ∈N \ {1} , (16)

which implies u2 = 0 in K ∈K2, i.e. our iterative solver is exact on K ∈K2 at the second iteration.
Repeating the same argument, we can construct subsets K j ⊂ �h , on which the iterative solution on K ∈K j is the exact 

HDG solution at the jth iteration. Since the number of elements Nel is finite, there exists J ≤ Nel such that �h = ∪ J
j=1K j . 

It follows that the iHDG-II algorithm provides exact HDG solution on �h after J iterations. �
Remark 1. Compared to iHDG-I [45], which requires an infinite number of iterations to converge, iHDG-II needs finite 
number of iterations for convergence. The key to the improvement is the stronger coupling between û and u by using (
uk+1

)−
in (7) instead of 

(
uk
)−

. The proof of Theorem 1 also shows that iHDG-II automatically marches the flow, i.e., each 
iteration yields the HDG solution exactly for a group of elements. Moreover, the marching process is automatic (i.e. does not 
require an ordering of elements) and adapts to the velocity field β under consideration.

4.2. Time-dependent transport equation

In this section we first comment on a space–time formulation of the iHDG methods and compare it with the parareal 
methods studied in [49] for the time-dependent scalar transport equation. Then we consider the semi-discrete version 
of iHDG combined with traditional time integration schemes and compare it with the fully implicit and explicit DG/HDG 
schemes.

4.2.1. Comparison of space–time iHDG and parareal methods for the scalar transport equation
Space–time finite element methods have been studied extensively for the past several years both in the context of 

continuous and discontinuous Galerkin methods [50–54] and HDG methods [55]. Parareal methods, on the other hand, were 
first introduced in [56] and various modifications have been proposed and studied (see [57–61] and references therein).

In the scope of our work, we compare our methods with the parareal scheme proposed in [49] for the scalar advection 
equation. Let us start with the following ordinary differential equation

du

dt
= f in (0, T ), u(0) = g, (17)

for some positive constant T > 0.

Corollary 1. Suppose we discretize the temporal derivative in (17) using the iHDG-II method with the upwind flux and the elements 
K j are ordered such that K j is on the left of K j+1 . At iteration k, uk

∣∣ converges to the HDG solution u|K for j ≤ k.
K j j
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Proof. Since (17) can be considered as 1D transport equation (8) with velocity β = 1, the proof follows directly from 
Theorem 1 and induction. �

Note that the iHDG scheme can be considered as a parareal algorithm in which the fine propagator is taken to be the 
local solver (6) and the coarse propagator corresponds to the conservation condition (7). However, unlike existing parareal 
algorithms, the coarse propagator of iHDG-parareal is dependent on the fine propagator. Moreover, Corollary 1 says that 
after k iterations the iHDG-parareal solution converges up to element k, a feature common to the parareal algorithm studied 
in [49]. For time dependent hyperbolic PDEs, the space–time iHDG method again can be understood as parareal approach, 
and in this case, a layer of space–time elements converges after each iHDG-parareal iteration (see Remark 1). See Fig. 1 and 
Table 1 of section 6 for a demonstration in 2D where either x or y is considered as “time”. It should be pointed out that 
the specific parareal method in [49] exactly traces the characteristics, and hence may take less iterations to converge than 
the iHDG-parareal method, but this is only true if the forward Euler discretization in time, upwind finite difference in space, 
and C F L = 1 are used with constant advection velocity.

4.3. iHDG as a locally implicit method

In this section we discuss the relationship between iHDG and implicit/explicit HDG methods. For the simplicity of the 
exposition, we consider time-dependent scalar transport equation given by:

∂ue

∂t
+ β · ∇ue = f . (18)

We first review the implicit/explicit HDG schemes for (18), and then compare them with iHDG-II. The implicit Euler HDG 
scheme for (18) reads(

um+1

�t
, v

)
K

− (
um+1,∇ · (βv)

)
K + 〈

β · num+1 + |β · n|(um+1 − ûm+1), v
〉
∂ K =

(
f m+1 + um

�t
, v

)
K

,〈[[|β · n|ûm+1]] ,μ〉
∂ K = 〈[[|β · n|um+1]]+ [[

β · num+1]] ,μ〉
∂ K . (19)

Here, um+1 and ûm+1 stands for the volume and the trace unknowns at the current time step, whereas um and ûm are 
the computed solutions from the previous time step. Clearly, um+1 and ûm+1 are coupled and this can be a challenge for 
large-scale problems.

Next let us consider an explicit HDG with forward Euler discretization in time for (18):(
um+1

�t
, v

)
K

= (
um,∇ · (βv)

)
K − 〈

β · num + |β · n|(um − ûm), v
〉
∂ K +

(
f m + um

�t
, v

)
K

,〈[[|β · n|ûm]] ,μ〉
∂ K = 〈[[|β · n|um]]+ [[

β · num]] ,μ〉
∂ K ,

which shows that we can solve for um+1 element-by-element, completely independent of each other. However, since it is an 
explicit scheme, the C F L restriction for stability can increase the computational cost for problems involving fast time scales 
and/or fine meshes.

Now applying one iteration of the iHDG-II scheme for the implicit HDG formulation (19) with um as the initial guess 
yields (

um+1

�t
, v

)
K

− (
um+1,∇ · (βv)

)
K + 〈

β · num+1 + |β · n|(um+1 − ûm,m+1), v
〉
∂ K =

(
f m+1 + um

�t
, v

)
K

,

〈[[|β · n|ûm,m+1]] ,μ〉
∂ K =

〈
|β · n|

{(
um+1)− + (

um)+} ,μ
〉
∂ K

+
〈
β · n− (um+1)− + β · n+ (um)+ ,μ

〉
∂ K

.

Compared to the explicit HDG scheme, iHDG-II requires local solves since it is locally implicit. As such, its CFL restriction is 
much less (see Fig. 2), while still having similar parallel scalability of the explicit method.1 Indeed, Fig. 2 shows that the 
CFL restriction is only indirectly through the increase of the number of iterations; for CFL numbers between 1 and 5, the 
number of iterations varies mildly. Thus, as a locally implicit method, iHDG-II combines advantages of both explicit (e.g. 
matrix free and parallel scalability) and implicit (taking reasonably large time stepsize without facing instability) methods. 
Clearly, on convergence iHDG solution is, up to the stopping tolerance, the same as the fully-implicit solution.

1 In fact, due to local solves, iHDG-II could provide more efficient communication and computation overlapping.
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4.4. iHDG-II for system of linear hyperbolic PDEs

In this section, as an example for the system of linear hyperbolic PDEs, we consider the following linearized oceanic 
shallow water system [62]:

∂

∂t

⎛⎝ φe


ue


ve

⎞⎠+ ∂

∂x

⎛⎝ 
ue


φe

0

⎞⎠+ ∂

∂ y

⎛⎝
ve

0

φe

⎞⎠=
⎛⎝ 0

f 
ve − γ 
ue + τx
ρ

− f 
ue − γ 
ve + τy
ρ

⎞⎠ (20)

where φ = g H is the geopotential height with g and H being the gravitational constant and the perturbation of the free 
surface height, 
 > 0 is a constant mean flow geopotential height, ϑ := (u, v) is the perturbed velocity, γ ≥ 0 is the 
bottom friction, τ := (

τx, τy
)

is the wind stress, and ρ is the density of the water. Here, f = f0 + β (y − ym) is the Coriolis 
parameter, where f0, β , and ym are given constants. We study the iHDG-II methods for this equation and compare it with 
the results in [45].

For the simplicity of the exposition and the analysis, let us employ the backward Euler HDG discretization for (20). 
Since the unknowns of interest are those at the (m + 1)th time step, we can suppress the time index for the clarity of 
the exposition. Furthermore, since the system is linear it is sufficient to consider homogeneous system with zero initial 
condition, zero boundary condition, and zero forcing (wind stress). Applying the iHDG-II Algorithm 2 to the homogeneous 
system gives(

φk+1

�t
,ϕ1

)
K

−
(

ϑk+1,∇ϕ1

)
K

+
〈

ϑk+1 · n + √



(
φk+1 − φ̂k,k+1

)
,ϕ1

〉
∂ K

= 0, (21a)(

uk+1

�t
,ϕ2

)
K

−
(


φk+1,
∂ϕ2

∂x

)
K

+
〈

φ̂k,k+1n1,ϕ2

〉
∂ K

=
(

f 
vk+1 − γ 
uk+1,ϕ2

)
K

, (21b)(

vk+1

�t
,ϕ3

)
K

−
(


φk+1,
∂ϕ3

∂ y

)
K

+
〈

φ̂k,k+1n2,ϕ3

〉
∂ K

=
(
− f 
uk+1 − γ 
vk+1,ϕ3

)
K

, (21c)

where ϕ1, ϕ2 and ϕ3 are the test functions, and

φ̂k,k+1 = 1

2

{(
φk+1

)− +
(
φk
)+}+

√



2

{(
ϑk+1

)− · n− +
(
ϑk
)+ · n+

}
. (22)

Lemma 2. The local solver (21) of the iHDG-II algorithm for the linearized shallow water equation is well-posed.

Proof. Since {(φk)+, 
(ϑk)+} is a “forcing” to the local solver it is sufficient to set them to {0,0} and show that the only 
solution possible is {(φk)−, 
(ϑk)−} = {0,0}. Choosing the test functions ϕ1 = φk+1, ϕ2 = uk+1 and ϕ3 = vk+1 in (21), 
integrating the second term in (21a) by parts, and then summing equations in (21) altogether, we obtain

1

�t

(
φk+1, φk+1

)
K

+ 


�t

(
ϑk+1,ϑk+1

)
K

+ √


〈
φk+1, φk+1

〉
∂ K

+ γ 

(
ϑk+1,ϑk+1

)
K

− √


〈
φ̂k,k+1, φk+1

〉
∂ K

+ 

〈
φ̂k,k+1,n · ϑk+1

〉
∂ K

= 0. (23)

Summing (23) over all elements yields∑
K

1

�t

(
φk+1, φk+1

)
K

+ 


�t

(
ϑk+1,ϑk+1

)
K

+ γ 

(
ϑk+1,ϑk+1

)
K

+ √


〈
φk+1, φk+1

〉
∂ K

− √


〈
φ̂k,k+1, φk+1

〉
∂ K

+ 

〈
φ̂k,k+1,n · ϑk+1

〉
∂ K

= 0. (24)

Substituting (22) in the above equation and canceling some terms we get,∑
K

1

�t

∥∥∥∥(φk+1
)−∥∥∥∥2

K
+
(
γ + 1

�t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2


,K
+

√



2

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
√




2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2


,∂ K
=
∑
∂ K

√



2

〈{(
φk
)+ + √



(
ϑk · n

)+}
,
(
φk+1

)−〉
∂ K

− 


2

〈{(
φk
)+ + √



(
ϑk · n

)+}
,
(
ϑk+1 · n

)−〉
∂ K

. (25)
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Since 
 > 0, all the terms on the left hand side are positive. When we set 
{(

φk
)+

,

(
ϑk
)+}= {0,0}, i.e. the data from 

neighboring elements, the only solution possible is 
{(

φk+1
)−

,

(
ϑk+1

)−}= {0,0} and hence the method is well-posed. �

Next, our goal is to show that 
(
φk+1,
ϑk+1

)
converges to zero. To that end, let us define

C := A
B

, A := max {1,
} + √



4ε
, G :=

ε
(

max {1,
} + √


)

4
(26)

and

B1 :=
(

ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √


)ε

4

)

B2 :=
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
+ 2

√

 − (1 + √


)ε

4

)
,B := min {B1,B2} ,

where 0 < c ≤ 1, ε > 0 are constants. We also need the following norms:∥∥∥(φk,ϑk
)∥∥∥2

�h

:=
∥∥∥φk

∥∥∥2

�h

+
∥∥∥ϑk

∥∥∥2


,�h

,∥∥∥(φk,ϑk · n
)∥∥∥2

Eh

:=
∥∥∥φk

∥∥∥2

Eh

+
∥∥∥ϑk · n

∥∥∥2


,Eh

.

Theorem 2. Assume that the meshsize h, the time step �t and the solution order p are chosen such that B > 0 and C < 1, then the 
approximate solution at the kth iteration 

(
φk,ϑk

)
converges to zero in the following sense∥∥∥(φk,ϑk · n

)∥∥∥2

Eh

≤ Ck
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

,∥∥∥(φk,ϑk
)∥∥∥2

�h

≤ �t (A+ GC)Ck−1
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

,

where C , A and G are defined in (26).

Proof. Using Cauchy–Schwarz and Young’s inequalities for the terms on the right hand side of (25) and simplifying we have∑
K

1

�t

∥∥∥∥(φk+1
)−∥∥∥∥2

K
+
(
γ + 1

�t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2


,K
+

√



2

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
√




2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2


,∂ K
≤
∑
∂ K


 + √



4ε

∥∥∥∥(φk
)+∥∥∥∥2

∂ K

+ 1 + √



4ε

∥∥∥∥(ϑk · n
)+∥∥∥∥2


,∂ K
+ ε(
 + √


)

4

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+ ε(1 + √

)

4

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2


,∂ K
. (27)

An application of inverse trace inequality [63] for tensor product elements gives(
φk+1, φk+1

)
K

≥ 2ch

d(p + 1)(p + 2)

〈
φk+1, φk+1

〉
∂ K

, (28a)(
ϑk+1,ϑk+1

)
K

≥ 2ch

d(p + 1)(p + 2)

〈
ϑk+1,ϑk+1

〉
∂ K

, (28b)

where d is the spatial dimension which in this case is 2 and 0 < c ≤ 1 is a constant.2 Inequality (28), together with (27), 
implies

2 Note that for simplices we can use the trace inequalities in [64] and it will change only the constants in the proof.
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∑
∂ K

[(
ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √


)ε

4

)∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
+ 2

√

 − (1 + √


)ε

4

)∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2


,∂ K

]

≤
∑
∂ K

[

 + √




4ε

∥∥∥∥(φk
)+∥∥∥∥2

∂ K
+ 1 + √




4ε

∥∥∥∥(ϑk · n
)+∥∥∥∥2


,∂ K

]
, (29)

which then implies∥∥∥(φk+1,ϑk+1 · n
)∥∥∥2

Eh

≤ C
∥∥∥(φk,ϑk · n

)∥∥∥2

Eh

,

where the constant C is computed as in (26). Therefore∥∥∥(φk+1,ϑk+1 · n
)∥∥∥2

Eh

≤ Ck+1
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

. (30)

On the other hand, inequalities (27) and (30) imply∥∥∥(φk+1,ϑk+1
)∥∥∥2

�h

≤ �t (A+ GC)Ck
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

and this ends the proof. �
We now derive an explicit relation between the number of iterations k, the meshsize h, the solution order p, the time 

step �t and the mean flow geopotential height 
. First, we need to find an ε which makes C < 1. From (26) we obtain the 
following inequality for ε

max{1,
}+√



4ε(
ch

�t(p+1)(p+2)
+ 2

√

−(max{1,
}+√


)ε
4

) < 1. (31)

A sufficient condition for the denominator to be positive and existence of a real ε > 0 to the above inequality (31) is

ch
�t(p+1)(p+2)

max {1,
} + √



>
1

2
. (32)

This allows us to find an ε > 0 that satisfies the inequality (31) for all 
. In particular, we can pick

ε =
2ch

�t(p+1)(p+2)
+ √




max {1,
} + √



. (33)

Using this value of ε in definition (26) we get

C =
⎛⎝ max{1,
}+√


√



1 + 2ch√

�t(p+1)(p+2)

⎞⎠2

and since the numerator is always greater than 1, the necessary and sufficient condition for the convergence of the algorithm 
is given by

1(
1 + 2ch√


�t(p+1)(p+2)

)2k

k→∞−→ 0.

Using binomial theorem and neglecting higher order terms we get

k = O
(

�t(p + 1)(p + 2)
√




4ch

)
. (34)

Note that if we choose �t similar to explicit method, i.e. �t = O
(

h
p2

√



)
[65], k = O(1) independent of h and p. With 

this result in hand we are now in a better position to understand the stability of iHDG-I and iHDG-II algorithms for the 
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linearized shallow water system. For unconditional stability of the iterative algorithms under consideration, we need B > 0
in (26) independent of h, p and �t . There are two terms in B: B1 coming from φ and B2 from ϑ or ϑ · n. We can write B
in Theorem 3.6 of [45] for iHDG-I also as3

B1 :=
(

ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √


)ε

2

)
(35)

B2 :=
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
− (1 + √


)ε

2

)
,B := min {B1,B2} . (36)

Note that for both iHDG-I and iHDG-II algorithms we have the stability in φ independent of h, p and �t , since we can 
choose ε sufficiently small independent of h, p and �t and make B1 > 0 in (35) and (26). However, from (36) we have to 
choose ε as a function of (h, p, �t) in order to have B2 > 0, and hence iHDG-I lacks the mesh independent stability in the 
term associated with ϑ . This explains the instability observed in [45] for fine meshes and/or large time steps. Since B2 in 
(26) can be made positive with a sufficiently small ε, independent of h, p and �t , iHDG-II is always stable: a significant 
advantage over iHDG-I.

5. iHDG-II for linear convection–diffusion PDEs

5.1. First order form

In this section we apply the iHDG-II Algorithm 2 to the following first order form of the convection–diffusion equation:

κ−1σ e + ∇ue = 0 in �, (37a)

∇ · σ e + β · ∇ue + νue = f in �. (37b)

We assume that (37) is well-posed, i.e.,

ν − ∇ · β
2

≥ λ > 0. (38)

Though this is not a restriction, we take constant diffusion coefficient for the simplicity of the exposition. An upwind HDG 
numerical flux [24] is given by

F̂ · n =

⎡⎢⎢⎣
ûn1
ûn2
ûn3

σ · n + β · nu + τ
(
u − û

)
⎤⎥⎥⎦ , (39)

where τ = 1
2 (α − β · n) and α =√|β · n|2 + 4. Similar to the previous sections, it is sufficient to consider the homogeneous 

problem. Applying the iHDG-II Algorithm 2 we have the following iterative scheme

κ−1
(
σ k+1,τ

)
K

−
(

uk+1,∇ · τ
)

K
+
〈
ûk,k+1,τ · n

〉
∂ K

= 0, (40a)

−
(
σ k+1,∇v

)
K

−
(

uk+1,∇ · (βv) − νv
)

K
+
〈
β · nuk+1 + σ k+1 · n + τ (uk+1 − ûk,k+1), v

〉
∂ K

= 0, (40b)

where

ûk,k+1 =
{(

σ k+1 · n
)− + (

σ k · n
)+}+

{
β · n− (uk+1

)− + β · n+ (uk
)+}

α
+
{
τ− (uk+1

)− + τ+ (uk
)+}

α
. (41)

Lemma 3. The local solver (40) of the iHDG-II algorithm for the convection–diffusion equation is well-posed.

Proof. The proof is similar to the one for the shallow water equation and hence is given in the Appendix A. �
Now, we are in a position to prove the convergence of the algorithm. For ε, h > 0 and 0 < c ≤ 1 given, define

C1 := (‖β · n‖L∞(∂ K ) + τ̄ )(τ̄ + 1)

2εα∗
, C2 := (τ̄ + 1)

2εα∗
, (42)

3 This can be obtained by using Young’s inequality with ε in the proof of Theorem 3.6 in [45].
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C3 := ετ̄ (1 + τ̄ + ‖β · n‖L∞(∂ K ))

2α∗
, C4 := ε(1 + τ̄ + ‖β · n‖L∞(∂ K ))

2α∗
, (43)

D := A
B

, A = max{C1,C2}, E := max{C3,C4}
min{κ−1, λ} , F := A

min{κ−1, λ} , (44)

B1 := 2chκ−1

d(p + 1)(p + 2)
+ 1

2ᾱ
− C4,B2 := 2chλ

d(p + 1)(p + 2)
+ 1

ᾱ
− C3, (45)

B := min{B1,B2}, (46)

where τ̄ := ‖τ‖L∞(∂�h) , ᾱ := ‖α‖L∞(∂�h) , and α∗ := inf
∂ K∈∂�h

α. As in the previous section we need the following norms

∥∥∥(σ k, uk
)∥∥∥2

�h

:=
∥∥∥σ k

∥∥∥2

�h

+
∥∥∥uk

∥∥∥2

�h

,

∥∥∥(σ k · n, uk
)∥∥∥2

Eh

:=
∥∥∥σ k · n

∥∥∥2

Eh

+
∥∥∥uk

∥∥∥2

Eh

.

Theorem 3. Suppose that the meshsize h and the solution order p are chosen such that B > 0 and D < 1, the algorithm (40a)–(41)
converges in the following sense∥∥∥(σ k · n, uk

)∥∥∥2

Eh

≤ Dk
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,∥∥∥(σ k, uk
)∥∥∥2

�h

≤ (ED +F)Dk−1
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,

where D, E and F are defined in (44).

Proof. The proof is similar to the one for the shallow water equation and hence is given in the Appendix B. �
Similar to the discussion in section 4.4, one can show that

k = O
(

d(p + 1)(p + 2)

8ᾱch min
{
κ−1, λ

}) . (47)

For time-dependent convection–diffusion equation, we discretize the spatial differential operators using HDG. For the 
temporal derivative, we use implicit time stepping methods, again with either backward Euler or Crank–Nicolson method 
for simplicity. The analysis in this case is almost identical to the one for steady state equation except that we now have 
an additional L2-term 

(
uk+1, v

)
K /�t in the local equation (40b). This improves the convergence of the iHDG-II method. 

Indeed, the convergence analysis is the same except we now have λ + 1/�t in place of λ. In particular we have the 
following estimation

k = O
(

d(p + 1)(p + 2)

8ᾱch min
{
κ−1, (λ + 1/�t)

}) .

Remark 2. Similar to the shallow water system if we choose �t =O
(

h
p2

)
then the number of iterations is independent of h

and p. This is more efficient than the iterative hybridizable IPDG method for the parabolic equation in [47], which requires 
�t = O( h2

p4 ) in order to achieve constant iterations. The reason is perhaps due the fact that hybridizable IPDG is posed 
directly on the second order form whereas HDG uses the first order form. While iHDG-I has mesh independent stability for 
only u (see [45, Theorem 4.1]), iHDG-II does for both u and σ ; an important improvement.

6. Numerical results

In this section various numerical results verifying the theoretical results are provided for the transport equation, the 
shallow water equation, and the convection–diffusion equation in both two- and three-dimensions.

6.1. Transport equation

We consider the same 2D and 3D test cases in [45, sections 5.1.1 and 5.1.2]. For the 2D test case we consider f = 0 and 
β = (1 + sin(π y/2), 2) in (8). The domain is [0, 2] × [0, 2] and the inflow boundary conditions are given by

g =
⎧⎨⎩

1 x = 0,0 ≤ y ≤ 2
sin6 (πx) 0 < x ≤ 1, y = 0
0 1 ≤ x ≤ 2, y = 0

.
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Fig. 1. Evolution of the iterative solution for the 2D transport equation using the iHDG-II algorithm.

Table 1
The number of iterations taken by the iHDG-II algorithm for the trans-
port equation in 2D and 3D settings.

Nel(2D) Nel(3D) p 2D solution 3D solution

4 × 4 2 × 2 × 2 1 9 6
8 × 8 4 × 4 × 4 1 17 12
16 × 16 8 × 8 × 8 1 33 23
32 × 32 16 × 16 × 16 1 65 47

4 × 4 2 × 2 × 2 2 9 6
8 × 8 4 × 4 × 4 2 17 12
16 × 16 8 × 8 × 8 2 33 23
32 × 32 16 × 16 × 16 2 65 47

4 × 4 2 × 2 × 2 3 9 7
8 × 8 4 × 4 × 4 3 17 12
16 × 16 8 × 8 × 8 3 33 23
32 × 32 16 × 16 × 16 3 65 47

4 × 4 2 × 2 × 2 4 9 6
8 × 8 4 × 4 × 4 4 17 12
16 × 16 8 × 8 × 8 4 33 24
32 × 32 16 × 16 × 16 4 64 48

For the 3D test case the exact solution is given by

ue = 1

π
sin(πx) cos(π y) sin(π z).

We choose β = (z, x, y) in (8). The forcing is selected in such a way that it corresponds to the exact solution. The domain is 
[0, 1] × [0, 1] × [0, 1] with faces x = 0, y = 0 and z = 0 as the inflow boundaries. The inflow boundary condition is enforced 
using the exact solution.

The mesh consists of structured quadrilateral (2D)/hexahedral (3D) elements. Throughout the numerical section unless 
otherwise stated explicitly, we use the following stopping criterion

|‖uk − ue‖L2(�) − ‖uk−1 − ue‖L2(�)| < 10−10, (48)

if the exact solution is available, and

‖uk − uk−1‖L2(�) < 10−10, (49)

if the exact solution is not available.
From Theorem 1, the theoretical number of iterations is approximately d × (Nel)

1/d (where d is the dimension). It can be 
seen from the fourth and fifth columns of Table 1 that the numerical results agree well with the theoretical prediction. We 
can also see that the number of iterations is independent of solution order, which is consistent with the theoretical result 
Theorem 1. Fig. 1 shows the solution converging from the inflow boundary to the outflow boundary in a layer-by-layer 
manner. Again, the process is automatic, i.e., no prior element ordering or information about the advection velocity is 
required.

Now, we study the parallel performance of the iHDG algorithm. For this purpose we have implemented iHDG algorithm 
on top of mangll [66–68] which is a higher order continuous/discontinuous finite element library that supports large scale 
parallel simulations using MPI. The simulations are conducted on Stampede 1 at the Texas Advanced Computing Center 
(TACC). Stampede 1 is a 10 petaflop supercomputer consisting of 6400 Sandy Bridge nodes. Each node consists of two 
8-core Xeon E5-2680 2.7 GHz processors and one 61-core Xeon Phi SE10P KNC MIC 1.1 GHz coprocessor. It has 32 GB main 
memory per node (8 × 4 GB DDR3-1600 MHz) and the coprocessor has additional 8 GB GDDR5 memory. The interconnect 
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Table 2
Strong scaling results on TACC’s Stampede system for the 3D transport 
problem.

Nel = 262,144, p = 4, dof = 32.768 million, Iterations = 190

# cores Time [s] Nel/core Efficiency 
[%]

64 1758.62 4096 100.0
128 883.88 2048 99.5
256 439.94 1024 99.9
512 228.69 512 96.1
1024 113.87 256 96.5
2048 56.36 128 97.5
4096 29.26 64 91.8
16384 11.38 16 59

Nel = 2,097,152, p = 4, dof = 262.144 million, Iterations = 382

# cores Time [s] Nel/core Efficiency 
[%]

512 3634.89 4096 100.0
1024 1788.78 2048 101.5
2048 932.495 1024 97.3
4096 447.337 512 101.5
8192 232.019 256 97.9
16384 117.985 128 92.9

Table 3
Weak scaling results on TACC’s Stampede system for the 3D 
transport problem.

1024 Nel/core, p = 4

# cores Time [s] Time ratio Iterations ratio

4 103.93 1 1
32 217.23 2.1 2
256 439.94 4.2 4
2048 932.49 8.9 8

128 Nel/core, p = 4

# cores Time [s] Time ratio Iterations ratio

4 6.52 1 1
32 13.68 2.1 2
256 27.71 4.2 4
2048 56.37 8.6 8

is a 56 GB/s Mellanox FDR InfiniBand network in a 2-level fat-tree topology. To carry out the computations, we have used 
only the main processors and not the coprocessors.

Table 2 shows strong scaling results for the 3D transport problem. The parallel efficiency is over 90% for all the cases 
except for the case where we use 16,384 cores and 16 elements per core whose efficiency is 59%. This is due to the fact 
that, with 16 elements per core, the communication cost dominates the computation. Table 3 shows the weak scaling with 
1024 and 128 elements/core. Since the number of iterations increases linearly with the number of elements, we can see a 
similar increase in time when we increase the number of elements, and hence cores.

Let us now consider the time dependent 3D transport equation with the following exact solution

ue = e−5((x−0.35t)2+(y−0.35t)2+(z−0.35t)2),

where the velocity field is chosen to be β = (0.2, 0.2, 0.2). In Fig. 2 are the numbers of iHDG iterations taken per time step 
to converge versus the C F L number. As can be seen, for C F L in the range [1,5] the number of iterations grows mildly. As 
a result, we get a much better weak scaling results in Table 4 in comparison to the steady state case in Table 3.

6.2. Linearized shallow water system

The goal of this section is to verify the theoretical findings in section 4.4. To that extent, let us consider equation (20)
with a linear standing wave, for which, 
 = 1, f = 0, γ = 0 (zero bottom friction), τ = 0 (zero wind stress). The domain 
is [0, 1] × [0, 1] and the wall boundary condition is applied on the domain boundary. The following exact solution [62] is 
taken

φe = cos(πx) cos(π y) cos(
√

2πt), (50a)
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Fig. 2. CFL versus Iterations for the 3D time dependent transport.

Table 4
Weak scaling results on TACC’s Stampede system for the 3D time dependent 
transport problem.

128 Nel/core, p = 4, �t = 0.01, |β|max = 0.35

# cores Time/Timestep [s] Time ratio Iterations ratio CFL

4 1.69 1 1 0.45
32 1.91 1.1 1.1 0.9
256 2.09 1.2 1.1 1.8
2048 2.72 1.6 1.4 3.6
16384 4.68 2.8 2.1 7.2

Table 5
Comparison of iHDG-I and iHDG-II for the linearized shallow water system.

h p iHDG-I iHDG-II

�t = 10−1 �t = 10−2 �t = 10−1 �t = 10−2

0.25 1 19 6 14 6
0.125 1 * 6 18 9
0.0625 1 * 7 32 10
0.03125 1 * 9 59 8

0.25 2 * 9 15 9
0.125 2 * 11 19 9
0.0625 2 * 13 32 11
0.03125 2 * 15 59 12

0.25 3 * 7 16 8
0.125 3 * 9 20 8
0.0625 3 * 12 31 10
0.03125 3 * * 59 12

0.25 4 * 10 17 9
0.125 4 * 12 32 10
0.0625 4 * * 60 9
0.03125 4 * * 112 13

ue = 1√
2

sin(πx) cos(π y) sin(
√

2πt), (50b)

ve = 1√
2

cos(πx) sin(π y) sin(
√

2πt). (50c)

We use Crank–Nicolson method for the temporal discretization and the iHDG-II approach for the spatial discretization. In 
Table 5 we compare the number of iterations taken by iHDG-I and iHDG-II methods for two different time steps �t = 0.1
and �t = 0.01. Here, “∗” indicates divergence. As can be seen from the third and fourth columns, the iHDG-I method 
diverges for finer meshes and/or larger time steps. This is consistent with the findings in section 4.4 where the divergence 
is expected because of the lack of mesh independent stability in the velocity. On the contrary, iHDG-II converges for all 
cases.

In Table 5, we use a series of structured quadrilateral meshes with uniform refinements such that the ratio of successive 
meshsizes is 1/2. The asymptotic result (34), which is valid for h √ � 1, predicts that the ratio of the number 
�t(p+1)(p+2) 
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Fig. 3. Growth of iterations with meshsize h for the iHDG-II method for the linearized shallow water system. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Table 6
Growth of iterations with solution order p for the iHDG-II method 
for the linearized shallow water system.

p Meshsize (h) Asymptotics

0.25 0.125 0.0625 0.03125

2 1.07 1.06 1 1 2
3 1.14 1.11 0.97 1 3.33
4 1.21 1.78 1.87 1.9 5

of iterations required by successive refined meshes is 2, and the results in Fig. 3 confirm this prediction. The last two 
columns of Table 5 also confirms the asymptotic result (34) that the number of iHDG-II iterations scales linearly with the 
time stepsize.

Next, we study the iHDG iteration growth as the solution order p increases. The asymptotic result (34) predicts that 
k = O (p2). In Table 6, rows 2–4 show the ratio of the number of iterations taken for solution orders p = {2,3,4} over the 
one for p = 1 for four different meshsizes as in Table 5. As can be seen, the theoretical estimation is conservative.

6.3. Nonlinear shallow water system

In this section, we consider the nonlinear shallow water system, given by,

∂u

∂t
+ ∇ · F (u) = f, (51)

where the forcing function f, and the x-component and y-component of the flux F are given by

Fx :=
⎛⎝ Hu

Hu2 + 1
2 g H2

Huv

⎞⎠ , Fy :=
⎛⎝ H v

Huv
H v2 + 1

2 g H2

⎞⎠ , and f :=
⎛⎝ 0

−g Hbx

−g Hby

⎞⎠ ,

while the conservative variables u are defined as

u := (H, Hu, H v)T .

Here, H is the water depth, u is the depth averaged velocity component in the x-direction, v is the depth averaged velocity 
component in the y-direction, b is the bathymetry, and g is the gravitational constant.

For nonlinear problems both the local solver (2a) and the conservation constraints (2b) are nonlinear. In order to tackle 
these problems, we apply the iHDG algorithms to solve the linearized system arising from each Newton step of the HDG 
system (2). For the clarity of the exposition, let us consider one generic Newton step. To begin, we define the following 
residuals for (2a) and (2b):

Res = (∂tu,v)�h
− (F (u) ,∇v)�h

+
〈
F̂
(
u, û

) · n,v
〉
∂�h

+ (Cu,v)�h
− (f,v)�h

, (52a)

Flx =
〈[[

F̂
(
u, û

) · n
]]

,μ
〉
Eh

. (52b)

Here, the hybridized Lax–Friedrichs one, used in [24] is employed, i.e.,
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Fig. 4. Nonlinear shallow water system with translating vortex solution: convergence rate for HDG methods with iHDG-II algorithm (blue dashed line) and 
direct solver (red dashed squares).

F̂
(
u, û

) · n = F (u) · n + τ I
(
u − û

)
,

with û :=
(

Ĥ, Ĥu, Ĥ v
)T

, the stabilization τ = √
û2 + v̂2 + g Ĥ , and I the corresponding identity matrix. Note that û and v̂

are given by û = Ĥu
Ĥ

and v̂ = Ĥ v
Ĥ

.

If we define a Newton step for u and û as δu and δû, respectively, the linear system for δu and δû resulting from each 
Newton step is given by (after the temporal derivative is discretized, e.g., with backward Euler or Crank–Nicolson)⎡⎣ ∂Res

∂u
∂Res
∂û

∂Flx
∂u

∂Flx
∂û

⎤⎦⎧⎨⎩ δu

δû

⎫⎬⎭=
⎧⎨⎩−Res

−Flx

⎫⎬⎭ . (53)

Applying iHDG-II algorithm to the linear system (53) we get

∂Res

∂u
δuk+1 + ∂Res

∂û
δûk,k+1 = −Res, (54)

where δûk,k+1 is determined from the conservation condition as[[
∂Flx

∂û

]]
δûk,k+1 = − [[Flx]] −

(
∂Flx

∂u

)− (
δuk+1

)− −
(

∂Flx

∂u

)+ (
δuk

)+
. (55)

Once convergence is obtained, the volume and trace unknown are updated as

u −→ u + δu,

û −→ û + δû,

and we can proceed with the next Newton step.
For the first example, we study the convergence of the iHDG-II solver for a translating vortex solution [69] whose exact 

solution is given by

He =
[

1 − (γ − 1)

16γπ2
β2e2

(
1−R2

)] 1
γ −1

, ue = 1 − βe
(
1−R2

) (y − y0)

2π
,

ve = βe
(
1−R2

) (x − t − x0)

2π
,

with R2 = (x − t − x0)
2 + (y − y0)

2, x0 = 5, y0 = 0, and β = 5. We take γ = g = 2, and a flat bathymetry b = bx = by = 0. 
The domain considered is � = [3.5,5.5] × [−1,1] and structured quadrilateral elements are used. The exact solution is used 
to enforce the boundary condition. For time discretization, we again use the Crank–Nicolson method, in which the time 
step is �t = 10−4 and there are 100 time steps. In Fig. 4, we compare the h-convergence rates obtained with the iHDG-II 
algorithm and the direct solver. Results from both solvers are on top of each other with the convergence rate between p and 
(p + 1/2). In this case, each time step takes 2–3 Newton iterations, each of which takes less than 10 iHDG-II iterations. The 
stopping criterion for iHDG-II algorithm is based on (49) and the stopping tolerance is taken to be 10−10 for both iHDG-II 
and Newton iterations.
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Fig. 5. Evolution of the water depth H for the water drop test case with iHDG-II algorithm.

Next, we consider the water drop problem considered in [24,70,71]. The initial conditions are

H (x, y,0) := 1 + 0.1 exp
[
−100 (x − 0.5)2 − 100 (y − 0.5)2

]
,

and

Hu (x, y,0) = H v (x, y,0) = 0,

that is, the flow is initially at rest.
We consider the case with flat bottom i.e., b = bx = by = 0 and the domain of interest is � = [0,1]2. A structured 

quadrilateral mesh with 64 elements (h = 0.125) and solution order p = 6 is used. Wall boundary conditions are applied 
to the entire boundary ∂�. The Crank–Nicolson method with a time step of �t = 0.0005 is employed and the simulation 
is run for 2000 time steps. The time evolution of the water depth H and the depth averaged y-velocity v are shown in 
Figs. 5 and 6, respectively. The u velocity evolution is same as v but rotated by 90 degrees, and hence is not shown. 
The numerical results are comparable to those in [24,70,71]. In Fig. 7, we show the number of iHDG-II iterations taken 
per Newton iteration at the indicated times. The horizontal axis represents the number of Newton iterations taken from 
(t − �t) to t at the indicated times t . The markers in the vertical axis indicate the number of iHDG-II iterations taken at 
the corresponding Newton iteration in the horizontal axis to solve the linear system (53). The stopping tolerance is taken 
to be 10−10 for both iHDG-II and Newton iterations. As can be seen, approximately 16 Newton iterations are required 
per time step and the number of iHDG-II iterations decreases with each Newton iteration. The reason is that, after each 
Newton iteration, the initial guess (the solution from the previous Newton iteration) for iHDG iteration is improved and 
upon convergence Newton steps are smaller.

In Table 7 we compare the maximum number of iHDG-II iterations and Newton iterations taken per time step for 
different meshsizes and time steps. Similar to linear problems the number of iHDG-II iterations increases for finer mesh-
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Fig. 6. Evolution of depth averaged y-velocity v for the water drop test case with iHDG-II algorithm.

Fig. 7. Number of iHDG-II iterations taken for each Newton iteration at different times for the water drop test case with h = 0.125, p = 6 and �t = 0.0005.

sizes, higher solution orders, and larger time steps. The number of Newton iterations on the other hand decreases for 
finer meshsizes and approaches a constant. This is well-known as the number of Newton iterations depends on the non-
linearity of the problem and how well it is captured by the meshsize. Once the nonlinearity is captured by a particular 
meshsize and solution order, the number of iterations remains unchanged with further refinements [72,73]. For smaller 
time steps the number of Newton iterations is reduced since the solutions at two consecutive time steps are close to each 
other.
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Table 7
Number of iHDG-II and Newton iterations for different meshsizes and time step-
sizes for the water drop test case of nonlinear shallow water system.

h p iHDG-II Newton

�t = 10−3 �t = 10−4 �t = 10−3 �t = 10−4

0.25 1 7 5 7 4
0.125 1 8 5 6 3
0.0625 1 10 5 3 3
0.03125 1 13 6 3 3

0.25 2 8 5 8 4
0.125 2 9 5 6 4
0.0625 2 12 6 6 3
0.03125 2 17 7 3 3

0.25 3 9 5 9 5
0.125 3 11 5 8 4
0.0625 3 14 6 3 3
0.03125 3 20 7 3 3

0.25 4 9 5 10 5
0.125 4 12 6 9 4
0.0625 4 18 7 5 3
0.03125 4 26 9 7 3

Table 8
Comparison of iHDG-I and iHDG-II methods for different κ .

h p iHDG-I iHDG-II

κ = 10−2 κ = 10−3 κ = 10−6 κ = 10−2 κ = 10−3 κ = 10−6

0.5 1 24 23 23 17 17 17
0.25 1 30 34 35 25 25 26
0.125 1 50 55 56 35 37 38
0.0625 1 90 94 97 62 64 65

0.5 2 26 24 25 17 19 19
0.25 2 41 42 42 27 27 27
0.125 2 66 67 67 42 43 43
0.0625 2 * 109 110 67 70 71

0.5 3 27 31 31 19 19 19
0.25 3 33 33 38 24 26 27
0.125 3 * 58 60 38 39 41
0.0625 3 * 102 106 69 69 71

0.5 4 26 27 27 17 19 19
0.25 4 50 41 43 26 27 27
0.125 4 * 71 72 42 45 46
0.0625 4 * 123 125 73 78 79

6.4. Linear convection–diffusion equation

In this section the following exact solution for equation (37) is considered

ue = 1

π
sin(πx) cos(π y) sin(π z).

The forcing is chosen such that it corresponds to the exact solution. The velocity field is chosen as β = (1 + z, 1 + x, 1 + y)

and we take ν = 1. The domain is [0, 1] × [0, 1] × [0, 1]. A structured hexahedral mesh is used for the simulations. The 
stopping criterion based on the exact solution (48) is used.

In Table 8 we report the number of iterations taken by iHDG-I and iHDG-II methods for different values of the diffusion 
coefficient κ . Similar to the shallow water equations, due to the lack of stability in σ , iHDG-I diverges when κ is large for 
fine meshes and/or high solution orders. The iHDG-II method, on the other hand, converges for all the meshes and solution 
orders, and the number of iterations are smaller than that of the iHDG-I method. Next, we verify the growth of iHDG-II 
iterations predicted by the asymptotic result (47).

Since min
{
κ−1, λ

} = λ for all the numerical results considered here, due to (47) we expect the number of iHDG-II 
iterations to be independent of κ and this can be verified in Table 8. In Figs. 8(a), 8(b) and 8(c) the growth of iterations 
with respect to meshsize h for κ = 10−2, 10−3 and 10−6 are compared. In the asymptotic limit, for all the cases, the ratio 
of successive iterations reaches a value of around 1.7 which is close to the theoretical prediction 2. Hence the theoretical 
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Fig. 8. Ratio of successive iterations as we refine the mesh for the iHDG-II method for different κ .

Table 9
Growth of iterations with p for the iHDG-II method for the 
elliptic equation.

p Meshsize (h) Asymptotics

0.5 0.25 0.125 0.0625

2 2.41 2.11 2.03 2.01 2
3 4.07 3.55 3.17 * 3.33
4 6.09 5.23 4.81 * 5

analysis predicts well the growth of iterations with respect to the meshsize h. On the other hand, columns 6–8 in Table 8
show that the iterations are almost independent of solution orders. This is not predicted by the theoretical results which 
indicates that the number of iterations scales like O(p2). The reason is due to the convection dominated nature of the 
problem, for which we have shown that the number of iterations is independent of the solution order.

Finally, we consider the elliptic regime with κ = 1 and β = 0. For this case we use the following stopping criterion based 
on the direct solver solution udirect∥∥∥uk − udirect

∥∥∥
L2(�)

< 10−10.

As shown in Fig. 8(d) and Table 9, our theoretical analysis predicts well the relation between the number of iterations 
and the meshsize and the solution order. In Table 9 “∗” represents that the scheme has reached the maximum number of 
iterations specified i.e. 2000 and didn’t converge to the specified tolerance limit of 10−10 yet.

6.5. SPE10 test case

In this section we consider a benchmark problem of subsurface flow through porous media from the Tenth Society of 
Petroleum Comparative Solution Project (SPE10, model 2) [74]. The flow is governed by the following elliptic equation (Darcy 
law) written in the first-order form,

σ = −κ∇u on �,

∇ · σ = f on �, (56)

where σ is the Darcy velocity, u is the pressure and κ is the permeability.
We consider the permeability field corresponding to the 75th layer as shown in Fig. 9(a). The permeability field varies 

by six orders of magnitude and is highly heterogeneous. It gives rise to extremely complex velocity fields. The considered 



316 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Fig. 9. SPE10 test case: (a) permeability field in log scale, and (b) pressure field from direct solver for p = 1 solution.

Fig. 10. SPE10 test case: (a) velocity field from direct solver for p = 1 solution, and (b) error history with respect to iHDG-II iterations for the three different 
initial guesses.

domain is 1200 × 2200 [ f t2]. The mesh is chosen as 60 × 220 quadrilateral elements, so that the mesh skeleton aligns with 
the discontinuities in the permeability and the permeability field is constant within each element. We choose f = 0, which 
corresponds to the fact that there is no source or sink. For the boundary conditions, we take the pressure on the left and 
right faces to be 1 and 0 respectively. On the top and bottom faces, no-flux boundary condition σ · n = 0 is applied. We use 
the upwind HDG flux (39) with the velocity β = 0 for this problem. In Figs. 9(b) and 10(a) we show the pressure field and 
the velocity field using direct solver with solution order p = 1.

We next consider the iHDG-II algorithm with three different initial guesses:

1. zero,
2. solution of equation (56) with the average of the original permeability field over the whole domain,
3. solution of equation (56) with the permeability field in each element given by

κ = κ + rand(0,1) × κ,

where rand(0, 1) is a random number between 0 and 1, i.e. we randomly perturb the original permeability value in 
each element by 0%–100%.

In Fig. 11 we show the three initial guesses for the pressure and in Fig. 12 are the pressure fields corresponding to these 
initial guesses after 2000 iHDG-II iterations using solution order p = 1. Since the third initial guess is the closest to the 
direct solution (compared to Fig. 9(b)), the corresponding pressure field is almost the same as the direct solution, while the 
others are not. The conclusion is similar for the corresponding velocity fields in Figs. 13 and 14. In order to have a more 
quantitative comparison, we plot the relative error
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Fig. 11. SPE10 test case: three different initial guesses for the pressure field.

Fig. 12. SPE10 test case: the pressure fields obtained with the iHDG-II algorithm after 2000 iterations with three different initial guesses.

Fig. 13. SPE10 test case: three different initial guesses for the velocity field.

‖error‖ =
√‖σ k+1 − σ k‖2 + ‖uk+1 − uk‖2√‖σ k+1‖2 + ‖uk+1‖2

in Fig. 10(b) as the number of iHDG iterations increases. For all of the initial guesses, there is a quick drop in the errors 
in the first few iterations and thereafter the errors decrease slowly. Compared to the other examples, this is the most 
challenging one, for which the iHDG algorithm, if used as a direct solver, could be ineffective. Nevertheless, this is a common 
feature of many of the fixed-point iterative methods like Jacobi and Gauss–Seidel [75,76]. Ongoing work is to employ iHDG 
as a smoother for multigrid methods or as a preconditioner for GMRES iterations, and we shall report our findings in the 
near future.

7. Conclusions

We have presented an iterative HDG approach which improves upon our previous work [45] in several aspects. In par-
ticular, it converges in a finite number of iterations for the scalar transport equation and is unconditionally convergent 
for both the linearized shallow water system and the convection–diffusion equation. Moreover, compared to our previous 
work [45], we provide several additional findings: 1) we make a connection between iHDG and the parareal method, which 
reveals interesting similarities and differences between the two methods; 2) we show that iHDG can be considered as a 
locally implicit method, and hence being somewhat in between fully explicit and fully implicit approaches; 3) for both the 
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Fig. 14. SPE10 test case: velocity field obtained with iHDG-II algorithm after 2000 iterations with three different initial guesses.

linearized shallow water system and the convection–diffusion equation, using an asymptotic approximation, we uncover a 
relationship between the number of iterations and time stepsize, solution order, meshsize and the equation parameters. This 
allows us to choose the time stepsize such that the number of iterations is approximately independent of the solution order 
and the meshsize; 4) we show that iHDG-II has improved stability and convergence rates over iHDG-I; 5) we provide both 
strong and weak scalings of our iHDG approach up to 16,384 cores; and 6) we show how iHDG approaches can be used as 
a linear solver for nonlinear problem. Ongoing work is to use iHDG algorithms as smoother for multigrid methods and as 
preconditioner for GMRES approaches.
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Appendix A. Proof of well-posedness of local solver of the iHDG-II method for the linear convection–diffusion equation

Proof. Choosing σ k+1 and uk+1 as test functions in (40a)–(40b), integrating the second term in (40a) by parts, using (12)
for second term in (40b), and then summing up the resulting two equations we obtain

κ−1
(
σ k+1,σ k+1

)
K

+
({

ν − ∇ · β
2

}
uk+1, uk+1

)
K

+
〈(

β · n

2
+ τ

)
uk+1, uk+1

〉
∂ K

+
〈
(σ k+1 · n − τuk+1), ûk,k+1

〉
∂ K

= 0. (57)

Substituting (41) in the above equation and simplifying some terms we get∑
K

κ−1
∥∥∥∥(σ k+1

)−∥∥∥∥2

K
+
({

ν − ∇ · β
2

}(
uk+1

)−
,
(

uk+1
)−)

K

+
〈{ |β · n|2 + 2

2α

}(
uk+1

)−
,
(

uk+1
)−〉

∂ K
+
〈

1

α

(
σ k+1 · n

)−
,
(
σ k+1 · n

)−〉
∂ K

+
〈
β · n−

α

(
uk+1

)−
,
(
σ k+1 · n

)−〉
∂ K

=
∑
∂ K

−
〈

1

α

(
σ k+1 · n

)−
,
(
σ k · n

)+〉
∂ K

−
〈{

β · n+ + τ+

α

}(
σ k+1 · n

)−
,
(

uk
)+〉

∂ K
+
〈
τ−

α

(
uk+1

)−
,
(
σ k · n

)+〉
∂ K

+
〈{

τ−(β · n+ + τ+)

α

}(
uk+1

)−
,
(

uk
)+〉

∂ K
. (58)

Using the identity
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〈
β · n

α
uk+1,σ k+1 · n

〉
∂ K

=
∥∥∥∥ 1√

2α

(
β · nuk+1 + σ k+1 · n

)∥∥∥∥2

∂ K

−
〈
β · n2

2α
uk+1, uk+1

〉
∂ K

−
〈

1

2α
σ k+1 · n,σ k+1 · n

〉
∂ K

, (59)

and the coercivity condition (38) we can write (58) as∑
K

κ−1
∥∥∥∥(σ k+1
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K
+ λ

∥∥∥∥(uk+1
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+
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1
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(
σ k · n
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∂ K
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}(
σ k+1 · n
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(

uk
)+〉

∂ K
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(
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∂ K

+
〈{

τ−(β · n+ + τ+)

α

}(
uk+1

)−
,
(

uk
)+〉

∂ K
. (60)

Since all the terms on the left hand side are positive, when we take the “forcing” to the local solver 
{(

uk
)+

,
(
σ k
)+}= {0,0}, 

the only solution possible is 
{(

uk+1
)−

,
(
σ k+1

)−}= {0,0} and hence the method is well-posed. �
Appendix B. Proof of convergence of the iHDG-II method for the linear convection–diffusion equation

Proof. In equation (60) omitting the last term on the left hand side and using Cauchy–Schwarz and Young’s inequalities for 
the terms on the right hand side we get∑

K
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∥∥∥∥(σ k+1

)−∥∥∥∥2
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+ λ

∥∥∥∥(uk+1
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We can write the above inequality as

κ−1
∥∥∥∥(σ k+1
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ᾱ

∥∥∥∥(uk+1
)−∥∥∥∥2

∂ K
+ 1

2ᾱ
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where τ̄ := ‖τ‖L∞(∂�h) , ᾱ := ‖α‖L∞(∂�h) , and α∗ := inf
∂ K∈∂�h

α.

By the inverse trace inequality (28) we infer from (62) that∑
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which implies∥∥∥(σ k+1 · n, uk+1
)∥∥∥2

Eh

≤ D
∥∥∥(σ k · n, uk
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,

where the constant D is computed as in (44). Therefore∥∥∥(σ k+1 · n, uk+1
)∥∥∥2
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≤ Dk+1
∥∥∥(σ 0 · n, u0
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Inequalities (62) and (63) imply∥∥∥(σ k+1, uk+1
)∥∥∥2

�h

≤ (ED +F)Dk
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,

and this concludes the proof. �
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