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Abstract. The full characterization of three-dimensional (3D) mechan-
ical behaviour of myocardium is essential in understanding their func-
tion in health and disease. The hierarchical structure of myocardium
results in their highly anisotropic mechanical behaviors, with the spa-
tial variations in fiber structure giving rise to heterogeneity. The opti-
mal set of loading paths has been used to estimate the constitutive
parameters of myocardium using a novel numerical-experimental app-
roach with full 3D kinematically controlled (triaxial) experiments [1,2].
Due to the natural variations in soft tissue structures, the mechanical
behaviors of myocardium can vary dramatically within the same organ.
To alleviate the associated computational costs for obtaining responses of
myocardium under a range of loading conditions with a given realization
of structure, we developed a neural network-based method integrated
with finite elements. The boundary conditions were parameterized. The
neural network generated a corresponding trial solution of the underling
hyperelasticity problem for each boundary condition. Thus, the neural
network approximated the parameter-to-state map. A physics-informed
approach was used to train the neural network. Due to their learnability
characteristics, the neural network was able to predict solutions for a
range of boundary conditions with given individual specimen fiber struc-
tures. The neural network was validated with finite element solutions.
This method will provide efficient and robust computational models for
clinical evaluation to improve patient outcomes.

Keywords: Cardiac simulation · Myocardium · Machine learning

1 Introduction

The full characterization of three-dimensional (3D) mechanical behavior soft tis-
sues, such as myocardium, is essential in simulating organ function in health and
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disease. The hierarchical structure of soft tissues dictates their highly anisotropic
mechanical behaviors, with the spatial variations in fiber structure also giving
rise to heterogeneity. To address these issues in a full 3D context, we have devel-
oped a novel numerical-experimental approach to determine the optimal model
form and parameter estimation for continuum constitutive models of soft tissues,
as applied to the myocardium [1, 2]. This approach utilized optimal experimen-
tal design of the full 3D kinematic (triaxial) experiments coupled to an inverse
model that incorporated local fibrous structure to perform robust parameter esti-
mation (Fig. 1). Due to the natural variations in soft tissue structures (Fig. 2),
the mechanical behaviors of soft tissues can vary dramatically within the same
organ. The set of optimal loading paths for a tissue specimen (Fig. 2) includes
three pure shear and three simple shear loading conditions.

(a) (b)

Fig. 1. Tissue specimen of left ventricular myocardium for triaxial mechanical
testing [2]

It becomes prohibitive to obtain the responses of heart-specific models under
varying parameters, including boundary conditions and fibrous structures, in
translational clinical time frames. To shift the computational cost ahead of
prediction time, neural network (NN) representations of the parameter-to-state
map have been proposed as surrogates for parametric partial differential equa-
tions (PDEs) due to the representation power of neural networks. Data-driven
approaches that require training datasets of finite element (FE) solutions were
developed to train the neural network surrogate models. For example, derivative-
informed projected neural networks were developed to improve generalization
accuracy [3], and machine learning methods were used to enhance reduced order
models [5]. To avoid generating training dataset by solving numerous linear or
nonlinear FE equations, physics-informed approaches have been developed. The
densely connected neural networks were utilized to approximate the solutions
of the governing equations trained by minimizing the L2 norm of the residuals
and penalizing the violation of boundary conditions [4]. The convolutional neu-
ral networks with a finite difference method estimating spatial gradients [6] is
limited to regular domains.
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Fig. 2. Spatially varying fiber orientations on the cuboid domain for 4 different spec-
imens, including (a) circumferential angle, and (b) out of plane angle. (c) Optimal
loading paths for material parameter estimation including simple shear (SS) and pure
shear paths in longitudinal (L), circumferential (C), and radial (R) directions. [2]

In-silico implementation of such complex 3D continuum soft tissue con-
stitutive models to obtain the responses of varying boundary conditions and
fibrous structures requires the solution of the associated hyperelasticity prob-
lem, which remains impractical in translational clinical time frames. To alleviate
the associated substantial computational costs at the time of simulation, we have
developed a neural network-based method that can simulate the 3D mechani-
cal behavior of soft tissues. A physics-informed approach was employed to train
the neural network (NN) surrogate model to give physically correct solution for
a range of loading conditions by minimizing the potential energy without any
training dataset generated by finite element (FE) solver. The FE discretization
of the solution field is applicable to problems defined with complex geometry
and boundary conditions such as ventricular simulations and it enables strong
enforcement of the Dirichlet boundary conditions in a natural manner.

2 Methods

We aim to develop an efficient neural network representation of the solutions
of parametric PDEs that describe heart-specific cardiac models. To this end,
we streamline the neural network-based surrogates and finite elements in an
end-to-end pipeline. The neural network generates the corresponding FE nodal
values for a trial solution with a given realization of parameters. We construct
the corresponding trial solution using finite element basis functions. The neural
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network-based surrogate is trained by minimizing the sum of the energy func-
tional for a set of sampled parameters.

We denote the reference configuration X, the current configuration x, the
displacement u = x − X, the deformation gradient F = ∇u, the right Cauchy-
Green tensor C = FTF. The unimodular right Cauchy-Green tensor is defined as
C̄ = J−2/3C, where J = detF. We modeled the myocardium as a hyperelastic
nearly incompressible material using a recently developed strain invariant form
as the strain energy function Ψ in the full 3D kinematic space [2]. The first
isotropic invariant of C̄ is

Ī1 = Tr(C̄). (1)

Two pseudo-invariants of C for the squared fiber stretches in each fiber directions
are defined using

I4f = f0 · C · f0, I4s = s0 · C · s0, (2)

where f0 is the myofiber orientation of myocardium, s0 is the orthogonal direction
within the tangent plane of the laminar sheet, and n0 is the normal direction to
the sheet. Three pseudo-invariants of C for coupling effects are

I8fs = f0 · C · s0, I8fn = f0 · C · n0, I8sn = s0 · C · n0. (3)

The constitutive model for myocardium consists of three exponentially stiff-
ening terms, given by
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where the first term is for isotropic extracellular matrix (ECM), the second term
for fiber families within the sheet, the third term for coupling interactions, and
the fourth term for enforcing incompressibility condition weakly.

The variational problem for hyperelasticity of myocardium can be describe
solved by a minimization problem. Given the body force f and the traction t
on the Neumann boundary, find the displacement u (u ∈ Vh

0 ) that minimize the
energy functional (potential) Π. The displacement û(x) is discretized using

û(x) = UN(x) (5)

where U ∈ R
3×du is the nodal values for the displacement, and N represents

trilinear basis functions for the Q1 Lagrange element on a hexahedral mesh of
du nodes. We choose the Q1 element since it is sufficient for the present study.
The present method is not limited to the element we use.
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For each instance of varying loading condition parameterized by a dm-D
vector M(i) ∈ R

dm , a nonlinear FE equation drived from the stationary condi-
tons for the potential minimization problem needs to be solve to obtain the FE
solution U(i) ∈ R

du . To avoid prohibitive computational cost for numerous eval-
uation the parameter-to-state map U(M), we use a neural network surrogate
model Û = fNN(M; θ) to approximate the FE solutions for a range of M where
θ parametrize the neural network.

The NN surrogate model fNN(M; θ) is trained by the optimization problem

min
θ

N∑

i=1

Π(û(i)), (6)

where the objective function is the aggregated potential on the sampled loading
conditions M(i). The nodal values for the corresponding trial solution û(i) is
Û(i) = fNN(M(i)). Then, the Dirichlet boundary condition is enforced strongly.
The potential is

Π(u) def=
∫

Ω

Ψ(u)dx −
∫

Ω

f · udx −
∫

ΓN

t · uds. (7)

In the case of parameterized Dirichlet boundary conditions, M is a collection
of prescribed nodal values for the fixed displacements. In the case of parameter-
ized Neumann boundary conditions, M is a collection of prescribed nodal values
for the loads.

In this work, we use fully connected network (FCN) which can be described
as a sequence of composite functions of nonlinear functions and affine functions.
For a FCN with L hidden layers, we have

fNN = AL ◦ φ ◦ · · · A1 ◦ φ ◦ A0 (8)

where Ai (i = 0, . . . , L) are affine functions, φ is a element-wise activation func-
tion. Using the FCN as an approximator of the parameter-to-state map, we can
substitute the corresponding trial function into the potential.

To demonstrate the learnability of the neural network surrogate model, we
considered the triaxial simulations parameterized by its Dirichlet boundary con-
ditions on a cuboid domain (Fig. 3). The marked facets with aligned normal
directions on two opposite sides of the cube has a single parameter dictates the
magnitude of the fixed boundary condition. The Dirichlet boundary condition is
u = nMi for the i-th pair of facets with normal directions n = ±ei (i = 1, . . . , 3)
where ei is the Cartesian basis. Thus, the boundary conditions are parametrized
by M ∈ R

3. We use low-discrepancy Halton sequence to sample N realizations
of M. The material parameters of the myocardium are listed in the Table 1.
We trained the neural network for four different specimens to demonstrate the
learnability of the neural networks.
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Table 1. The material parameters for the myocardium specimens.

a (Pa) b af (Pa) bf as (Pa) bs afs (Pa) bfs afn (Pa) bfn asn (Pa) bsn

S1 4.81 5.05 1175 0.276 1665 6.93 135.5 0.024 3440 2.01 3278 20.4

S2 0.100 0.346 2936 0.045 989.1 0.190 548.6 0.0020 384.0 1.47 6397 0.004

S3 6.07 4.90 2892 0.0300 178.2 0.0500 1553 0.78 4174 40.3 1791 44.6

S4 1.05 12.0 2964 3.10 496.0 0.0870 369.0 0.011 1712 68.8 547.7 1.17

Fig. 3. A cuboid domain with side lengths of 1 cm is discretized using hexahedron
elements. Dirichlet boundary conditions are imposed on the yellow facets. (Color figure
online)

3 Results

We consider a cuboid domain with side lengths of 1 cm. The domain is discretized
by trilinear elements. The number of DOFs is 3 × 93 = 2187. The 2-th order
Gaussian quadrature is used. There are six pads on each facet where we apply the
Dirichlet boundary conditions. The training range for sampling all components
of M = (M1,M2,M3) is [−0.2, 0.2] cm. We restrict M to be unimodular using
(1+M1)×(1+M2)×(1+M3) = 1 to respect the incompressibility condition. The
training range is incrementally expanded in 8 steps. The number of M samples
generated using Halton sequence is 400. The NN has 1 hidden layer of 10 neurons
with hyperbolic tangent function as the activation function.

Fig. 4. Protocols for generating validation datasets.
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(a) PSLC for S1 (b) PSLR for S1 (c) PSCR for S1

(d) PSLC for S2 (e) PSLR for S2 (f) PSCR for S2

(g) PSLC for S3 (h) PSLR for S3 (i) PSCR for S3

(j) PSLC for S4 (k) PSLR for S4 (l) PSCR for S4

Fig. 5. Validation results for the prediction of the neural network (black wireframe)
with the finite element solutions (red points) for pure shear (PS) deformations in
longitudinal (L), circumferential (C), radial (R) directions for specimen S1–S4. (Color
figure online)

To demonstrate the performance of the neural networks, we examine the
relative L2 error, defined as

e =
∑

i ||u(i)
NN − u

(i)
FE ||2

∑
i ||u(i)

FE ||2
. (9)

The validation dataset includes three loading protocols: (1) M1 ∈ [0, 0.2] cm,
M2 ∈ [−0.167, 0] cm, M3 = 0; (2) M1 ∈ [0, 0.2] cm, M2 = 0, M3 ∈ [−0.167, 0]
cm; (3) M1 = 0, M2 ∈ [0, 0.2] cm, M3 ∈ [−0.167, 0] cm as shown in Fig. 4. Each
loading protocol has 10 uniformly spaced steps. The results obtained with present
NN matched closely with the finite element solutions (Fig. 5). The relative L2
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errors for four different specimen with different set of material parameters are
listed in Table 2. We also examine the average responses (Fig. 6) for the first
loading protocol using the first specimen as an example. The neural network
predictions and the finite element solutions have a good agreement.

Fig. 6. The average first Piola-Kirchhoff stress on the boundary vs the deformation of
the FE solutions and NN predictions.

Table 2. The relative L2 error of neural network predictions using the corresponding
FE solutions as ground truth on the validation datasets.

S1 S2 S3 S4

e 6.2064% 6.9889% 6.9068% 7.6440%

The computation time for one prediction of the neural network surrogate
model was 0.02236 s, while the FE solver takes 6.5762 s for assembly and solution
for one step using a serial program, which is a speed-up of 294.1. The predictions
of the neural network surrogate model and the FE solution were generated on
using a Intel(R) Core(TM) i9-9920X on a System 76 Thelio Major computer. The
average time needed to train the neural network surrogate model is 19 min 42.25 s
on a NVIDIA(R) GeForce RTX 2080 Ti. The neural network surrogate model
can give predictions in parallel while the FE solver needs a stepping scheme to
incrementally obtain the solution for the fully loaded state which would multiply
the cost with the number of steps. The number of steps is 10 in the present case.

4 Discussion

In this work, we have developed a high fidelity neural network surrogate model
that is trained in a physics-informed approach to give a direct solution of 3D
soft tissue hyperelasticity in-silico. The present method was found to be an order
of 102 time faster than the equivalent FE model using the same mesh on the
same machine. With the learnability of the neural networks, the architecture of
the NNs can incorporate attributes such as spatially varying fiber structures.
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By shifting the computation expense from FE solutions to NN training, the NN
surrogate model can be used to give significantly fast atiredictions of complex 3D
deformations in full kinematic space with given fiber structures by forward prop-
agation in the neural network. More detailed studies on the error analysis of the
NN surrogate model are reserved for the future. The future strategies for improv-
ing the accuracy of the NN surrogate models include efficient sampling method,
scalable training algorithms, and advanced neural networks with improved rep-
resentation power. One natural extension is to apply the present method to a
ventricular model which has more complex geometry and boundary conditions.
This method will pave the way for building an efficient template model of hearts
with add-on heart-specific attributes, with neural network-based surrogates for
fast predictions to evaluate the need to conduct high-fidelity simulations. The
ultimate goal is to provide efficient and robust computational models for clinical
evaluation to improve patient outcomes.

References

1. Avazmohammadi, R., et al.: An integrated inverse model-experimental approach to
determine soft tissue three-dimensional constitutive parameters: application to post-
infarcted myocardium. Biomech. Model. Mechanobiol. 17(1), 31–53 (2017). https://
doi.org/10.1007/s10237-017-0943-1

2. Li, D.S., Avazmohammadi, R., et al.: Insights into the passive mechanical behavior
of left ventricular myocardium using a robust constitutive model based on full 3d
kinematics 103, 103508 (2020) https://doi.org/10.1016/j.jmbbm.2019.103508

3. O’Leary-Roseberry, T., Villa, U., Chen, P., Ghattas, O.: Derivative-informed pro-
jected neural networks for high-dimensional parametric maps governed by PDEs
(2020)

4. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations 378, 686–707 (2019) https://doi.org/10.1016/j.
jcp.2018.10.045

5. Sheriffdeen, S., Ragusa, J.C., Morel, J.E., Adams, M.L., Bui-Thanh, T.: Accelerat-
ing PDE-constrained inverse solutions with deep learning and reduced order models
(2019)

6. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. J. Comput. Phys. 394, 56–81 (2019)

https://doi.org/10.1007/s10237-017-0943-1
https://doi.org/10.1007/s10237-017-0943-1
https://doi.org/10.1016/j.jmbbm.2019.103508
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045

	High-Speed Simulation of the 3D Behavior of Myocardium Using a Neural Network PDE Approach
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	References




