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Abstract. We develop a hybridized discontinuous Galerkin (HDG) method for stationary lin-
earized incompressible magnetohydrodynamics (MHD) equations. At the heart of the development
is the introduction of an upwind HDG flux for the dual saddle-point form of the MHD equations that
facilitates the hybridization of the discontinuous Galerkin (DG) method. We carry out the a priori
error estimates for the proposed HDG method on simplicial meshes in both two and three dimen-
sions. The analysis provides optimal convergence for the fluid velocity and the magnetic variables,
and quasi-optimal convergence for the remaining quantities. Numerical examples are presented to
verify the theoretical findings.
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1. Introduction. An important base-level representation for continuum approx-
imation of the dynamics of electrically conducting fluids in the presence of electro-
magnetic fields is the resistive magnetohydrodynamics (MHD) model. MHD models
describe important physical phenomena in astrophysical systems (e.g., solar flares
and planetary magnetic field generation) and in critical scientific and technological
applications (e.g., magnetically confined fusion energy devices) [17].

There are a number of difficulties in discretizations of the MHD equations, for
example, the dual saddle-point structure of the velocity-pressure (u,p), nonlinear
coupling of unknowns, and the enforcement of the solenoidal involution/constraint
on the magnetic induction (V -b = 0). In the context of finite volume and finite
element methods, there are several popular approaches: discretizations with physics-
compatible finite elements (see, e.g., [23, 21, 2, 27, 20]); methods that transform into
potential-based formulations to eliminate saddle-point subsystems [6, 28]; exact and
weighted-exact penalty formulations [18, 15, 12, 13]; stabilization methods [26, 11, 29];
and discontinuous Galerkin (DG) methods [19].
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In this paper we propose a hybridized discontinuous Galerkin (HDG) formulation
for a linearized version of the resistive MHD system. This formulation can serve as
a stand-alone solver for linearized MHD equations, or as the solver for a substep in
a fixed-point nonlinear solver, such as Picard or Newton iteration. The hybridization
technique and postprocessing have been proposed to reduce computational costs of
saddle-point problems [1]. This has inspired the development of HDG methods to
mitigate the computational costs of DG methods [7].

In HDG methods, unknowns on elements of the mesh can be reduced to single-
valued trace unknowns on the mesh skeleton, so the total number of globally coupled
unknowns is substantially smaller than in classical DG methods. In addition, once
the trace unknowns are solved for, the element unknowns can be obtained by element-
wise local solve, which can be efficiently implemented in parallel, and then constraints
from physics can be imposed by elementwise postprocessing. However, devising an
HDG method for coupled PDE systems is challenging because the construction of
a consistent numerical flux leading to a stable numerical scheme is nontrivial. As
may become apparent in this paper, the difficulties in carrying out the projection-
based error analysis, along with the duality argument, become compounded, relative
to simpler PDEs, due to the large and coupled nature of the system of PDEs that
describes MHD. In this paper we apply an upwind HDG framework [4] to derive a
numerical flux for linearized MHD equations and show that we can obtain stable HDG
methods for the MHD equations.

We organize this paper as follows. Notation and conventions are introduced in
section 2, and the description of our HDG method, including well-posedness proof, is
presented in section 3. The a priori error estimation for the HDG method is discussed
in section 4, and numerical results illustrating our theoretical findings are presented
in section 5. Section 6 concludes the paper and describes ongoing work. Finally, in
three appendices we briefly discuss the definitions of projection operators, auxiliary
estimates, and the well-posedness of the adjoint equation.

2. Notation. In this section we introduce common notation and conventions
to be used in the rest of the paper. Let Q@ € R% d = 2,3, be a bounded domain
such that it is simply connected, and its boundary 0f2 is a Lipschitz manifold with
only one component. Suppose that we have a triangulation of €2, i.e., a partition
of Q into a finite number of nonoverlapping d-dimensional simplices. We assume
that the triangulation is shape-regular; i.e., for all d-dimensional simplices in the
triangulation, the ratio of the diameter of the simplex and the radius of an inscribed
d-dimensional ball is uniformly bounded. We will use 2 and &, to denote the sets
of d- and (d — 1)-dimensional simplices of the triangulation, and call &, the mesh
skeleton of the triangulation. The boundary and interior mesh skeletons are defined
by &2 :={e €&, : e CON} and &7 := &, \EP. We also define 9, := {0K : K € Q,}.
The mesh size of triangulations is h := maxgegq, diam(K).

We use () (respectively, (-,)) to denote the L?-inner product on D if D is
a d- (respectively, (d — 1)-) dimensional domain. The standard notation W?*P?(D),
$>0,1<p< o0, is used for the Sobolev space on D based on the LP-norm with
differentiability s (see, e.g., [14]), and ||-[|y..n(p) denotes the associated norm. In
particular, if p = 2, we use H*(D) := W*?(D) and |-||, ,. W*?(Q) denotes the
space of functions whose restrictions on K reside in W*?(K) for each K € €y, and
its norm is Hu||€vs,p(ﬂh) =D Kkea, ||u|K||€VS,p(K) if 1 <p <ooand [[uflyseq,)
MaxKeqy, ||U|K||WS~°°(K)' For simplicity, we use ('7')7 <'a '>a ””57 ”'HBQ,L? and ”'HI/V&Oo
for (,")qs (s )aq, » ||||5Q3 |H|0,6§zha and ”'HW&OC(Q,L)v respectively. We define ||u, v|| :=
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|lw]l + ||v||. Furthermore, we denote by A < B the inequality A < AB with a constant
A > 0 independent of the mesh size and by A ~ B the combination of A < B and
B < A

For vector- or matrix-valued functions this notation is naturally extended with a
componentwise inner product. We define similar spaces (respectively, inner products
and norms) on a single element and a single skeleton face/edge by replacing 2, with
K and &, with e. We define the gradient of a vector, the divergence of a matrix, and
the outer product symbol ® as

(V) = 2% (VD) =V-L(i,)=Y 3, (a®b)ij:aibj:<abT)ij.

Y 637]‘ ’

In this paper n denotes a unit outward normal vector field on faces/edges. If 9K~ N
OK™ € &, for two distinct simplices K, K+, then n~ and n™ denote the outward
unit normal vector fields on 0K~ and 0K, respectively, and n~ = —nt on 0K~ N
OK*. We simply use n to denote either n~ or m™ in an expression that is valid
for both cases, and this convention is also used for other quantities (restricted) on a
face/edge e € &,. For a scalar quantity u which is double-valued on e := K~ NJK ™,
the jump term on e is defined by [un]|. = u™nt +u " n~, where u™ and u™ are the
traces of u from KT- and K ~-sides, respectively. For double-valued vector quantity
u and matrix quantity L, jump terms are [u - n]|. = u" -nt+u~-n~ and [Ln]|. =
L™nt + L n~, where Ln denotes the matrix-vector product.

We define Py, (K) as the space of polynomials of degree at most k on K, with
k > 0, and we define

Pr () = {ue L*(Q) : ulg € Px(K) VK € Qp}.

The space of polynomials on the mesh skeleton Py, (£p,) is similarly defined, and their
extensions to vector- or matrix-valued polynomials [Py (4 )]%, [Pr(Q1)]*?, [Pr(En)]%,
etc., are straightforward.

3. HDG formulation. We consider a linearized incompressible MHD system

1
3.1a) —ﬂAu+Vp+(w-V)u+/@dx(be):g,
3.1Db) V-u=0,
3.1¢) RimVx(be)—i—Vr—ﬁVx(uxd):f,
3.1d) V.b=0,

where wu is velocity of the fluid (plasma or liquid metal), b is the magnetic field, p is
the fluid pressure, and r is a scalar potential. The following are constant parameters:
a fluid Reynolds number Re > 0; a magnetic Reynolds number Rm > 0; and a
coupling parameter x = Ha®/(ReRm), with the Hartmann number Ha > 0. Here, d
is a prescribed magnetic field and w is a prescribed velocity field. From this point
forward, we assume (see, e.g., [5, 19] for similar assumptions) that d € [W'> (Q)]d,

w e [Whee (2,)]% N H(div,0), and V - w = 0.
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By introducing auxiliary variables L and J, we cast (3.1) into a system

(3.2a) ReL — Vu =0,
(3.2b) —V-L+Vp+ (w-V)u+rd x (Vxb) =g,
(3.2¢) V-u=0,
Rm
(3.2d) ——J-Vxb=0,
(3.2e) VxJ+Vr—kVx(uxd)=f,
(3.2f) V-b=0,
with (Dirichlet) boundary conditions
(3.3) u=up, b :=hp, r=0 ondQ,
where a! := —n x (n x a). In addition, we require the compatibility condition for up

and the mean-value zero condition for p:
(3.4) (up -n, 1)y, =0, (p,1)q =0.
Following the upwind HDG framework in [4] we define the HDG flux as

r 1 7 - -

F n —u®n
o —Ln+mu+pn+%f@dx(nx(bt+5t>)+a1(u7ﬂ)
~ 3 ~

@5 | T, ™= wn, 7
F -n —n xb
Fon n><J+72nf%/<m><((u+'&)><d)+a2<btfl;t>
Fon L b-n+as(r—r7) i

where l;t7 w, and 7 are the restrictions (or trace) of b, u, r on &,. These l;t, u, 7 will
be regarded as unknowns in discretizations to obtain a hybridized DG method. Here,
m = w - n, and a7, as, and ag are constant parameters. It will be shown that the
conditions oy > 3 [|w||;w, a2 > 0, and ag > 0 are sufficient for the well-posedness of
our HDG formulation. Note that for simplicity all six components of the HDG flux,
F, are denoted in the same fashion (by a bold italic symbol). However, it is clear

~1 ~2 ~ 3
from (3.2) that F is a third order tensor, F' is a second order tensor, F' is a vector,

etc., and that the normal HDG flux components, F' nin (3.5), are tensors of one
order lower.
For discretization we introduce the discontinuous piecewise polynomial spaces

G = PO, Vi= [Pa@))', Qui= Pa(),
H), .= [Pe()]°, Ch, = [Pr()]", Sh = Pr(Qn), My, = [Pu(En)),
A= { A PrEN’ : Ane=0Vee &}, Thi= [Py,
where d=3ifd=3,and d=1if d = 2.

Let us introduce the following two identities which are useful throughout the
paper:

(3.6a) (u,d x (Vxb))=(b,Vx((uxd)),+(dx(nxb),uy,
(3.6b) [dx(nxb)]-u=—[nx(uxd)-b.
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These identities follow from integration by parts and vector product identities.

Next, we multiply (3.2a)—(3.2f) by test functions (G,v,q, H,¢,s), integrate by
parts all terms, and introduce the HDG flux (3.5) in the boundary terms. This results
in a local discrete weak formulation,

(3.7a) Re (Ln, G)c + (un, V- G) e + (B - m, G>8K —0,
(3.7b) (Lp, V) e = (pn, V- 0) ¢ = (un @ w, V)
+ 5 (b, V x (v x )+ (Fy mov) = (g.0),
(3.7¢) — (un, V) + () -miq) =0,
(3.7d) RTm (Jp, H) o — (b, V x H) . + <F2 ‘n, H>8K —0,
(3.7¢) (Jn, Vxe)g—(rn,V-e) —k(updx (Vxe)g
om0
(3.71) — (bn, V)i + <F§l -n,s>aK =0,

for all (G,v,q,H,c,s) € Gy (K) x Vi (K) x Qp (K) x Hy (K) x Cp, (K) x Sy, (K)
and for all K € €2y, where up, Ly, ..., are the discrete counterparts of u, L, ..., and

F;l is the discrete counterpart of F'in (3.5) by replacing the unknowns u, L,...,
with their discrete counterparts.

Since I;Z, wp, and 7, are (trace) unknowns, we need to equip extra equations
to make the system (3.7) well-posed. To that end, we observe that an element K
communicates with its neighbors only through the trace unknowns. For the HDG
method to be conservative, we weakly enforce the continuity of the HDG flux (3.5)

~t
across each interior edge. Since p,b,, and 7} are single-valued on &, we have
~ 1 ~3 ~4
automatically that [F'), -n] = 0, [F}, -n] = 0, and [F}, - n] = 0. The conservation
constraints to be enforced reduce to

38)  (IFy-nlw) =0, ([Fr-nlx) =0, ([F}-nl7) =0

for all (p,A",7) € My, (e) x Ab (e) x T (e) and for all e in £. Finally, we enforce
the Dirichlet boundary conditions through the trace unknowns,

(B9 (s, = o), (BX) = (o X)L (), =0,

for all (p,A*,v) € My, (e) x A}, (e) x T'j, () and for all e in £7.

In (3.7), (3.8), and (3.9), we seek (Lp, up, pr, Jn, br,7h) € Gp X Vi x Qp x Hy, x
Cj, x Sy, and (@, I;Z, 71r) € M, x Al x T'j,. For simplicity, we will not state explicitly
that equations hold for all test functions, for all elements, or for all edges.

We will refer to Ly, wn, pn, Jn, by, and 7 as the local variables, and to equation
(3.7) on each element as the local solver. This reflects the fact that we can solve for

ot
local variables element-by-element as functions of 4y, by, and 7. On the other hand,

-t
we will refer to wy, by, and 7, as the global variables, which are governed by (3.8) and
(3.9) on the mesh skeleton. Finally, for the uniqueness of the discrete pressure pj, we
enforce the discrete counterpart of (3.4),

(3.10) (P, 1) = 0.
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3.1. Well-posedness of the HDG formulation. In this subsection we discuss
well-posedness of (3.7)—(3.10). Proofs with full details can be found in [22].

THEOREM 3.1. Let Q be simply connected with one component to 9Q. Let a; >
i |wl| (), @2 >0, and az > 0. The system (3.7)~(3.10) is well-posed, in that given
-t
f, 9, up, and hp, there exists a unique solution (L, Wn,Dh, Jp, by, Th, Up, by, 71).
Proof. System (3.7)—(3.10) has the same number of equations and unknowns, so it

is enough to show that (g, ,wp, hp) = 0 implies (Ln, wn, pr, Tn, by, 7o, @n, by, 1) =
0. To begin, we take (G,v,q,H,c,s) = (Ly,up,pn, Jpn,bp,ry), integrate by parts
the first four terms of (3.7b) and the first term of (3.7¢), sum the resulting equations
in (3.7), and sum over all elements to arrive at

Rm N m N
Re |45 + == 145 = (it © i L)+ ( Sunswn ) + (e (up, — i), ur)

1 A )
(3.11) + <2/€d x (n X bi) 7uh> + (-, pn) — <n X bZ,Jh> + (Fam, by)

~t 1 . .
+ <042(b2 - bh),bi> - <2"m X (@ x d)’bh> + (a3 (1, — 1) ,7h) = 0.

Here, we used the following identity obtained from V - w = 0 and the integration by
parts:

1 m
— (up,w-Vuy), = ) (w,V(up-up)) g = — <5uh, uh>aK .

Next, we set (p, \',7) = (i, I;Z,fh) and sum (3.8) over all interior edges to obtain

1
<—Lhn + muy, + ppn + —kd X (n X bZ) + oy (up — ap) ,'[Lh>
2 90,00

1 N
(3.12) + <n X Ty = Srm x (up x d) + as (b; - bZ) ,b2>
80,\00

+ (b - n+ s (rh — ), Pr) oo, 00 = 0;

~t
where we used the continuity of d to eliminate (dx (1 xb,), @) a0, 00 and (n x (@, x

ot
d),by)aq,\00-
Since up = 0 and hp = 0 by assumption, we conclude from the boundary

conditions (3.9) that @, = 0, I;Z =0, and 7, = 0 on 99Q. The integrals in (3.12) can
then be written over 9€;, since the contribution on the domain boundary, 92, is zero.
Subtracting (3.12) from (3.11), we arrive at

Rm . . m
(3.13) Re ||LhH(2) + — HJh||(2) + (o1 (up — wp), (wp — p)) + <§Uh7Uh>

N ot |2 .
—(muh,uh>—|—a2Hb§l—bhHaQ +a3Hrh—th§Qh =0.
h

Finally, using the facts that w € H(div,Q) and @, = 0 on 9, we can freely add
0 = (B @y, @) to rewrite (3.13) as

Rm m N .
(314)  RelLull§ + == I9alf + ( (a1 + 5) (an = @n), (un — n))

~t ]2 N
+ agHbZ—bhH —l—agHrh—thZQh =0.
oy )
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Recalling a; > 3 ||w|| ;. and as,as > 0, we can conclude that Ly, = 0, Jj = 0; that
up = Wy, bz = l;;, and r, = 7, on &7; and that u;, = b',i =0 and 7, = 0 on 99.
Now, we integrate (3.7a) by parts to obtain Vu, = 0 in K, which implies that uy, is
elementwise constant. The fact that u;, = @, on & means wy, is continuous on &j,.
Since up = 0 on 912, we conclude that u;, = 0, and therefore &, = 0.

Since b}, = I;Z on £7, b}, is continuous on Q. Furthermore, the third conservation
constraint in (3.8) implies that by, - m is continuous on . Integrating both (3.7d) and
(3.7f) by parts, we have V x by, = 0 and V - by, = 0 on Q. When b, € H(div,Q2) N
H(curl,Q) and b) = 0 on 09, and recalling that © is simply connected with one
component to the boundary, we see that there is a constant C' > 0 such that ||by]|, <
C(||V - byplly + |V x brll,) [16, Lemma 3.4]. This implies that b, = 0, and hence
b, = 0.

Considering the vanishing unknowns above, integrating by parts reduces (3.7b)
and (3.7e) to (Vpp,v)x = 0 and (Vrp,c)x = 0, respectively. Thus, py and rp, are
elementwise constants. Since r;, = 7, on &, 1, is continuous on €2, and since rp, = 0
on 0f), we can conclude that r, = 0, and hence 7, = 0. Finally, we use the first
conservation constraint in (3.8) to conclude that pj, is continuous and hence constant
on . Using the zero-average condition (3.10) yields p;, = 0. d

3.2. Well-posedness of the local solver. A key advantage of HDG methods is
their ability to separate the computation of the volume unknowns (L, wp, pr, Jn, b, 1)
and the trace unknowns (@, BZ, 7p,). In our HDG scheme, we first solve (3.7) for local
unknowns (Lp, wp, pn, Jn, by, 1) as a function of (@, BZ, 1) (local solver), then these

are substituted into (3.8) on the mesh skeleton to solve for the unknowns (i, BZ, 1)
(global solver). Finally, (Lp,wn,pn,Jh,bp,rn) are computed with the local solver

using (@, I;Z, 1), so well-posedness of the local solver is essential.

As in HDG methods for the Stokes equations [24, 9, 4], the local solver is not
well-posed unless extra conditions are imposed on the pressure. Here, we introduce
the elementwise pressure integral as a global unknown and require their sum to vanish.
Toward this goal, we introduce X, := Py(;) and augment (3.7c) to read

(315) - (uhvv(])K + <ﬁh . naq>aK + (pth)]( = |K|_1 (phaq)](7

with pn, € Xy, qlx = |K|7'(¢,1), the average of ¢ in K, and |K| the volume of
element K. Next we augment the global solver with

(3.16) (@ -1, Qe + > pulx =0
K

for all £ in X, and remove the constraint (3.10), which is satisfied by this construction.

To justify (3.15) and (3.16) we make the following observations. First, summing
(3.16) over all elements and using the compatibility condition on wp, (3.4), we con-
clude that

(3.17) > pnlk =0 and (@, -0, &)y =0 VK € Q.
KeQy,

Next, setting ¢ = 1 on K in (3.15) and using the second condition in (3.17), we have

(318) (pha 1)K = ph|Ka

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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and therefore (3.7c) holds for each K. In addition, (3.18) and the first condition in
(3.17) imply (3.10). Finally, note that the number of the new unknowns p;, and the
number of equations in (3.16) are the same.

For this modified HDG scheme we claim well-posedness of the local solver.

THEOREM 3.2. Let oy > %HwHLw(Q), ag > 0, and az > 0. The local solver
given by (3.7) with (3.7c) replaced by (3.15) is well-posed. In other words, given

~t
(@h, by, 7h, g, f,pn), there exists a unique solution (Lp,uwpn,ph, Jp,bp,ry) of the sys-
tem.
~t
Proof. We show that (@n, by, 7h, g, f,pn) = 0 implies (Lp, wpn,ph, Jn, br,rn) =
~t

0. To begin, set (@n,by, 7,9, f,pn) = 0. Then (3.15) reduces to — (up, V@) +
(Pr,q) = 0, and taking g to be constant gives (ps, ) = 0, and hence — (up, V@) =
0.

Take (G,v,q,H,c,s) = (Lp,up,pn, Jr,br, 1), integrate by parts the first four
terms in (3.7b) and the first term in (3.7¢), and sum the resulting equations to get

3.19 Re || Ly |2 <( @>u u>
(3.19) el|Lnllo, e + ({1 + 5 ) umtn)

Rm
+7

— Tl 1 + a2 [[Bh]lg o + 3 allg oxc = -

Recalling a; > 3 [|[w]| ., @2 > 0, and a3 > 0, we obtain
L,=0, J,=0 ik, up,=0, b =0, r,=0 ondK.

Using an argument similar to that in subsection 3.1, we can conclude that w, = b, =0
in K. From (3.7b) and (3.7e), (Vpp,v); = 0 and (Vry, ¢) . = 0, respectively. Thus,
pr, and r, must be constant, and since r, = 0 on 0K, 7y, is identically zero in K. Now
since (pp,q)x = 0, we have p, =0 in K. 0

Remark 3.3. Introducing pp, and (3.15) and (3.16) does not alter the solution of
the original HDG scheme. We refer the reader to [22] for details.

4. Error analysis. For an unknown o we use €, to denote the error between
the exact solution ¢ and its numerical solution o;,. For example, e, := L — Lj, and
€q4 := u — up, where @ is the trace of the exact solution w on the mesh skeleton. We
use Ilo to denote some interpolation (which will be defined later) of the unknown o
into its associated finite element space and decompose ¢, into ! + £”, where
(4.1) =0 -Tlo and ¢:=To —o0y.

[eg o
We will call the e/ and & error terms interpolation and approximation errors, re-
-t
spectively. We define a collective projection II(L,w,p,J,b,r,4,b ,#) in Appendix
B, and each component of IT may depend on other unknowns; i.e., the L-component
of TI(L,u,p) also depends on w and p. Nonetheless, for simplicity of presentation

we use IIL to denote the L-component of IT for example. The properties of IT are
summarized in Appendix B.

LEMMA 4.1. Assume that the exact solution (L,u,p,J,b,r) of (3.2)—(3.3) is suf-
ficiently regular. Then the exact solution satisfies (3.7)—(3.9).

Proof. The assertion follows from the sufficient regularity assumption of the exact
solution and single-valuedness of w and d. See [22] for details. d
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LEMMA 4.2 (error equation). The approzimation errors satisfy

R
(42) B} :=Relh|]+ Tm e |2+ <(a1 + %) (e —eh), (el — aﬁ))

h h
+ o Hebt - &

2 2
2 et <tz

= —Re (ef.el) — (4, V x (el x d)) + k5 (el d x (V x £}))

1
I I I I _h h
_ <n X ey = ghm X ((ef, + L) x d) + coepr, e —56t> .
Proof. Since the numerical and exact solutions satisty (3.7) (Lemma 4.1), the
linearity of the operators leads to the following error equations:

(4.3a) Re(er,G) + (4, V- G) — (e ®n, G) = 0,
(4.3b) (eL, V) — (£, V - ©) — (£ @ w, V) + £ (£, V X (v x d))

+ <—5Ln + mey + gpm + %md X (nx (ept +e5¢)) + 01 (Eu — €a ,v>
(4.3¢) —(cw, Vo) +{ea-m,q) =
(4.3d) RTm (cs.H) — (e0V x H) — (n x ey, H) =
(4.3¢) e,V x €)= (6,,V ) — ki (cu,d X (V x €))

1
+<ner+5;n—2/@nx((€u+£u)xd)+a2 bt — € t ,C

(4.3f) —(eb,Vs) + {eb - n+ a3 (e — 7). 5) = 0.

Next, we split the error terms into their interpolation and approximation components
as in (4.1) using the projections II defined in Appendix B. Due to the cancellation
properties of II in Appendix B, we obtain the following reduced error equations (see
[22] for details):

(4.4a) Re (e, G) + (eh, V- G) — (ch @ n,G) = —Re (¢}, G),
(4.4b) (5%7Vv) - (5Z7V ‘) — (EZ ®w,Vv) + K (EZ,V X (v x d))
+ <—€}in +mel +ehn + %Iid X (n X (52% —i—g’gt)) + o (el —eh) ,'u>

=—k (4, V x (v xd)),
(44c) — (eh,Vq) + (el -n,q) =0,
Rm

(14d) == (&, H) = (e, V x H) — <n x sgt,H> —0,

(44e) (h,Vxe)— (" V e)—r(eh,dx (V xe))
+ <n eyt elin— Lhmx (e -+ <h) x d) 4+ (< — b)) 7c>
=r(el,dx (Vxe)) —<nx5§—;nnx (el +€h) ><d)+oz25£t7c>7
(4.4f)  — (eb,Vs) + {ep - n+as (e} — <), s) =0.

Notice that (4.4) looks like (3.7) but with the approximation error replacing the
finite element solution, and with some nonzero right-hand side terms. Since the
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approximation errors are in the finite element spaces, we can choose the test functions
to be the approximation error terms. Similarly to the procedure for arriving at (3.11),
we take (G,v,q,H,c,s) = (5%,62,6;,63,52,8:}), integrate by parts the first four
terms of (4.4b) and the first term of (4.4e), and sum the resulting equations in (4.4)

to arrive at
Rm

K

h h

Re [leh[ls + = [l 1o = (b @ m,eh) + (e, eh) + {on (el — eh),eh)

h h

+ <<€Z -n7€p> - <n X 5,;M£J> + <52”752>

1
(4.5) + <2/~zd X (n X 5;},) e

+ <a2(£’gt - e’gt),eﬁt> — <;nn x (b x d) ,£Ig> + (o (el —el) el
K

For the boundary conditions and conservation conditions, since the exact solution
satisfies (3.8)—(3.9), we have

(4.6a)
<€Ln + Meqy + epn + %nd X (nx (epr +e5¢)) + 1 (6w —€a) ,u> =0,
092,\00
(4.6b) <n X ey — %Fm X ((eu +ea) X d) + az (50 — &) ,,\t> =0,
092,00
(4.6¢) (eb-m+as(er —€7),7)an,n00 =0
(4.6d) (ea, ) oo = 0,
(4.6¢) (g5 A" )0 =0,
(4.6f) (€77 00 =0

We split the errors into interpolation and approximation errors as before, and use the
interpolations defined in Appendix B to cancel terms. We refer the reader to [22] for
more details on cancellation of terms. Then we have

(4.7a) <57—4n +mep +epn + Ld x (nxel) +ar(eh —el) ,u> =0,

2 92,\09
(4.7b) <n x el — %mn X (&‘Z xd) + as (szt - Egt) ,)\t>

992,\00

:—<n><55—1/1n>< ((el +¢b) Xd)+042€lljt,At> ,

2 09,09
(4.7¢) <5Z M+ Qs (Eﬁ - 57}}) a7>th\aQ =0,
(4.7d) (€ 1) g = 0,
oyt
(4.7¢) <ay, A >m —0,
(4.71) <5?,7>39 =0.

Equations (4.7d)—(4.7f) imply that on 99, £ = 0, Egt = 0, and ¢? = 0. With this
zero contribution on 99, summing of the formulae (4.7a)-(4.7c) with (u, X',v) =
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h h

el el eh), including 092, gives
(eq €5 €5 g o, g
1
<—5}in + mel + sgn + imd X (n X Egt) +aq (EZ - sﬁ) ,€Z>
1
+<n x el — Zhm X (el x d) + a» (5,},% —5;}) ,Elgt>
+(ep n+as (el —el),el)
1 h
(4.8) = <n x el — Zhm X (el +eh) xd) + O[2€(I)t,€l;t> :

Subtracting (4.8) from (4.5), we arrive at

Re[eh 2+ 2 b 2+ (an(eh — ), (e — ) + { ek, et

2
ho_h ho_ _h
—{mel,el) + as Hsbt =190

2
o=,
= —Re (Ei,E}i) —K (E{,,V X (EZ X d)) +K (E,{“d X (V X 82))
1
— <n x eh — 3hm X (el + L) x d) + asefr, el —5Zf,>.
Following the same procedure to get (3.14) from (3.13), we obtain the conclusion. 0O

LEMMA 4.3. There holds
(4.9)  Ej SRelexll, [l ]l + el (lesllo llzally + llewllo ll25]lo)

+ (5 llog, + 51l lleks Ll ag, + 02 llebillo, ) |5 — i

o,

Proof. Bounding the energy is the same as bounding the right-hand side of (4.2).
The estimate of Re (4, %) is straightforward by the Cauchy—Schwarz inequality. To
estimate K (5{), V x (5Z X d)), note that an algebraic computation gives

(4.10) K (g5, V x (el x d)) =k (ep, el (V- d) — (el - V) d)
+ K (ep, (d- V) el —d(V-el)).
The boundedness of the left-hand side can be obtained by
/<;|(5{,,EZ (V-d)— (- V) d)K| < k|e}
k| (ep (d-V)ey —d (V- ey)) ]
k| (h, ((d —Pod) - V) el — (d — Pod) (V- €.))

< khicllepllo, g ldllwr )| Vel llox S klleg

o,k leb o, & | Al (1),

«l

lo, 5 1l w10 (10 et o,

where Pyd is the L? projection of d to the piecewise constant space on K, and here

we used (B.1f), Holder inequality || f1fof3llz: < |[fillz2llfelloe<|lf3]lr2, the Bramble-

Hilbert lemma (see, e.g., [3]), and the inverse estimate in the last two inequalities.
For an estimate of « (5{“ d x (V X 52)), we first note that

K (e, dx (Vxep)) =r(el, (d—Pod) x (V xe}))
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due to (B.1j). An argument similar to the above gives

k| (el,dx (V xep)) |k < &llelllo.x|ld — Pod|| < x) IV % epllo,x

< kllew,

h
lo.x | dllwr. (&) ll€p llo,x -

Finally, we use the Cauchy—Schwarz inequality for the last term in (4.2). d

COROLLARY 4.4 (energy estimate). There holds

(4.11) B} S Rellepflg + x s~ (leblo lleblly + Ikl ek )

0y b, + A2 Il ||eh] o0, +az ek 5,

Proof. Apply Young’s inequality to each of the terms on the right-hand side of
(4.9) involving ||}, Ho and [|efl, — a}gt lloc, - Note also that IT@ is the best approximation

of u on 99y, so ||5L| is bounded by ||€ O

o0, wlloo,

In the energy estimate (4.11), we do not have direct control over ||e%||o and ||e} |0,
so we employ a duality argument to estimate these terms. A similar approach for the
Oseen equation appeared in [5], but ? and e} are coupled in our MHD system, so
there are nontrivial modifications to complete this duality argument.

First, we define a dual (adjoint) problem of the MHD system (3.2) as

(4.12&) ReL* _ Vu* —_ 0’

(412b) _V'L*—Vp*—(’LU'V)U*—FLdX(be*):07

(4.12¢) V.our =0,

(4.12d) Rm e b —o,
K

(4.12¢) VxJ" —=Vr*+kV x (u* xd) =0,

(4.12f) Vb o,

with homogeneous boundary conditions. Here, 8 and o are two given functions in
L?(9), and the superscript * is used to denote the corresponding unknowns in the
adjoint equation. We assume the following elliptic regularity assumption:

(4.13) lwlly + 6%, L™, I, p*, r*[l; S 116, ] -

The well-posedness of (4.12) and the conditions under which the regularity estimate
(4.13) holds are discussed in Appendix C in [22].

We use the interpolation operators II* defined in (B.3) and (B.4) below,
and el ., EZI)* ,..., will denote L* —II*L*, p* — II*p*, etc. Testing (4.12b) with £ and
(4.12e) with e} we have

(4.14)  (ch.0) + (ep.0)
= (eh, -V -L* = Vp* — (w- V)u* — rd x (V x b"))
+ (ep, V x J* = Vr* + kV x (u* x d))
= (Vel,L*) + (V-ebl,p*) + (w - V)el,u*) — k (el d x (V x b"))
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+ (el —L*n —p'n—mu*) + (V x e, J*) + (V- ep, %)
+k (ef, V x (u* x d)) +{eh,mx J* —r*n)
= (Vel ,I"L*) + (V- el TI"p*) + ((w - V)el, IT*u*)
—k (el dx (Vx b))+ (e, ~L*n —p*n — mu*) + (V x e, II*J*)
+(Veep, 1) + £ (V x (u* x d),ep) + {eh,n x J* —r*n)
= (b, —V - II"L* — VII'p* — (w - V)II*u* — xd x (V x b*))
+ (ep, V x II*J* = VII*r* + £V x (u* x d))
+ (e, —ep-n—ep.n—mel.) + (e, n x ey —elm),
where we have used integration by parts in the second equality, the properties of the
IT* operators (B.3) and (B.4) in the third equality, and integration by parts again in

the last equality.
This can be reduced to (see [22] for full details)

(419 (40) + (o)
=Re (e}, —cf-) + Re (ef, ITI"L*) +£ (e}, V x (k- x d))
ey —1, =il
—k (4, V x (ITu* x d)) +5 (el,,d x (V x II*b")) —k (el d x (V x ep.))
=1, =1 =T

<5 mek. + rd x (n x (=€}, +5(b*)t))>

::I7

wm x (el +el)y xd)+nx (—h.) - agg‘(rb*)t>

:ZIS

1
+ <s§t, Fhm X (el +el-) xd) +nxel + agefb*)t>
=:1g

1
nxeh - hm X (el +€L) x d) + age},, TT°b* — Peb*> .

=:I1¢

Estimation for I;. Combining the estimate for €. and (B.6) gives

(4.16) [Rel1| < Re Hsi—i“o Hei* o S hRe ||€'£||0 0,o]l, -

Estimation for I. Using (4.12a), (B.1i), (B.1j), Lemma A.3, and the regularity
of the adjoint solutions, we have
(4.17)  |Relz| < |Re (e, Vu*) |+ |Re (7, —¢L-) |
= [Re (¢}, V(u* —P1u*)) + (], ® w, VP1u*) | + |Re (ef, —¢L-) |
S Re (hlezfly lwlly + llw = Pow] o [l o Il + [lezly flez-

S hRe ([lezly + lwllw [lewllo) 19: el

o)
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Estimation for I;. By the identity (4.10), it suffices to estimate
(ep, T*u* (V- d) — (IT*u* - V) d),
(g8, ((d = Pod) - V) II*u* — (d — Pod) (V - IT*u)) .
By the triangle inequality, the inverse estimate, and (B.6), we have
[VIFu™[|, < [[VITFu" = Pru®) |, + [[VPru®|
ST = Pyt + [l
< B ([l [lg + llu® = Pra|lo) + [l
S16.al,

T w(ly < [lew [l + lello < 16: o1l

and thus,
(4.18) kLa| S w Al [[ep]lo (Tl + A VITu*|,)
S Kl llebll 16 allo -

Estimation for Is. By an argument similar to the estimate of || VII*u*||, above,
[V x II*b*||, < 1|16, ]|, Since Is = (g, (d — Pod) x (V x II*b¥)),

(4.19) 65| S B [l [l IV 5 T

S il |l

I
ullo
AN
Estimation for I and Ir. Integrating Is by parts (see (3.6)), we have
—klg = —k (ep-, V x (el x d)) =k {d x (n x ef.),el).

Now we can write —xlg + I7 as

—klg+ Iy = —k (g4, V X (eh x d)) + <5Z, —mel. — kd x (n X 6{5*)t)> .
For the first term, as in the estimate of Iy, it suffices to estimate

(E{)*,Eh (V-d)— (ah -V)d) and (5{,*, (d —Pod) - V) el — (d — Pyd) (V- Eﬁ)) )

u u

Invoking Holder’s inequality and an inverse estimate, we can bound the upper bounds
of the first term as

lebllo Il lelly < A ldlwr [l 18-

For the second term, we first observe that
<€Z, —mek. — rd x (n X 5&*)t)>
= <5Z, —(w — Pyw) - nek. — k(d — Pod) x (n X 5{6*)t)> .
By the Holder inequality,
‘<€Z, —mel. — kd x (n X E(Ii)*)t)>‘ < ||<€2H80h (||w — Pow|| e (90, 10" = Pra*| o,

+ 1 (d = Pod) = ) 16" = Pob” g, )
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where we used the fact that IT*b* and II*u* are the best approximations on 0f2;,. B
Lemma A.2, this is estimated by (hs ||d| 1,00 + B2 |wlly1.00 ) ||€8 |, 16; & llg, sO

(4.20) [—rls + Ir| S (hw || dllypoe + 02wl ) e8] 160 -
Estimation for I5, Is, and Iy. Integrating I3 by parts (see (3.6)) gives
kls =k (el..d x (Vxep)) +r{nx (ch x d) ).
Some algebraic manipulations give
kI3 +Is + Iy = i (ehu,d x (V x e)) + (e, km x (eh x d))

1
+ <agt — ek, JHT X (el —ely xd) —m x el — agzz{b*),> .

The first term is easily estimated by

| (elhe,d x (Vxep)) | =|(eke,(d—Pod) x (V xep)) |
S h Hdeloo HEZHO Havo-HO .

For the second term, we have

‘<Eﬁt,mn X (51* x d) >‘ <K Hsthth ut — Pku*Hth Ild — Pod”Lm(th)

S P26 ]y [eb]]o 10, o1l

where we used Lemma A.2 and the discrete trace inequality. Using the Cauchy—
Schwarz inequality, (B.6), and Lemma A.2, the third term is bounded by

B (|l + 02+ 1) [ — e

o8l -
Combining the above estimates, we conclude that
@20) et + I+ 1ol S (el bl

+ 0% (k|d]| o + a2 + 1) Hsgt — et )

9, .
) 1ol

Estimation for Io. Using the approximation capability of the projector IT (see
Appendix B) we have

1
(4.22) ’<n x el — ShT X (el + L) x d) + azel, , TT°b* — Peb*>’

1

S h (HgIJHBQh +r ”d”Loo HdLHth + a2 H‘%Hagh) ||970'||o-

At this point we are ready to estimate the approximation errors for L, J, u, and
b. For readability, let us absorb oy, as, a3, Re, Rm, s, and the norms on d and w
into the implicit constants. Note that the error estimates stated in the theorem below
are optimal for w and b, and suboptimal for L, p, H, and r. The results in section
5 indicate that it is possible for numerical results to exceed the suboptimal estimates
proven in this work.
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THEOREM 4.5. Suppose that ay — % |lw| e, a2, and ag are positive constants
independent of h, Re, Rm, «, d, and w, and suppose that h is sufficiently small, i.e.,

(4.23) h<C<1,

with C' depending on the coefficients in estimates (4.20) and (4.21). Then it holds
that

(4.24) Byp Sh*FE L, u,bp, vl s
and the following error estimates hold:

4.25) 1L =Ly, J = Tnllg S B2 LT, u,b,pr ]y
(4.26) |b—bp,u—upl, S s L, J,u,b,p,r| -

—~

Proof. We proceed by taking 8 = el o = &} in (4.12). If we use (4.15), the
estimates (4.16)—(4.22), and Young’s inequality, we can obtain

(427) ||62351}ZH0 S Hsino +h Heiaglllnsql;,,EZvEZHo + h% 5{7761117"':[[;;52‘ - 52‘ 90,
h

which can be further simplified to

(4.28) HEZ,EZHO S H5£H0 +h Hsi,sﬁ,ei”o +h3 55,55,5{,,83 — el 00,

if the constants that multiply ||5ZH0 and HsZHO in (4.20) and (4.21) are sufficiently
small, which is true given the assumptions we have made in the statement of this
theorem. The approximation error terms on the right-hand side of (4.28) (i.e., terms
with superscript h) are bounded by E}, (see the definition of Ej, in (4.9)). This implies

429 febuehly S bl + hlleb ety + 02 b ehctlog, + 1B

Applying Young’s inequality to the right-hand side of (4.11) for ||6Z||0, HEZHO, and
using (4.29), we get
2 < ||L I T2 I oI _I|?
B S |lesrewesllon, + llezcuseglls
Then (4.24) follows from the approximation properties of €4, el el el with the trace
inequality Lemma A.2 discussed in Appendices B and A, respectively. Further, it
gives
h h _h __ _h

Hglllng}jno + Hﬁﬁ - ggugbt —E:t,€p — Ep 00

1
b ,SEhshk—i_z ”L’ J’uvbvp’THde?

h

where the first inequality is from the definition of Ej, in (4.2). Then (4.25) follows
from the triangle inequality. Finally, the above estimate, with (4.29), and the triangle
inequality give (4.26). |

What remains is to estimate ||EZ||0 and HE:}HO.

THEOREM 4.6. There holds

lemll, S lleh ehoeh ebll, + h2 By S B2 | L, T u,b,p, vl k>0
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Proof. Let 11 : [Hl(Q)]d — [Pe(Q1)]? be defined by (see [10, Lemma 4.1))
(fw - ﬁ,v)K =0, wvePi(K),

([0 -9) np-n) =0, pe[PHE)",

for 9 € [Hl(Q)]d and K € Qy,, where Pi-(K) is the subspace of Py(K) which is
orthogonal to Py_1(K) in L*(K).
Since IIp is the L2-projection, we have (5Zv 1) = —(sé, 1) = 0 from (3.10). It is

known [16] that there exists 9 € [Hol(ﬂ)]d such that V-9 = e}, [[9]|; < ||s]};||0. Then
(4.30) leklly = (5.7 - 9) = = (Veh, ) + (b, 0 m)

=— (Vaz,ﬁﬂ) + (eh, 9 n)

= (eh, V- 110) + (chm, 9 ~ 119,

where we used integration by parts twice and used the definition II. Since the exact
solution (L, p,u,b) and its trace also satisfy the HDG local (sub)equation (3.7b), we
can add and subtract the corresponding projections in (B.1) to obtain

(e;},v . ﬁﬁ) = (e}i,Vﬁﬁ) - (6,}&, (w - V)fh?) +K (sﬁ,v X (ﬁ'& X d))
(4.31) + <msﬁ —efn+ehn+ %nd X (n X (5{; + 52})) +ay (el — ) ,ﬁ19>
+m(5£,v X (1:119 X d)),

where we have taken II9 as the test function in (3.7b). Combining (4.30) and (4.31)
yields

||5Z||z = (57;,Vﬁ19> - (52, (w - V)ﬁﬁ) +K (sﬁ,v X (1:[19 X d))
1 -
+ <msﬁ —ehm 5 (n X (s’,}t + s’&)) +ay (el —eh) ,H19>
+ K (Ei,v X (1:119 X d)) + <€Zn,’l9>,
which can be further simplified using the following two facts: first, integrating by parts

twice and using the definition of IT give (¢}, VII9) = (b, V) — (ehn, 9) + (eh n, T19);
and second, combining the first equation in (3.8) and (B.1k) gives

<—57—4n + agn, 19> = <—57—4n + agn, IP’619>
=— <msZ + %Iﬁ:d X (n X (s:ﬁt + 523)) +aq (el —eh) ,]P’619> .
In particular, we obtain
leklle = (e, 99) = (b (w - V)T + & (<4, ¥ x (110 x d))
+ <maﬁ + %nd X (n X (eﬁt +eg,,)) +oay (eh —eh) 19 — IP’519>

+H(5£,Vx (ﬁﬁxd)).
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By the triangle and Hoélder inequalities,

Ieblla = llklly 199l + el Nkl [|VTI9]| + Il 1eb <41l [V

Qw”Lx th HE)Q+ K HdHLOO Hgbt7€bt — 6}»;7: 89:_ (e5] HSZ — 82“8(‘@) Hﬁ’ﬂ — ]Pe'ﬂHth

S (Nl etioztsetlly + 1 En) lleblly

where we have used Lemma A.3, the approximation capability of both II and the
L2-projection, the definition of Ej, in (4.2), and the property of ¥, and we absorb all
mesh independent parameters into the implicit constant in the final inequality. As a
consequence, we have ||51}§||0 S ek, eh, e eill, + h% Ej. Then the conclusion follows
from the triangle inequality and the estimates of Hfs’i, el 52, 511,”0 and F,. ]

o> We need the following result.

To obtain an analogous result for

LEMMA 4.7. There exists [0 € Hl(Q)] such that V-9 = e, n x 9 =0 on 09,
and |9, S HshHO

Proof. We omit the proof and refer the reader to [22]. 0
THEOREM 4.8. There holds

lr —rully S HSJ, Eus hHO—thEh REt3 IL,J,u,b,p, 7|1, k=>0.

Proof. The proof is similar to the estimate of ||[p — py||,, so we refer the reader to
[22] for details. |

5. Numerical results. In this section we start with numerical results of the
proposed HDG scheme for 2D MHD problems on simplicial meshes. The first exam-
ple is Hartmann flow, whose analytical solution is known. The second example is a
manufactured solution on a nonconvex domain to demonstrate that our HDG methods
have good approximation capability, though the elliptic regularity assumption does
not hold on nonconvex domains. We also consider a problem with a low regularity
solution to demonstrate the benefit of high order methods. For 3D problems, hexahe-
dral meshes with tensor product polynomial spaces can be more advantageous from a
large-scale computational point of view. Though our analysis is not applicable in this
case, the proposed HDG discretization is still valid, and we close the section with a
3D example on a hexahedral mesh.

5.1. Hartmann flow. In this numerical study, we consider a conducting incom-
pressible fluid (liquid metal, for example) in a domain [—o0, 00] X [—lg, lo] X [—00, 0]
(bounded by infinite parallel plates in the x5 direction [19, 29]). The fluid is subject
to a uniform pressure gradient G := —g— in the z7 direction, and a uniform external
magnetic field by in the zo direction. If we consider no-slip boundary conditions on
the xo boundaries, the resulting flow pattern is known as Hartmann flow, which ad-
mits an analytical solution that is 1D in nature. We assume that the infinite parallel
plates are perfectly insulating. Here, we consider the Hartmann flow in a 2D domain
) =[0,0.025] x [—1,1]. If we define the characteristic velocity as ug := /Glo/p and

consider the driving pressure gradient G as a forcing term (incorporated in g), the
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Fic. 1. Hartmann flow problem: L? convergence.

nondimensionalized solution with g = (1,0), f = (0,0) reads

_ Re _ cosh(Hazs) 0 _ 1 [sinh(Hawp) . 2 3
~ \Hatanh(Ha) cosh(Ha) |77/~ P= "ok sinh(Ha) 2 bo;
1 [sinh(Ha xg)
= —_l———— 1 —
b (n [ sinh(Ha) 33‘2:| ’ > ’ r=0,

where Ha := v/kReRm, and pg is a constant to enforce the zero mean-value condition
to p. We set w = u and d = b, and we enforce the boundary conditions on 9} using
the exact solution, i.e., up = u, hp = b’, and rp = 0.

At refinement level [, the domain is divided into I x 80 squares, each of which is
divided into two triangles from top right to bottom left. Figure 1 shows the conver-
gence plots with Re = Rm = 7.07 and « = 200. The convergence rates for L;,, up,
P, Jh, by, and 1y, are observed to be approximately k + %, k+1, k+ %, k+1, k+1,
and k + 1, respectively. These observed rates approximately match or exceed their
respective theoretical rates of k + %, k+1, k+ %, k+ %, k+1, and k+ %, which were
proven in section 4.

5.2. Nonconvex domain. This example illustrates the convergence of the HDG
scheme applied to a problem posed on the nonconvex domain Q= (—1,1) x (—=1,1)\[0, 1) x
(—1,0] (similar to section 5.1.1 in [19]). We take Re = Rm =k = 1, w = (2,1), and
d = (x1,—x2). We set g and f such that the manufactured solution for (3.1) is

= (— [z cos(z2) + sin(zq)] €™, xo sin(xo)e™ ), p = 2e"* sin(zz) — po,

u
b = (— [z2 cos(za) + sin(xza)] €™t xo sin(xa)e™ ), 1 = —sin(mrz)sin(rxs),

where pg is the constant chosen to enforce (p,1)q = 0. We use the exact solution to
enforce the boundary conditions 9, i.e., up = u, hp = b, and rp = r.

At refinement level [, each quadrant of the domain is subdivided into [ x | squares,
each of which is divided into two triangles from top right to bottom left. Figure 2
shows the convergence plots. For this problem, we observe the optimal convergence
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F1G. 2. Nonconver domain (L-shaped) problem: L? convergence.

rates of k + 1 for all of the local variables, which match or exceed the rates proven in
section 4.

5.3. Singular solution. Although we do not discuss the implications of singular
solutions on the theoretical convergence rates of the HDG scheme, applying the scheme
to such a problem is instructive in assessing its robustness. This example illustrates
the convergence of the HDG scheme using a manufactured solution with a singularity
(similar to the example in section 5.2 of [19]). In particular, we consider the same
nonconvex domain and mesh refinement as in the previous example. We take Re =
Rm=kx=1,w=0,and d = (—1,1). We choose g and f such that the analytical
solution of (3.1) has the form

_ (P I+ ) sin(6)8(9) + cos(@) (6], o (g (2
w= (et S ) 0= (P ()
a1 (L AP0(9) +47(0)

p=-—p N T‘ZO,

1—A
¥(¢) = cos (37;/\) [sin((llj—)\)\)(b) - sin((ll—/\/\)(b)} —cos((1+ N)¢) + cos((1 — N)¢),

where A\ =~ 0.54448373678246. On 0f) we use the exact solution to set the boundary
condition, i.e., up = u, hp = b’, and rp = r. For this problem, it is known that

€ [HH)‘(Q)]Z, p € HMQ), and b € [HQ/?’(Q)]Z, and that the solution contains
magnetic and hydrodynamic singularities that are among the strongest singularities
[19].

Convergence results for this problem are shown in Figure 3. For the fluid vari-
ables Ly, up, and pp, we observe convergence rates of approximately A, 2\, and A,
respectively. For the magnetic variables Jp,, by, and rj,, we observe convergence rates
of approximately 1/2, 2/3, and 1/3, respectively.

5.4. 3D numerical experiments on structured hexahedral meshes. We
now apply our HDG method with tensor product polynomial spaces to a 3D problem
on structured hexahedral meshes. Note that our theoretical analysis is not valid for
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FiG. 3. Singular solution problem: L? convergence.

this case. We set Q = [0,1]3, w = (1,2,-4), d = (=3,1,5) and choose the forcing
function such that the exact solution is given by

sin(27x1) sin(27xs) sin(27zs)
u=>b= | sin(2rzy)cos(2rxs)cos(2rxs3) |,
cos(2m(xy — x3)) sin(2mway)

3
p:e(m—%)?"‘(%z—%)?-i-(xs—%)? — w3erf (;) , r=0.

We use Dirichlet boundary conditions on 92 for u, r, and for the tangential compo-
nents of b.

Figure 4 shows the convergence of all quantities as the mesh is refined. As can be
seen, p and r converge optimally with a rate of (k + 1), while the convergence rate of
wu is suboptimal by a half order. For L, J, and b, the convergence rate is, however,
suboptimal by almost one order. This example clearly shows that rigorous results for
simplicial meshes may not be extended to quadrilateral and hexahedral meshes.

6. Conclusions. In this paper we proposed an HDG method for a linearization
of the incompressible resistive MHD equations and carried out the a priori error anal-
ysis. Problems with both smooth and singular solutions are presented to examine
the performance of the proposed HDG method. For problems with smooth solutions,
the numerical convergence rates agree with the theoretical predictions. For singular
solutions, the numerical results show that a high order method is still beneficial in
terms of accuracy, though the convergence rate is limited by the regularity of the so-
lution. For hexahedral meshes, for which our analysis is not applicable, the numerical
results indicate that the convergence rate can be suboptimal by one order. Ongoing
work includes 3D computation on parallel computers for large-scale problems, and
extensions of our HDG method to nonlinear time-dependent MHD equations.

Appendix A. Auxiliary results. In this appendix we collect some technical
results that are useful for our analysis.
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F1G. 4. 3D problem with structured hezahedral mesh: L? convergence.

LEMMA A.1 (inverse inequality [25, Lemma 1.44]). Forv € Pi(K) with K € Qp,
there exists C > 0 independent of h such that [|[Vv|[, j < Chyt vl k-

LEMMA A.2 (trace inequality [25, Lemma 1.49]). Forv € H'(Q,) and for K €
Qp with e C 0K, there exists C' > 0 independent of h such that

2 —
lolibe < € (I90llo.k + At 10llsc) ol

Applying the arithmetic-geometric mean inequality to the right-hand side, we can
derive

1 _1
(A1) Il S (8 190l s + b ol i) -

If v € H'(Qy,) is in piecewise polynomial spaces, we can derive the following inequality
from Lemma A.2 and the inverse inequality (Lemma A.1):

_1
(A.2) [vllo.e S hic® vllo,x-

~

LEMMA A.3. Suppose that 11 : H*(K) — Py(K) is a bounded interpolation which
is a projection on Py(K). Then |[VIIvl|y x S [lvll) k-

Proof. See [22] for the proof. 0

Appendix B. Definition of projections and their properties. In this sec-
tion we use P, P, Py for spaces of scalar, d-dimensional vector, d x d matrix-valued

polynomials. By ’P,CL7 ’PkL, 75? we denote the spaces of polynomials of order at most k
orthogonal to all polynomials of order at most (k — 1). P%(e) contains the tangential
component of all polynomials in P (e). We desire to have error equations conform to
the original equations to facilitate the error analysis. To begin, we define a collective

ot
interpolation operator II(L,w, p, J,b,r,4,b ,#) implicitly through the interpolation

errors £, = u —u, 6,1, = b —1I1Ib, etc., where Ilu, IIb, etc., are components of the col-
lective interpolator IT on wu, b, etc. Specifically, the collective interpolation operator

is defined by the following;:
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e L2 projections on e € &, or on K € €, are defined as

(Bla) <5£7’7>e = 07 v e Pk (6) )
(B.1b) (ghom), =0, pePrle)
(B.1c) <sgt,>\t> =0, A ePle),
(B.1d) (5 H), =0, Hel[P(K),
(B.1le) (5119, q)K =0, qePy(K).

e On each K € Q and e € &, e C K, IIb and IIr are defined as

(B.1f) (eb,0)k =0, c€Pr1(K),
(B.1g) (er8)r =0, s€Pp1(K),
(B.1h) (ep-m+asel, ), =0, 7€ Ple)

e Oneach K € Qj, and e € &, e C OK, IIL and Ilu are defined as

(B.1i) —(Ei,G)K—l—(sL@w,G)K:O, G € Pj_1 (K),
(B.1j) (e0,v) =0, v € Py (K),
(B.1k) (—epn+ (m+ar) e, m),

= —<51€n+ %md X (nx (sit +s£t)),u> , € Pr(e).

The well-definedness and optimality of the L?-projections are clear. The coupled
projector II (b, r) := (IIb,IIr) has been studied in [8], and in particular we have
(B.2a) lello.rc < A bllpy g + sh Il g

(B.2b) lerllo e S g R IV Bl g+ BE Il g s

where, again, for simplicity we choose the same solution order k for all the unknowns.
Here, we assume that b and r are sufficiently smooth, that is, b € [H*T! (Q)}d and
r € HEFL(Q).

LEMMA B.1 (estimation for €f). Suppose u € [H**! (Q)}d, L e [H*! (Q)]dXd,
re HH1(Q), be [H* ()], and p € H*1(Q). Then

lenllo < Clon, w)[(an + [wll e + ]y ) B [t
+ WV L= Vplli + wh* | dl 2 ([b]lk41 + o ]l7]l541)]

holds with C (a1, w) =1/(a1 — 5 [|w]| ;).

Proof. See [22] for the proof. O

LEMMA B.2 (estimation for €] ). Suppose u € [H*! (Q)]d, L e [HF (Q)]dXd,

re H(Q),be [HF! (Q)]d, and p € H*1(Q). Furthermore, suppose the trace
of the tensor L vanishes, i.e., tr L = 0. There holds

HgiHo S Rt Hp||k+1 + hF HLHk+1 tkK ||dHL°° (th Hb”k+1 + O‘Shk—H H7"||k+1)

+ (o + [ wl oo + 2 wllyoo) [lenllo + (aa + lwll o) B ]y -
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Proof. See [22] for the proof. O

We now define the adjoint projection IT*(L*, u*,p*, J*,b",r* 4", (f)*)t,f*) As
in the splitting of errors with II, we define eL. = ¢* — IT*¢* for an adjoint unknown

o* T
ok

o*. We first define IT*J*, IT*p*, TI*@*, TI*(b )¢, II*#* as L2-projections into relevant
polynomial spaces, and define IT*b*, IT*r* to satisfy

(B.3a) (eb,0)k =0 Ve € Pr1(K),
(B.3b) (el,8)xk =0 Vs € Pr_1(K),
(B.3c) <—5{,* ‘n+ a3€£*,’)/>6 =0 VyePrle).

We then choose IT*L*, IT*u* to satisfy

(B.4a) (b Qg+ (cl. ow,Q)xk =0 VG € Pyp_1(K),
(B.4b) (el v)k =0 Yve P (K),
(B4C) <_E£*n + alE’{L*V”>e = <Q»H>e V“’ € Pk(e)a

where g = el.n — $rd x (n x (—(ef.)" + E(IIS*)t))'

Assuming that (L™, u*, p*, J*,b", r*, 4", (B*)t, 7*) are sufficiently regular, we can
show that the interpolation IT* is well-defined and provides optimal approximations.
Due to the similarity between (IIb, ITr) and (IT*b*,II*r*), we can conclude that

k k
(B.5a) HEII)* 0.K < pRFL ||b*||k+1,K +agh™*! Hr*||k+1,K’
(B.5b) ||5£ 0,K N Oé?jlhkﬂ V- b*”k,K + k! ||r*||k+1,K :

It can also be shown that

1 —1
R O ) B (YR e P e

+ WYV L+ Vp* [l + shMd poe (07 [k+1 + asllr[le)]
o SHTHID iy + RMIL g + 5Bl oo (107 g + a3 (1740

+ (01 + hf|wlly00) [|en

ez

0 + alhk+1 ||u*||k+1 )

assuming tr L* = 0. The proofs are analogous to those for the IT projections. As a
consequence, from the elliptic regularity assumption (4.13), we have

(B.6) max { Hsi*

0’ ||E{L* 0’ ‘5117* 0’ |ElI7* 0’ ‘Ei* O}ShHo”aHOv

and the implicit constant is independent of h.
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