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A UNIFIED DISCONTINUOUS PETROV–GALERKIN METHOD
AND ITS ANALYSIS FOR FRIEDRICHS’ SYSTEMS∗

TAN BUI-THANH†, LESZEK DEMKOWICZ† , AND OMAR GHATTAS‡

Abstract. We propose a unified discontinuous Petrov–Galerkin (DPG) framework with op-
timal test functions for Friedrichs-like systems, which embrace a large class of elliptic, parabolic,
and hyperbolic partial differential equations (PDEs). The well-posedness, i.e., existence, uniqueness,
and stability, of the DPG solution is established on a single abstract DPG formulation, and two
abstract DPG methods corresponding to two different, but equivalent, norms are devised. We then
apply the single DPG framework to several linear(ized) PDEs including, but not limited to, scalar
transport, Laplace, diffusion, convection-diffusion, convection-diffusion-reaction, linear(ized) contin-
uum mechanics (e.g., linear(ized) elasticity, a version of linearized Navier–Stokes equations, etc.),
time-domain acoustics, and a version of the Maxwell’s equations. The results show that we not only
recover several existing DPG methods, but also discover new DPG methods for both PDEs currently
considered in the DPG community and new ones. As a direct consequence of the single abstract
DPG framework, all of the resulting DPG methods are shown to be trivially well-posed. We show
that the inf-sup constant of the abstract DPG equation is independent of the mesh and is the same
order as that of the PDE counterpart.
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1. Introduction. The discontinuous Petrov–Galerkin (DPG) framework intro-
duced by Demkowicz and Gopalakrishnan [13, 15] has been evolving as a new nu-
merical methodology for partial differential equations (PDEs). The method has been
successfully applied to a wide range of PDEs including scalar transport [8, 13, 15],
Laplace [14], convection-diffusion [14, 15], Helmholtz [16, 18, 30], Burgers and Navier–
Stokes [10], and linear elasticity [7] equations. This DPG framework starts by parti-
tioning the domain of interest into nonoverlapping elements. Variational formulations
are posed for each element separately and then summed up to form a global variational
statement. Elemental solutions are connected by introducing hybrid variables (also
known as fluxes or traces) that live on the skeleton of the mesh. This is therefore a
mesh-dependent variational approach in which both bilinear and linear forms depend
on the mesh under consideration.

In general, the trial and test spaces are not related to each other. In the standard
Bubnov–Galerkin (also known as Galerkin) approach, the trial and test spaces are
identical, while they differ in a Petrov–Galerkin scheme. Traditionally, one chooses
either Galerkin or Petrov–Galerkin approaches, then proves the consistency and sta-
bility in both infinite and finite dimensional settings (if possible). The DPG method
of Demkowicz and Gopalakrishnan [13, 15] introduces a new paradigm in which one
selects both trial and test spaces at the same time to satisfy well-posedness. In partic-
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ular, one can select trial and test function spaces for which the continuity and inf–sup
constants are unity. Given a finite dimensional trial subspace, the finite dimensional
test space is constructed in such a way that the well-posedness of the finite dimensional
setting is automatically inherited from the infinite dimensional counterpart.

For example, the DPG method in [15] starts with a given norm in the trial space
and then seeks a norm in the test space in order to achieve unity continuity and inf–
sup constants. Another DPG method in [16] achieves the same goal but reverses the
process, i.e., it looks for a norm in the trial space corresponding to a given norm in
the test space. Clearly, this is one of the advantages of the DPG methodology, since it
allows one to choose a norm of interest to work with, while rendering the error optimal,
i.e., smallest in that norm. Furthermore, the DPG methodology provides a natural
framework for constructing robust versions of the method for singular perturbation
problems, enabling automatic adaptivity. We shall not discuss the advantages of the
DPG methods any further here, and the readers are referred to the original DPG
papers [13, 14, 15, 16] for more details.

The DPG method is a minimum residual method and can be viewed as a gener-
alization of least squares methods [5, 9]. The main difference lies in the use of dual
norms through an explicit elementwise inversion of the Riesz operator made possible
by the use of broken test spaces as opposed to Hilbert scalings in [6].

Perhaps one of the most challenging problems that needs to be addressed in
developing a DPG method is to establish the well-posedness of the DPG formulation
on the infinite dimensional level, from which the well-posedness of a finite dimensional
DPG approximation is inherited. This has been investigated for DPG formulations of
linear first order hyperbolic [8], Laplace [14], convection-diffusion [14], Helmholtz [18],
and linear elasticity [7] equations. The methods of proof however vary from one type of
PDE to another, though they do share some similarities. Consequently, practitioners
may be wary of applying the DPG methodology to a new PDE until its well-posedness
is available. Otherwise, there is no guarantee that a DPG method would behave as
designed in the original work of Demkowicz and Gopalakrishnan [13, 15].

Meanwhile, a unified analysis of discontinuous Galerkin (DG) methods for ellip-
tic/parabolic/hyperbolic PDEs and beyond has been devised in a series of papers by
Ern and Guermond [21, 22, 23]. This is possible due to the recent revised theory of
Friedrichs’ system [25] in a Hilbert space setting [27], rigorously formalized and ad-
vanced by [24], and further advanced by [1, 2, 3]. Ern and Guermond [21, 22, 23] have
been successful in recovering most of the existing DG methods and discovering new
ones for various PDEs including transport, convection-diffusion-reaction, linear(ized)
continuum mechanics, and Maxwell’s equations, to name a few.

The success of Ern and Guermond [21, 22, 23] inspires and motivates us to develop
a unified theory for the DPG methodology for a large class of PDEs, and this is the
main focus of the paper. In particular, we review the theory of Friedrichs-like systems
under a Hilbert space setting [24] in section 2.1. In particular, section 2.2 reviews
Friedrichs’ systems of first order PDEs, followed by Friedrichs’ systems of first order
PDEs with partial coercivity in section 2.2.2 with the important result on the well-
posedness in Theorem 2.3. We next develop a single abstract DPG framework, prove
its well-posedness, and derive two abstract DPG methods corresponding to two differ-
ent, but equivalent, norms in section 2.3. It is followed by the convergence analysis of
DPG methods in section 2.4. Note that this paper is neither an attempt to illuminate
connections with other related ideas and methods nor an attempt to unify all the
existing DPG methods. Instead, we limit ourself to unify and generalize the DPG
methods of Demkowicz and Gopalakrishnan [13, 15] for Friedrichs’ PDE systems. To
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show the effectiveness of the single abstract framework, section 3 applies it to vari-
ous PDEs including transport, convection-diffusion-reaction, linear(ized) continuum
mechanics, time-domain acoustic, and a version of the Maxwell’s equations. As will
be shown, our unified framework not only recovers several existing DPG methods,
but also discovers new DPG methods for both PDEs currently considered in the DPG
community and new ones. More importantly, a single well-posedness proof established
for the abstract and unified DPG methodology is carried over to all Friedrichs-like
systems in general and to all PDEs considered in section 3 in particular. Finally,
section 4 concludes the paper with future directions.

2. Abstract theory.

2.1. Theory of Friedrichs’ systems in a Hilbert space setting. In this
section, we briefly review important theoretical advances of Friedrichs’ systems in
Hilbert space settings due to Ern, Guermond, and Caplain [24] that are useful for our
later developments. To begin, let L be a real Hilbert space equipped with the inner
product (·, ·)L and the induced norm ‖·‖L. We identify L with its dual L′ by the
Riesz representation theorem. Assume that we have two linear operators (possibly
unbounded) T : D → L and T̃ : D → L satisfying the following two properties:

(Tϕ, ψ)L =
(
ϕ, T̃ψ

)
L

∀ϕ, ψ ∈ D ,(2.1a) ∥∥∥(T + T̃
)
ϕ
∥∥∥
L
≤ c ‖ϕ‖L ∀ϕ ∈ D ,(2.1b)

where D is a dense subspace of L. Note that, by density, (2.1b) is also valid for all
ϕ ∈ L.

It is easy to see that D equipped with the scalar product (·, ·)T = (·, ·)L+(T ·, T ·)L
is an inner product space whose completion is denoted by W0. The induced norm
‖·‖T =

√
(·, ·)L + (T ·, T ·)L is known as the graph norm. One can show that the

completion of D with respect to (·, ·)T̃ = (·, ·)L + (T̃ ·, T̃ ·)L coincides with W0. As a

direct consequence, T, T̃ : (D , ‖·‖T ) → (L, ‖·‖L) are linear and continuous, and hence
they can be extended by density to linear and continuous operators (again denoted
by T and T̃ ) T, T̃ : (W0, ‖·‖T ) → (L, ‖·‖L). Also by density, (2.1) can be extended to

be valid for all ϕ, ψ ∈W0. Moreover, it can be shown that the adjoints of T and T̃ are
the unique extensions of T̃ and T , again denoted by T̃ and T such that T̃ , T : L→W ′

0

and

〈Tu, v〉W ′
0×W0

=
(
u, T̃ v

)
L

∀u ∈ L, v ∈W0,(2.2a) 〈
T̃ u, v

〉
W ′

0×W0

= (u, T v)L ∀u ∈ L, v ∈ W0,(2.2b)

where T̃ and T on the right sides of (2.2a) and (2.2b) should be understood as the
restrictions of T̃ and T , i.e., T̃ |W0 , T |W0 :W0 → L.

We are interested in the solvability of the problem

(2.3) Tu = f ∈ L,

and its solutions generally belong to the following graph space

W := {u ∈ L : Tu ∈ L} ,
which can be shown to coincide with the dual graph space {v ∈ L : T̃ v ∈ L}. It is
not difficult to see that W is a Hilbert space when equipped with the graph inner
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product (·, ·)W := (·, ·)T . However, the graph space is too general to provide the
well-posedness of (2.3) and our next step is to find a subspace V ⊆ W such that
T : V → L is an isomorphism. We begin by defining the following boundary operator:

(2.4) 〈Bu, v〉W ′×W := (Tu, v)L −
(
u, T̃ v

)
L

∀u, v ∈W.

Then, one can show that B ∈ L (W,W ′) and B is self-adjoint [24].
Now, assume there exists M ∈ L (W,W ′) such that

〈Mw,w〉 ≥ 0 ∀w ∈W,(2.5a)

W = N (B −M) +N (B +M)(2.5b)

with N denoting the nullspace of its argument. As shall be shown in section 3, each
M corresponds to a particular boundary condition and it may not be unique. The
following useful result on B and M is due to [24].

Theorem 2.1. There hold

W0 = N (B) = N (M) = N (M∗) ,(2.6a)

W⊥
0 = R (B) = R (M) = R (M∗) ,(2.6b)

where R denotes the range space.

2.2. First order partial differential equations of Friedrichs’ type. The
results in section 2 are valid for a general class of operators T and T̃ satisfying (2.1a),
(2.1b) on a dense subset D of Hilbert space L. In this section and in the rest of
the paper, we restrict ourselves to L as the space of square integral (vector-valued)
functions over an open and bounded domain Ω ⊂ R

d with Lipschitz boundary, D as
the space of test functions, and T as first order differential operator with its formal
adjoint T̃ . In particular, let us set L =

[
L2 (Ω)

]m
, m ∈ N, and D = [D (Ω)]

m
, where

D (Ω) = C∞
0 (Ω). Then, D is dense in L.

Next, we consider T : D → L as

Tϕ :=

d∑
k=1

Ak∂kϕ+ Cϕ ∀ϕ ∈ D ,

where the following assumptions on Ak and C for Friedrichs’ system are standard
[21, 25]:

C ∈ [L∞ (Ω)]
m,m

,(2.7a)

Ak ∈ [L∞ (Ω)]
m,m

, k = 1, . . . , d, and

d∑
k=1

∂kA
k ∈ [L∞ (Ω)]

m,m
,(2.7b)

Ak =
(
Ak

)T
a.e. in Ω, k = 1, . . . , d.(2.7c)

Consequently, the formal adjoint T̃ : D → L of T is given by

T̃ϕ = −
d∑

k=1

Ak∂kϕ+

(
C∗ −

d∑
k=1

∂kA
k

)
ϕ ∀ϕ ∈ D .

Then, it is obvious to see that T and T̃ satisfy (2.1a), (2.1b). Consequently, all the
results in section 2 hold for Friedrichs’ systems satisfying (2.7).
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For the above abstract Friedrichs’ systems, an explicit representation of B is
available while it is not possible for M on the abstract level. Let us assume that

B :=

d∑
k=1

nkA
k

is well-defined a.e. on ∂Ω with n = (n1, . . . , nd) being the unit outward normal vector
of ∂Ω. For simplicity in writing, let us setHs := [Hs]

m
, where Hs is the usual Sobolev

space of order s, and C1 :=
[
C1

]m
, where C1 is the space of continuously differentiable

functions. The following representation result for the boundary operator B can be
found in [1, 27].

Lemma 2.2. For u, v ∈ H1 (Ω) ⊂W (Ω), there holds

〈Bu, v〉W ′(Ω)×W (Ω) = 〈Bu, v〉H− 1
2 (∂Ω)×H 1

2 (∂Ω)
.

In particular, for u, v ∈ C∞
0

(
R

d
)
, 〈Bu, v〉W ′(Ω)×W (Ω) =

∫
∂Ω v

TBu ds.
If Ω has segment property [1], which is true for Lipschitz domains, then C1 is

dense in H1 (Ω) which in turn is dense in W , and hence the representation can be
uniquely extended to the whole space W , i.e.,

(2.8) 〈Bu, v〉W ′(Ω)×W (Ω) = 〈Bu, v〉H− 1
2 (∂Ω)×H 1

2 (∂Ω)
∀u ∈W (Ω) , v ∈ H1 (Ω) .

Definition (2.4) can be therefore considered as the integration by parts formula. It

is important to point out that the map B : W (Ω) → H− 1
2 (∂Ω) is not surjective in

general [1]. Moreover, the range of B is generally not closed in H− 1
2 (∂Ω). Owing to

this fact, the boundary operator B may be more preferable since its nullspace W0 is
well defined and its range space W⊥

0 is obviously closed. It is the key that we explore
in this paper. In particular, the construction of the abstract DPG method (2.14)
using the boundary operator is twofold. First, we avoid the technicality of specifying
the trace of functions in an abstract graph space W (Ω),1 allowing the DPG theory
to be developed for abstract operators T and T̃ . Second, the well-posedness of the
resulting general DPG method can be established in a straightforward manner.

On the one hand, Lemma 2.2 supports our abstract DPG formulation (2.14) in
using boundary operator and graph space, which is valid for a general Friedrichs’
differential operator T even when we do not have a trace theorem for the graph
space. On the other hand, as shall be shown in section 3, the representation result in
Lemma 2.2 allows us to solve for the unknown hybrid variables on the skeleton of the
mesh instead of the whole domain, which results in substantial savings in computation.

In order the show the well-posedness of PDEs of Friedrichs’ type we need the
coercivity condition on T dictated by the positiveness condition on the coefficients Ak

and C [21, 22, 23]. To this end, we consider two classes of first order PDEs: one with
full coercivity and the other with partial coercivity.

2.2.1. Friedrichs’ PDEs with full coercivity. By full coercivity we mean the
following positiveness condition:

(2.9) C + C∗ −
d∑

k=1

∂kA
k � Im a.e. in Ω,

1The technicality here is due the fact that v belongs to the broken graph space and its trace also

lives in H− 1
2 (∂Ω). Consequently, the duality between the traces of u and v is not meaningful in the

standard H− 1
2 (∂Ω)×H 1

2 (∂Ω) sense.
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where Im is the m×m identity matrix. Here, the notation z � u (similarly for z � u)
means z ≥ αu for some positive constant α.

2.2.2. Friedrichs’ PDEs with partial coercivity. For the class with partial
coercivity, we relax the positivity condition (2.9) to account for systems that have
two-field structures with partial coercivity. This class includes convection-diffusion,
Laplace, and linearized continuum mechanics (e.g., linearized compressible elasticity
or linearized compressible Navier–Stokes) equations, to name a few. Following [23],
we assume that there exist two positive integers mσ and mu such that m = mσ+mu.
Denote Lσ :=

[
L2 (Ω)

]mσ
, Lu :=

[
L2 (Ω)

]mu
, and L := Lσ × Lu. For any w ∈ L,

the group variable notion w := (wσ , wu) is used throughout. We decompose C and
A accordingly:

C =

[
Cσσ Cσu

Cuσ Cuu

]
, Ak =

[
Aσσ,k Ek(
Ek

)T
Gk

]
.

The following assumptions are important for the well-posedness of our two-field
Friedrichs’ systems with partial coercivity [23]:

∀k ∈ 1, . . . , d, Aσσ,k = 0,(2.10a)

∃c0 > 0, Cσσ ≥ c0Imσ ,(2.10b) ((
C + C∗ −

d∑
k=1

∂kA
k

)
z, z

)
� ‖zσ‖2Lσ

a.e. in Ω,(2.10c)

Cσu = (Cuσ)
∗
= 0 and Ek are constant over Ω,(2.10d)

∀z ∈ V ∪ V ∗, ‖zu‖Lu
� b̃ (z, z)

1
2 + ‖Ezu‖Lσ

,(2.10e)

where

b̃ (u, v) := (Tu, v)L +
1

2
〈(M −B)u, v〉W ′×W

and

E :=

d∑
k=1

Ek∂k, V := N (B −M) , V ∗ := N (B +M∗) .

Note that the condition (2.10e) is meaningful owing to the positive definiteness of b̃
on W .

We are now in position to state the well-posedness whose proof can be found
in [21, 22, 23, 24].

Theorem 2.3. Assume that either the full coercivity condition (2.9) or the partial
coercivity condition (2.10) holds, then T : V → L is bijective. Furthermore, given
f ∈ L, then the problem of seeking u ∈ V such that Tu = f in L is well-posed. In
particular, there exists a positive constant μ0 such that if u is the solution, then it
satisfies the following stability estimates:

‖u‖L ≤ 1

μ0
‖f‖L , ‖u‖W ≤

(
1 +

1

μ0

)
‖f‖L .

We have reviewed the Friedrichs’ setting for PDEs with either full or partial
coercivity. Theorem 2.3 on the well-posedness in both cases is vital since the well-
posedness of our unified DPG formulation in section 2.3 relies heavily on this fact.
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2.3. Abstract DPG formulation. We are interested in the following inhomo-
geneous problem:

(2.11)

⎧⎨
⎩

Given g ∈W, f ∈ L. Seek u ∈ W such that
Tu = f in L, and
(u− g) ∈ V = N (B −M) ,

which is clearly well-posed by Theorem 2.3. An equivalent variational formulation of
(2.11) can be written as

(2.12)

{
Given g ∈ W, f ∈ L. Seek u ∈W such that ∀v ∈W,
(Tu, v)L + 1

2 〈(M −B)u, v〉W ′×W = (f, v)L + 1
2 〈(M −B) g, v〉W ′×W .

Note that both formulations (2.11) and (2.12) are not popular, but appealing
since they avoid taking the trace of functions in W , which may not be well defined in
general. More important, they permit us to study the well-posedness of an abstract
DPG method in a quite general setting. To begin, let us partition the domain Ω into
N el nonoverlapping elements Kj, j = 1, . . . , N el with Lipschitz boundaries such that

Ωh = ∪Nel

j=1Kj and Ω = Ωh. Here, h is defined as h = maxj∈{1,...,Nel} diam (Kj). As
a result, all the results (respectively, assumptions) in section 2 are valid elementwise.
We will attach the domain under consideration to operators and spaces whenever it
is necessary to avoid confusion. For example, BKj is the boundary operator defined

in (2.4) when T and T̃ are restricted on Kj.
Decomposing the first term of the left side of (2.12) and using definition (2.4)

elementwise, we obtain

Nel∑
j=1

(
u, T̃ v

)
L(Kj)

+

Nel∑
j=1

〈
BKju, v

〉
W ′(Kj)×W (Kj)

+
1

2
〈(M −B)u, v〉W ′(Ω)×W (Ω)

=
Nel∑
j=1

(f, v)L(Kj)
+

1

2
〈(M −B) g, v〉W ′(Ω)×W (Ω) ,

where u appearing in the duality pairings in the second term of the left side is under-
stood as the restriction of u on Kj .

Now, it is natural to seek u in L (Ωh) = L (Ω), but then definition (2.4) is no longer
valid. Therefore, we define a new variable q living in the quotient space W̃ (Ω) :=
W/Q (Ω) with Q given by

Q := {q ∈ W (Ω) : a (q, v) = 0 ∀v ∈W (Ωh)} ,
where

a (q, v) :=
Nel∑
j=1

〈
BKjq, v

〉
W ′(Kj)×W (Kj)

+
1

2
〈(M −B) q, v〉W ′(Ωh)×W (Ωh)

.

Here, W (Ωh) := {v : v|Kj
∈ W (Kj)} is the broken graph space with norm defined via

‖v‖2W (Ωh)
:=

∑Nel

j=1 ‖T̃ v‖2L(Kj)
+ ‖v‖2L(Ωh)

and W ′(Ωh) is its topological dual. Clearly,

Q is a closed subspace of W (Ω), and hence it is meaningful to define the standard

quotient norm in W̃ (Ω) as

‖q‖W̃ = inf
r∈W (Ω):r−q∈Q

‖r‖W ∀q ∈ W̃ (Ω) .
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Before stating our abstract DPG formulation, we need to extend, using a version of
the Hahn–Banach theorem [20] or any other valid continuous extensions, (M −B) q
and (M −B) g from W ′ (Ω) to W ′ (Ωh), again denoted by (M −B) q and (M −B) g,
respectively. Note that both extensions are, in general, not unique. We therefore
impose the following compatibility condition:

(2.13)
(M −B) q = (M −B) g in W ′ (Ω)

⇓
(M −B) q = (M −B) g in W ′ (Ωh) .

At this level of abstraction, the use of the Hahn–Banach extension argument together
with the compatibility condition is necessary for our theory to be rigorous. In practice,
both conditions are often trivially satisfied as demonstrated in all examples in this
paper.

Now, let us propose the following DPG formulation:

Given g ∈W (Ω) , f ∈W ′ (Ωh) . Seek (u, q) ∈ L (Ωh)× W̃ (Ω) such that

Nel∑
j=1

(
u, T̃ v

)
L(Kj)

+

Nel∑
j=1

〈
BKjq, v

〉
W ′(Kj)×W (Kj)

+
1

2
〈(M −B) q, v〉W ′(Ωh)×W (Ωh)

=

Nel∑
j=1

〈f, v〉W ′(Kj)×W (Kj)
+

1

2
〈(M −B) g, v〉W ′(Ωh)×W (Ωh)

∀v ∈W (Ωh) ,

(2.14)

where we have relaxed the data f in the DPG formulation (2.14) to allow it to live in
the dual space W ′ (Ωh) ⊃ L (Ω) of the broken graph space W (Ωh).

For convenience, we shall equivalently write (2.14) in the usual form b ((u, q) , v) =
� (v), where the bilinear form b ((u, q) , v) and the linear form � (v) are obviously defined
as the right and left sides of (2.14), respectively.

The first step is to study the consistency of our DPG formulation. That is, if the
data are sufficiently smooth, the solution of (2.11) should be a solution of the DPG
formulation and vice versa.

Lemma 2.4 (consistency). Assume f ∈ L (Ω). If u ∈ W (Ω) is a solution
of (2.11), then (u, u) ∈ L (Ωh) × W̃ (Ω) is a solution of the DPG equation (2.14).
Conversely, if (u, q) ∈ L (Ωh)× W̃ (Ω) is a solution of (2.14), then u is a solution of
(2.11).

Proof. Let u be the unique solution of (2.11) and set q = u. Using the compati-
bility condition (2.13) and (2.4) we conclude that (u, q) = (u, q = u) solves the DPG
formulation (2.14).

Conversely, taking v ∈W0 (Ω) we have

Nel∑
j=1

〈
BKjq, v

〉
W ′(Kj)×W (Kj)

= 〈Bq, v〉W ′(Ω)×W (Ω) = 〈q, Bv〉W ′(Ω)×W (Ω) = 0,

where we have used (2.4), self-adjointness of B, and Theorem 2.1. Similarly, using
the compatibility condition we observe

〈(M −B) q, v〉W ′(Ωh)×W (Ωh)
= 〈(M −B) q, v〉W ′(Ω)×W (Ω)(2.15)

= 〈q, (M∗ −B) v〉W ′(Ω)×W (Ω) = 0,
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and by the same token 〈(M −B) g, v〉W ′(Ωh)×W (Ωh)
= 0. Consequently, (2.14) sim-

plifies to

(f, v)L(Ω) =
(
u, T̃ v

)
L(Ω)

= 〈Tu, v〉W ′
0(Ω)×W0(Ω) ∀v ∈W0 (Ω) ,

where we have used (2.2a) in the last equality. It follows that Tu = f ∈ L (Ω), i.e.,
u ∈W (Ω). What remains to be done is to show that (u− g) ∈ V = N (B −M).

Using (2.4) and taking v ∈W (Ω), formulation (2.14) becomes

〈B (q − u) , v〉W ′(Ω)×W (Ω) =
1

2
〈(M −B) (g − q) , v〉W ′(Ω)×W (Ω) ,

and hence

(2.16) B (q − u) = (M −B)
(g − q)

2
in W ′ (Ω) .

Now, given (2.5a), it can be shown, see [24, Lemma 4.2], that (2.5b) is equivalent to

W = N (B −M∗) +N (B +M∗) ,

which, after using a similar argument as in [24, Lemma 4.3], implies

R (B −M) ∩R (B +M) = {0} .

Since R (B) = R (M) as stated in Theorem 2.1, it follows that

(2.17) R (B −M) ∩R (B) = {0} .

Combining (2.16) and (2.17) yields

(B −M) (u− g) = 0,

and hence u is a solution of (2.11).
Corollary 2.5. Assume f ∈ L (Ω). There exists a unique solution (u, q) for

the DPG formulation (2.14). Furthermore, the component q of the solution satisfies
the boundary condition, i.e., (B −M) (q − g) = 0.

Proof. Lemma 2.4 implies that there exists a solution (u, q) for the DPG formu-
lation (2.14) and the first component u is unique since it solves the strong equation
(2.11). To prove the uniqueness of q, we first assume that (u, q1) and (u, q2) are two
solutions of (2.14). Then, a simple subtraction shows that (q1 − q2) ∈ Q, which in
turns implies that q1 = q2 in the quotient space W̃ (Ω). The last assertion is obvious
from the last steps in the proof of Lemma 2.4.

It should be pointed out that Corollary 2.5 provides the existence and uniqueness
of the DPG solution for f ∈ L (Ω). In this case, the stability of the component u is
ready due to the well-posedness of the strong problem (2.11). In order to obtain the
well-posedness of the DPG formulation, the existence and uniqueness together with
stability of both u and q must be established for all f ∈ W ′ (Ωh). To this end, we
first define the following norm

(2.18) ‖[[v]]‖∂Ωh
:= sup

q∈W̃ (Ω)

a (q, v)

‖q‖W̃
= sup

r∈W (Ω)

a (r, v)

‖r‖W
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for the “jump” [[v]], which will be clear for concrete examples in section 3. We next
define norms in trial and test spaces such that both continuity and inf-sup constants
are unity. One way to construct such norms is via a simple application of the Cauchy–
Schwarz inequality to the bilinear form in (2.14) to have

b ((u, q) , v) ≤
⎛
⎝Nel∑

j=1

‖u‖2L(Kj)
+ ‖q‖2W̃ (Ωh)

⎞
⎠

1
2

︸ ︷︷ ︸
‖(u,q)‖opt

×
⎛
⎝Nel∑

j=1

∥∥∥T̃ v∥∥∥2

L(Kj)
+ ‖[[v]]‖2∂Ωh

⎞
⎠

1
2

︸ ︷︷ ︸
‖v‖opt

,

where the subscript opt denotes the “natural optimal” norms in trial and test spaces
correspondingly (see, e.g., [12] for a related approach). At this point, one needs to
ensure that the optimal norm generates the same topology as that generated by the
canonical norm in the broken graph space W (Ωh). Here is the desired result.

Theorem 2.6. For all v ∈W (Ωh), there holds

c1 ‖v‖opt ≤ ‖v‖W (Ωh)
≤ c2 ‖v‖opt ,

i.e., ‖·‖opt and ‖·‖W (Ωh)
are equivalent, and hence generate the same topology in

W (Ωh).
Proof. Owing to the continuity of B,BKj , and M from (2.4) and (2.5), it is easy

to see that ‖[[v]]‖∂Ωh
≤ C ‖v‖opt, and hence the optimal test norm is bounded from

above by the broken graph norm. To obtain the converse, we adapt the argument
proposed in [17] to our abstract framework. We begin by considering the following
equation

(2.19)

⎧⎨
⎩

Given v ∈W (Ωh) ⊂ L (Ω) . Seek w ∈W (Ω) such that
Tw = v in L (Ω) , and
w ∈ V = N (B −M) .

By Theorem 2.3, (2.19) is well-posed and the following estimates hold:

μ0 ‖w‖L(Ω) ≤ ‖v‖L(Ω) and
μ0

1 + μ0
‖w‖W (Ω) ≤ ‖v‖L(Ω) .

As a result, we have

‖v‖2L(Ω) = (Tw, v)L(Ω) =

Nel∑
j=1

(
w, T̃ v

)
L(Kj)

+ a (w, v)

≤
Nel∑
j=1

‖w‖L(Kj)

∥∥∥T̃ v∥∥∥
L(Kj)

+ sup
r∈W (Ω)

a (r, v)

‖r‖W
‖w‖W (Ω)

≤
⎛
⎝Nel∑

j=1

‖w‖2L(Kj)
+ ‖w‖2W (Ω)

⎞
⎠

1
2
⎛
⎝Nel∑

j=1

∥∥∥T̃ v∥∥∥2

L(Kj)
+ ‖[[v]]‖2∂Ωh

⎞
⎠

1
2

≤
√

(1 + μ0)
2

μ2
0

‖v‖L(Ω) ‖v‖opt ,

from which it follows that ‖v‖W (Ωh)
≤

√
1+μ2

0+(1+μ0)
2

μ2
0

‖v‖opt .
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Let us define the DPG operator B : L (Ωh) × W̃ (Ω) → W ′ (Ωh) via the DPG
bilinear form as

〈B (u, q) , v〉W ′(Ωh)×W (Ωh)
:= b ((u, q) , v) .

We are now in position to discuss the well-posedness of the DPG formulation.
Theorem 2.7 (well-posedness of the DPG formulation). The DPG formulation

(2.14) is well-posed, and the continuity and inf-sup constants are unity in the optimal
norms. In particular,

‖B (u, q)‖opt := sup
v∈W (Ωh)

b((u, q) , v)

‖v‖opt
= ‖(u, q)‖opt .

Proof. Since, by the Riesz representation theorem, the equality in the Cauchy–
Schwarz inequality b ((u, q) , v) ≤ ‖(u, q)‖opt ‖v‖opt is attainable, Theorem 2.6 in [8]
shows that the continuity constant M and the inf–sup constant γ are unity. By the
Banach–Nečas–Babuška theorem [20] (also known as the generalized Lax–Milgram
theorem [4, 29]), the remaining task is to prove the following implication(

b ((u, q) , v) = 0 ∀ (u, q) ∈ L (Ωh)× W̃ (Ω)
)
⇒ v = 0.

To this end, take q = u ∈ V = N (M −B) ⊂ W (Ω). Then, applying (2.4) element
by element the expression b ((u, q) , v) = 0 becomes

(Tu, v)L(Ω) = 0,

which yields v = 0 in L (Ω) since T is isomorphic from V to L as in Theorem 2.3, and
this ends the proof.

Corollary 2.8. There holds

‖B (u, q)‖W ′(Ωh)
:= sup

v∈W (Ωh)

b((u, q) , v)

‖v‖W (Ωh)

≥
√

μ2
0

1 + μ2
0 + (1 + μ0)

2 ‖(u, q)‖opt .

Proof. Using Theorem 2.7 and the inequality at the end of the proof of Theo-
rem 2.6 we have

‖(u, q)‖opt = sup
v∈W (Ωh)

b((u, q) , v)

‖v‖opt
≤

√
1 + μ2

0 + (1 + μ0)
2

μ2
0

sup
v∈W (Ωh)

b((u, q) , v)

‖v‖W (Ωh)

,

which ends the proof.
Remark 2.9. The result in Corollary 2.8 shows that the inf-sup constant of the

DPG formulation (2.14) is independent of the mesh and the same order of the inf-
sup constant μ0 of the strong form (2.11). Note that, up to this point, the infinite
dimensional DPG formulation (2.14) and its well-posedness are valid for any DPG
method using L2 as the trial space and (broken) graph space as the test space.

For the rest of the paper, for convenience, we denote the broken graph norm as
‖v‖lopt := ‖v‖W (Ωh)

and define the corresponding norm in the trial space

‖(u, q)‖lopt := sup
v∈W (Ωh)

b((u, q) , v)

‖v‖lopt
= ‖B (u, q)‖W ′(Ωh)

.

We also denote the DPG method with optimal test norm as DPGopt and with broken
graph test norm as DPGlopt. Note that they are different methods as shown in
section 2.4.
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2.4. Convergence of finite dimensional DPG methods with optimal test
functions. Let us now denote U = L (Ωh)× W̃ (Ω) and V =W (Ωh). Given a set of

N independent basis functions {ϕi}Ni=1 in the trial space U , the corresponding optimal
test functions ψi = Sϕi ∈ V , i = 1, . . . , N , images of the trial-to-test operator S [14],
can be computed by solving the following equation

(2.20) (ψi, v)V = b (ϕi, v) , ∀v ∈ V ,

where ‖·‖V ∈ {‖·‖opt , ‖·‖lopt} is a norm in V . Since our DPG formulation (2.14) is

well-posed as proved in Theorem 2.7, S is bijective and hence {ψi}Ni=1 is also a set

of N independent basis functions in V . Let us denote UN = span {ϕi}Ni=1, VN =

span {ψi}Ni=1, and let (uN , qN ) be the solution of

(2.21)

{
Seek (uN , qN) ∈ UN such that
b ((uN , qN ) , v) = � (v) ∀v ∈ VN .

Note that the well-posedness of this discrete equation is inherited from the contin-
uous setting (2.14); see [8, 14, 15] for the detailed exposition. Then the following
convergence result is standard.

Theorem 2.10. Let ‖·‖X , ‖·‖Y ∈ {‖·‖opt , ‖·‖lopt} be two norms in V such that

c1 ‖v‖X ≤ ‖v‖Y ≤ c2 ‖v‖X ∀v ∈ V .

If the test basis functions {ψi}Ni=1 are computed using the ‖·‖Y -norm for the test space
V, then

‖(u, q)− (uN , qN )‖X ≤ c2
c1

inf
(w,p)∈UN

‖(u, q)− (w, p)‖X .

Proof. See [30] for a proof.
Clearly the error is optimal if we use the ‖·‖X -norm for the test space V to

compute the test basis functions. Furthermore, the stiffness matrix of the discrete
problem is always symmetric positive definite. Indeed, the symmetry and the positive
definiteness are direct consequences of the inner product in V , i.e.,

b (ϕi, Sϕj) = (Sϕi, Sϕj)V = (Sϕj , Sϕi)V = b (ϕj , Sϕi) .

Remark 2.11. Note that the broken graph norm ‖v‖lopt allows one to compute
optimal test functions elementwise, and hence practical, as opposed to the optimal
test norm ‖v‖opt that requires us to solve for each optimal test function on the whole
mesh.

Remark 2.12. It is assumed that we can solve for the optimal test basis functions
{ψi}Ni=1 exactly. In practice, we approximate ψi by S̃ϕi, where S̃ is an approximation
of S [26], namely, we replace (2.20) by(

S̃ϕi, v
)
V
= b (ϕi, v) ∀v ∈ Vr ⊂ V .

As a consequence, the discrete well-posedness is no longer inherited from the continu-
ous one as in the ideal DPG methods. Nevertheless, under some suitable conditions,
DPG methods with approximate optimal test functions are still well-posed [26].
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3. Examples. For each set of PDEs considered in this section, we first convert
the governing equations to a first order system (if necessary), followed by a trace
theorem on a single domain (if available). Our task is to first provide the detailed
and explicit specifications of B,M, V , and V ∗ for each system of PDEs. We then
discuss a continuous extension of (M −B) q from W ′ (Ω) to W ′ (Ωh) along with the
compatibility condition (2.13) and the space Q. These abstract objects, which may
seem to be confusing on the abstract level at the first sight, become familiar entities
adapting to each set of PDEs. One of the main results of our analysis is the equivalence
of a vector in the quotient space, q ∈ W/Q (Ω), and its trace on the skeleton, thus
making our DPG formulation practical. More important, the well-posedness result in
section 2.3, which was developed for DPG formulation with q ∈ W/Q (Ω), can now be
transfered to practical DPG formulation with traces. Finally, the DPG formulation
specialized to the corresponding PDE is presented, followed by a discussion on the
relation of our DPG methods and the existing ones in the literature. As will be
shown, we recover several existing DPG methods and discover new ones for not only
the PDEs that have been already studied but also those that have not been tackled
by the DPG community.

We denote the skeleton of the mesh by Γh = ∪Nel

j=1∂Kj , the set of all (uniquely
defined) faces/edges e, each of which comes with a normal vector ne. The internal
skeleton is then defined as Γ0

h = Γh \ ∂Ω. If a face/edge e ∈ Γh is the intersection of
∂Ki and ∂Kj, i �= j, we define the following jumps:

[[v]] := sgn
(
n−)

v− + sgn
(
n+

)
v+, [[τ ]] := n− · τ− + n+ · τ+,

where

sgn
(
n±)

:=

{
1 if n± = ne

−1 if n± = −ne.

For e belonging to the domain boundary ∂Ω, we define

[[v]] := v, [[τ ]] := ne · τ on ∂Ω.

Note that we allow the arbitrariness in assigning “−” and “+” quantities to the
adjacent elements Ki and Kj.

For the rest of the paper, we use the same notation for both a function and its
trace (if it is well defined) when there is no ambiguity.

3.1. Scalar advection-reaction equations. We consider the following scalar
hyperbolic PDE (a related Petrov–Galerkin method for this equation can be found
in [12]) over a Lipschitz domain Ω:

β · ∇u+ μu = f in Ω, and u = g on ∂Ω−,

where ∂Ω+ := {x ∈ ∂Ω : β · n ≥ 0}, ∂Ω− := {x ∈ ∂Ω : β · n < 0} , β ∈ [
W 1,∞ (Ω)

]d
,

μ ∈ L∞ (Ω), and

g ∈ L2
β·n

(
∂Ω−)

:=

{
v : ‖v‖2L2

β·n(∂Ω−) =

∫
∂Ω−

|β · n| |v|2 ds <∞
}
.
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For convenience in writing, we also define Γ±
h := Γh \ ∂Ω∓. We assume there exists

μ0 > 0 such that

(3.1) μ− 1

2
∇ · β ≥ μ0 > 0 a.e in Ω.

Note that assumption (3.1) is not a limitation since it is always valid under a change
of variable with exponential factor [25, 27]. Clearly, the graph space is given by

W (Ω) =
{
u ∈ L2 (Ω) : β · ∇u ∈ L2 (Ω)

}
=: H1

β (Ω) .

This is a particular instance of Friedrichs’ systems considered in section 2.2 with
m = 1, C = μ, and Ak = βk, where βk is the kth component of vector β. The
following proposition summarizes some of the results on the trace, M , B, V , and V ∗

in [21, 24] for a single domain.
Lemma 3.1. Assume that ∂Ω− and ∂Ω+ are well-separated, i.e., dist (∂Ω−, ∂Ω+) >

0. Then the following hold.
(i) The trace operator γ : H1

β (Ω) → L2
β·n (∂Ω) is a continuous surjection.

(ii) B = β · n and the boundary operator B satisfies

〈Bu, v〉W ′(Ω)×W (Ω) =

∫
∂Ω

β · nuv ds ∀u, v ∈ H1
β (Ω) .

(iii) Define 〈Mu, v〉W ′(Ω)×W (Ω) =
∫
∂Ω |β · n|uv ds; then M satisfies (2.5a) and

(2.5b). Furthermore,

V =
{
v ∈ H1

β (Ω) : β · n v|∂Ω− = 0
}
, V ∗ =

{
v ∈ H1

β (Ω) : β · n v|∂Ω+ = 0
}
.

What remains to be studied are the compatibility condition and the quotient space
H̃1

β (Ω) = H1
β (Ω) /Q (Ω). We assume that the mesh satisfies the separation condition

in Lemma 3.1, namely, ∂K−
j and ∂K+

j are well-separated2 for all j = 1, . . . , N el.

Without loss of generality, it is assumed that β · n �= 0 a.e. on Γ+
h in the following

theorem since otherwise we can always redefine Γ+
h by taking away any nontrivial

measure subsets of Γ+
h on which β · n = 0, since they do not contribute to the DPG

bilinear form. Using results of B,M and the trace operator in Lemma 3.1, a natural
extension of (M −B) q from W ′ (Ω) to W ′ (Ωh) is specified as

〈(M −B) q, v〉[H1
β(Ωh)]

′×H1
β(Ωh)

= −2
∑

e∈∂Ω−
h

∫
e

β · nqv ds

for any q ∈ H1
β (Ω) and v ∈ H1

β (Ωh). Consequently, the compatibility condition (2.13)

is trivial. We next study the quotient space H̃1
β (Ω) = H1

β (Ω) /Q (Ω) and its trace on
the mesh skeleton.

2On the one hand, this is only a sufficient condition. On the other hand, as shown in [24], if this
condition is violated the second assertion in Lemma 3.1 does not hold in general. In practice, this
assumption is somewhat impractical even on a single domain, but we need it for the theory to go
through rigorously.
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Theorem 3.2.

(i) Q = {q ∈ H1
β(Ω) : q = 0 on Γ+

h }. Furthermore, H1
β(Ω)/Q (Ω) is isomorphic

to L2
β·n(Γ

+
h ). In particular, the trace of a function in the quotient space

H1
β(Ω)/Q(Ω) is independent of its representations.

(ii) For each û ∈ L2
β·n(Γ

+
h ), define a new norm

[|û|]L2
β·n(Γ

+
h )

= ‖[q]‖H1
β(Ω)/Q(Ω) ,

where [q] ∈ H1
β(Ω)/Q(Ω) such that there exists a representation q satisfying

q = û on Γ+
h . Then, [| · |]L2

β·n(Γ
+
h ) is equivalent to ‖·‖L2

β·n(Γ
+
h ), and hence

generating the same topology in L2
β·n(Γ

+
h ). In particular, H1

β(Ω)/Q(Ω) is

homeomorphic to L2
β·n(Γ

+
h ).

Proof.
(i) The results in Lemma 3.1 allow us to write a (q, v) as

a (q, v) =

∫
Γ+
h

|β · n| q[[v]] ds =
∑
e∈Γ+

h

∫
e

|β · n| q[[v]] ds,

and to conclude that γ : H1
β(Ω)/Q(Ω) → L2

β·n(Γ
+
h ) is surjective. Clearly,

a(q, v) = 0 ∀v ∈ H1
β(Ωh) implies that γq = 0 on any subset of Γ+

h , and hence
the first assertion follows. The injectivity of γ can be shown as follows. Let
q1, q2 ∈ H1

β(Ω)/Q(Ω) such that their traces on Γ+
h are the same. Then one

has

a (q1 − q2, v) =
∑
e∈Γ+

h

∫
e

|β · n| (q1 − q2) [[v]] ds = 0 ∀v ∈ H1
β (Ωh) ,

which implies q1 = q2 in H1
β (Ω) /Q (Ω).

(ii) The definition of the new norm is meaningful due to (i) and the definition of
norm in the quotient space. Now, since γ : q �→ γq is a continuous surjection
from H1

β(Ω)/Q (Ω) to L2
β·n(Γ

+
h ), we have

‖γq‖L2
β·n(Γ

+
h )

≤ c2 ‖q‖H1
β(Ω)/Q(Ω) = c2[|γq|]L2

β·n(Γ
+
h )
.

On the other hand, since H1
β (Ω) /Q (Ω) and L2

β·n(Γ
+
h ) are Banach spaces,

and γ is bijective, a direct consequence of the Open Mapping theorem [29]
shows that

‖γq‖L2
β·n(Γ

+
h )

≥ c1 ‖q‖H1
β
(Ω)/Q(Ω) = c1[|γq|]L2

β·n(Γ
+
h )
.

Thus, the equivalence of the norms and the homeomorphism follow.
Remark 3.3. One can view the second assertion of Theorem 3.2 as an extension

of the single domain trace theorem presented in the first assertion of Lemma 3.1
to the trace on the skeleton of the mesh. This is a natural task for us to do in
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order to explore the quotient space H1
β (Ω) /Q (Ω) when the graph space has a well-

defined trace space. Note that the trace theorem is typically established for a single
domain with Lipschitz boundary [28]. Here, we need the trace on the skeleton Γh,
for which the result on a single domain does not seem to be directly applicable, and
Theorem 3.2 establishes such a result rigorously. More important, Theorem 3.2 casts
our abstract DPG formulation to the usual form that can be implemented efficiently
on a computer.

As a direct consequence of Theorem 3.2, we can identify q ∈ H1
β (Ω) /Q (Ω) with

û ∈ L2
β·n(Γ

+
h ), and we can use either [| · |]L2

β·n(Γ
+
h )

or ‖·‖L2
β·n(Γ

+
h ) as the norm in

L2
β·n(Γ

+
h ). The ultraweak formulation (2.14) can now be written equivalently as

Given g ∈ L2
β·n(∂Ω

−), f ∈ [
H1

β (Ωh)
]′
. Seek (u, û) ∈ L (Ωh)× L2

β·n(Γ
+
h ) such that

Nel∑
j=1

∫
Kj

u (−∇ · (βv) + μv) dx+
∑
e∈Γ+

h

∫
e

|β · n| û[[v]] ds

= 〈f, v〉[H1
β(Ωh)]

′×H1
β(Ωh)

−
∫
e∈∂Ω−

β · ngv ds ∀v ∈ H1
β (Ωh) .

(3.2)

It follows that all the results in section 2 hold for (3.2). The DPGopt coincides
with the second DPG method analyzed in [8] and the DPGlopt recovers the DPG
method used, but not analyzed, in [15] for the two dimensional transport equation.
The beauty of the abstract formulation here is that the well-posedness of both DPG
methods is immediately available for transport equations in any dimensions.

3.2. Convection-diffusion-reaction equations. The problem of interest in
this section is the convection-diffusion-reaction equation written in the first order
form

ε−1σ +∇u = 0 in Ω,(3.3a)

∇ · σ + β · ∇u+ μu = f in Ω,(3.3b)

u = 0 on ∂Ω,(3.3c)

where we assume β ∈ [L∞ (Ω)]d, ∇ · β ∈ L∞ (Ω), and ε is a d× d symmetric positive
definite matrix with smallest eigenvalue uniformly bounded away from zero. We now
relax condition (3.1) by the following weaker assumption

(3.4) ess inf
Ω

(
μ− 1

2
∇ · β

)
≥ 0;

then it is trivial to see that condition (2.10c) holds. What remains to be checked is
condition (2.10e), but this is immediate by the Poincaré inequality. Consequently,
(3.3) is a particular instance of Friedrichs’ system with partial coercivity introduced
in section 2.2 with m = d + 1. It is also not difficult to see that the graph space is
given by W = H (div,Ω) × H1 (Ω). The following proposition summarizes some of
the results in [21] for a single domain.
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Lemma 3.4.

(i) The trace operator

γ : H (div,Ω)×H1 (Ω) � (σ, u) �→ (σ · n, u) ∈ H− 1
2 (∂Ω)×H

1
2 (∂Ω)

is a continuous surjection satisfying

〈B (σ, u) , (τ , v)〉W ′(Ω)×W (Ω) = 〈σ · n, v〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

+ 〈τ · n, u〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

+

∫
∂Ω

β · nuv ds.

(ii) Define

〈M (σ, u) , (τ , v)〉W ′(Ω)×W (Ω) = 〈σ · n, v〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

− 〈τ · n, u〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

;

then M satisfies (2.5a) and (2.5b). Furthermore,

V = V ∗ =
{
(σ, u) ∈ H (div,Ω)×H1 (Ω) : u|∂Ω = 0

}
= H (div,Ω)×H1

0 (Ω) .

For any q = (qσ, qu) ∈ W (Ω), Lemma 3.6 suggests that a natural extension of
(M −B) q from W ′ (Ω) to W ′ (Ωh) be given by

〈(M −B) q, (τ , v)〉W ′(Ωh)×W (Ωh)
= −2 〈τ · n, qu〉

H− 1
2 (∂Ωh;Rd)×H

1
2 (∂Ωh;Rd)

−
∫
∂Ωh

β · nquv ds,

from which the compatibility condition (2.13) is trivial.
As shown in [21], the boundary matrixM is not unique. In fact there are infinitely

many of them, and our choice is probably the simplest. Next, we study the quotient
space W̃ (Ω) = (H (div,Ω) ×H1 (Ω))/Q (Ω). As in section 3.1, we assume that if β
is not identically zero then β · n �= 0 a.e. on Γh. Here is a result parallel to Theorem
3.2.

Theorem 3.5.

(i) The subspace Q is given by

Q =

{
q ∈ H (div,Ω)×H1 (Ω) : (qσ · n, qu) = 0 on Γ0

h and

qσ · n = −1

2
|β · n| qu in H− 1

2 (∂Ωh)

}
.

Furthermore, (H (div,Ω)×H1(Ω))/Q(Ω) is isomorphic to H− 1
2 (Γh)×H 1

2 (Γh).
In particular, the trace of a function in the quotient space (H(div,Ω) ×
H1(Ω))/Q(Ω) is independent of its representations.

(ii) For each (σ̂, û) ∈ H− 1
2 (Γh)×H

1
2 (Γh), define a new norm

[| (σ̂, û) |]
H− 1

2 (Γh)×H
1
2 (Γh)

= ‖[q]‖(H(div,Ω)×H1(Ω))/Q(Ω) ,

where [q] ∈ (H(div,Ω)×H1(Ω))/Q(Ω) such that there exists a presentation q
of [q] satisfying γq = (qσ ·n, qu) = (σ̂, û) on Γh. Then, [| · |]

H− 1
2 (Γh)×H

1
2 (Γh)

is

equivalent to ‖·‖
H− 1

2 (Γh)×H
1
2 (Γh)

, and hence generating the same topology in

H− 1
2 (Γh)×H 1

2 (Γh). In particular, (H(div,Ω)×H1(Ω))/Q(Ω) and H− 1
2 (Γh)×

H
1
2 (Γh) are homeomorphic.
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Proof. For this example, one has

a (q, (τ , v)) =

Nel∑
j=1

1

2

∫
∂Kj

|β · n| qu[[v]] ds+ 〈[[τ ]], qu〉
H− 1

2 (Γ0
h)×H

1
2 (Γ0

h)

+
∑
e∈Γh

〈qσ · ne, [[v]]〉
H− 1

2 (e)×H
1
2 (e)

.

The surjectivity of the trace operator allows us to easily show that a (q, (τ , v)) = 0
∀ (τ , v) ∈ H (div,Ωh) × H1 (Ωh) implies q = (qσ · n, qu) = 0 on Γ0

h and qσ · n,=
− 1

2β · nqu on H− 1
2 (Ωh). Indeed, take v = 0, then it can be deduced that qu = 0 on

Γ0
h. Next, take v ∈ H1

0 (Ωh), we infer that qσ = 0 on Γ0
h, and the second assertion

now follows. The rest of the proof is similar to that of Theorem 3.2.
As a direct consequence of Theorem 3.5, we can identify q ∈ (H(div,Ω) ×

H1(Ω))/Q(Ω) with (σ̂, û) ∈ H− 1
2 (Γh)×H 1

2 (Γh), and we can use either [|·|]
H− 1

2 (Γh)×H
1
2 (Γh)

or ‖·‖
H− 1

2 (Γh)×H
1
2 (Γh)

as the norm in H− 1
2 (Γh)×H 1

2 (Γh). The abstract DPG formu-

lation (2.14) now equivalently becomes:

Given f ∈ [
H1 (Ωh)

]′
.

Seek (σ, u, σ̂, û) ∈ [
L2 (Ωh)

]d × L2 (Ωh)×H− 1
2 (Γh)×H

1
2 (Γh) such that

Nel∑
j=1

∫
Kj

σ · (ε−1τ −∇v)+ u (−∇ · τ −∇ · (βv) + μv) dx+
1

2

∫
∂Kj

|β · n| û[[v]] ds

+ 〈[[τ ]], û〉
H− 1

2 (Γ0
h)×H

1
2 (Γ0

h)
+ 〈σ̂, [[v]]〉

H− 1
2 (Γh)×H

1
2 (Γh)

= 〈f, v〉[H1(Ωh)]
′×[H1(Ωh)]

∀ (τ , v) ∈ H (div,Ωh)×H1 (Ωh) .

(3.5)

Consequently, results in section 2 are valid for (3.5). More specifically, the well-
posedness of DPGopt and DPGlopt is readily available for (3.5). It should be pointed
out that the DPGopt and DPGlopt for (3.5), with β = 0 and μ = 0, are identical to
those analyzed in [14] for the Poisson equation if f ∈ L2 (Ω). Here, our approach is
novel in the sense that the function spaces and the well-posedness of the correspond-
ing DPG formulation are the direct consequences of the single abstract framework
developed in section 2 for all f ∈ [

H1 (Ωh)
]′ ⊃ L2 (Ω). However, we admit the fact

that taking advantage of the particular structure of a PDE under consideration may
yield sharper stability estimates and much more. This is not possible for our abstract
and unified framework in section 2.

It turns out that the DPGlopt coincides with the DPG method used in [15] for
the convection-diffusion problem (μ = 0) in two dimensions. (Actually, there is a
slight difference in imposing the boundary condition for the convection term, i.e, the
third term on the right side of (3.5); we have a factor 1/2 at the domain boundary
∂Ωh instead of 1 as in [15].) However, while the DPGlopt method is assumed to be
well-posed in [15], our results in section 2 show that it is indeed the case and the
proof is the direct consequence of Theorem 2.7. Moreover, our function space setting
for û comes out naturally from the abstract setting as the trace of the graph space
while it is left unspecified in [15]. Recently, the authors of [15] have analyzed their
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DPG method for the convection-diffusion problem in [14] where they combine the
diffusion flux σ̂ and convection flux |β · n| û into a single unknown total flux. This
again comes out naturally from our abstract DPG, and therefore we recover the DPG
method in [14]. Nevertheless, our abstract framework is not able to recover the robust
versions of the DPG method developed in [19].

3.3. Linear(ized) continuum mechanics. The problem of interest in this sec-
tion is governed by

(3.6)

Aσ − 1
2

(
∇u+ (∇u)T

)
= 0 in Ω,

− 1
2∇ · (σ + σT

)
+ β · ∇u+ μu = f in Ω,

u = 0 on ∂Ω,

where A is the compliance tensor, u the displacement in solid mechanics or velocity
in fluid mechanics, and σ the stress tensor. Note that the stress tensor σ with values
in R

d,d can be identified with a vector-valued field in R
d2

. However, to simplify the
notations we use the same symbol σ for both tensor-valued and vector-valued fields,
and this should be clear in each context. Similarly, we identify the tensor A with a
matrix in R

d2,d2

.
Assume that A is self-adjoint and uniformly positive definite on R

d,d with each
component in L∞ (Ω). We further assume that (3.4) holds. Set m = d2+d, mσ = d2,
and mu = d. Thus, the full coercivity (3.1) does not hold, but the partial coercivity
(2.10c) does. It is straightforward to cast (3.6) into the framework of a two-field
Friedrichs’ system in section 2.2.2. Indeed, (3.6) satisfies hypotheses (2.7a), (2.7b),

and (2.7c) if β ∈ [
W 1,∞ (Ω)

]d
and μ ∈ L∞ (Ω). In general, (2.9) does not hold unless

μ0 > 0. Fortunately, (2.10c) holds since Cσσ = A is uniformly positive definite.
What remains to be checked is the assumption (2.10e), but this is clear by Korn’s
first inequality. Thus, (3.6) fulfills all the conditions of the two-field Friedrichs’ system
discussed in section 2.2.2.

Let us denote H(div,Ω;Rd,d) = {σ ∈ L2(Ω;Rd,d) : ∇ · (σ + σT ) ∈ L2(Ω;Rd)},
where the divergence operator acts rowwise. Then, the graph space [22, 23] is given
by W (Ω) = H(div,Ω;Rd,d) ×H1(Ω;Rd). Next, we extract from [23] the properties
of B,M, V, V ∗, and the trace operator γ for a single domain.

Lemma 3.6. The following hold.
(i) The trace operator γ defined by

γ : H
(
div,Ω;Rd,d

)×H1
(
Ω;Rd

) → H− 1
2

(
∂Ω;Rd

)×H
1
2

(
∂Ω;Rd

)
,

(σ, u)
γ�→ (σ · n, u)

is a continuous surjection satisfying

〈B (σ, u) , (τ , v)〉W ′(Ω)×W (Ω)

= −
〈
1

2

(
σ + σT

) · n, v〉
H− 1

2 (∂Ω;Rd)×H
1
2 (∂Ω;Rd)

−
〈
1

2

(
τ + τT

) · n, u〉
H− 1

2 (∂Ω;Rd)×H
1
2 (∂Ω;Rd)

+

∫
∂Ω

β · nuv ds.
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(ii) Define

〈M (σ, u) , (τ , v)〉W ′(Ω)×W (Ω) = −
〈
1

2

(
σ + σT

) · n, v〉
H− 1

2 (∂Ω;Rd)×H
1
2 (∂Ω;Rd)

+

〈
1

2

(
τ + τ T

) · n, u〉
H− 1

2 (∂Ω;Rd)×H
1
2 (∂Ω;Rd)

;

then M satisfies (2.5a) and (2.5b). Furthermore,

V = V ∗ = H
(
div,Ω;Rd,d

)×H1
0

(
Ω;Rd

)
.

For any q = (qσ, qu) ∈ W (Ω), Lemma 3.6 suggests that a natural extension of
(M −B) q from W ′ (Ω) to W ′ (Ωh) be given by

〈(M −B) q, (τ , v)〉W ′(Ωh)×W (Ωh)
=

〈(
τ + τT

) · n, qu〉
H− 1

2 (∂Ωh;Rd)×H
1
2 (∂Ωh;Rd)

−
∫
∂Ωh

β · nquv ds,

from which the compatibility condition (2.13) is trivial.

Next, we study the quotient space W̃ (Ω) = (H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω).
As in section 3.1, we assume that if β is not identically zero then β · n �= 0 a.e. on
Γh. Here is a result parallel to Theorem 3.2.

Theorem 3.7.

(i) The subspace Q is given by

Q =

{
q ∈ H

(
div,Ω;Rd,d

)×H1
(
Ω;Rd

)
:

(
1

2

(
qσ + (qσ)

T
)
· n, qu

)

= 0 on Γ0
h and

(
qσ + (qσ)

T
)
· n = |β · n| qu in H− 1

2

(
∂Ωh;R

d
)}

.

Furthermore, (H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω) is isomorphic to H− 1
2 (Γh;

R
d)×H 1

2 (Γh;R
d). In particular, the trace of a function in the quotient space

(H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω) is independent of its representations.

(ii) For each (σ̂, û) ∈ H− 1
2 (Γh;R

d)×H
1
2 (Γh;R

d), define a new norm

[| (σ̂, û) |]
H− 1

2 (Γh;Rd)×H
1
2 (Γh;Rd)

= ‖[q]‖(H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω) ,

where [q] ∈ (H(div,Ω;Rd,d) × H1(Ω;Rd))/Q(Ω) is such that there exists a
representation q satisfying γq = (12 (q

σ + (qσ)T ) · n, qu) = (σ̂, û) on Γh.
Then, [| · |]

H− 1
2 (Γh;Rd)×H

1
2 (Γh;Rd)

is equivalent to ‖·‖
H− 1

2 (Γh;Rd)×H
1
2 (Γh;Rd)

, and

hence generating the same topology in H− 1
2 (Γh;R

d) × H
1
2 (Γh;R

d). In par-

ticular, (H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω) and H− 1
2 (Γh;R

d)×H
1
2 (Γh;R

d)
are homeomorphic.

Proof. For this example, one has

a (q, (τ , v)) =

Nel∑
j=1

1

2

∫
∂Kj

|β · n| qu[[v]] ds−
〈
1

2
[[τ + τT ]], qu

〉
H− 1

2 (Γ0
h;R

d)×H
1
2 (Γ0

h);Rd

−
∑
e∈Γh

〈
1

2

(
qσ + (qσ)

T
)
· ne, [[v]]

〉
H− 1

2 (e;Rd)×H
1
2 (e;Rd)

.

The rest of the proof is similar to that of Theorem 3.5.
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Theorem 3.7 suggests that we can identify q ∈ (H(div,Ω;Rd,d)×H1(Ω;Rd))/Q(Ω)

with (σ̂, û) ∈ H− 1
2 (Γh;R

d)×H
1
2 (Γh;R

d). The abstract DPG formulation (2.14) now
equivalently becomes

Given f ∈ [
H1

(
Ωh;R

d
)]′

.

Seek (σ, u, σ̂, û) ∈ L2
(
Ωh;R

d,d
)× L2

(
Ωh;R

d
)×H− 1

2

(
Γh;R

d
)×H

1
2

(
Γh;R

d
)

such that, ∀ (τ , v) ∈ H
(
div,Ωh;R

d,d
)×H1

(
Ωh;R

d
)
,

Nel∑
j=1

∫
Kj

σ :

(
Aτ +

1

2

(
∇v + (∇v)T

))
+ u ·

(
1

2
∇ · (τ + τT

)−∇ · (βv) + μv

)
dx

+

Nel∑
j=1

1

2

∫
∂Kj

β · nû · [[v]] ds−
〈
1

2
[[τ + τT ]], û

〉
H− 1

2 (Γ0
h;R

d)×H
1
2 (Γ0

h;R
d)

− 〈σ̂, [[v]]〉
H− 1

2 (Γh;Rd)×H
1
2 (Γh;Rd)

= 〈f, v〉[H1(Ωh;Rd)]′×H1(Ωh;Rd) .

(3.7)

Consequently, the results in section 2 hold. The DPGlopt for linear elasticity
equations (β = 0 and μ = 0) is related to the DPG method analyzed in [7], but here
in this paper our well-posedness proof is different and comes directly from section 2.
A linearized version of the compressible Navier–Stokes equations considered in [23]
is corresponding to A = Id2 − 1

d+λZ, where λ > 0 is the compressibility factor,
and Z[ij][kl] = δijδkl. Compared to the existing DPG method for one dimensional
Navier–Stokes equation in [10], our two DPG methods seem to be the first efforts in
developing DPG approaches with guaranteed well-posedness to a multidimensional
linearized version of the Navier–Stokes equations.

3.4. Time-domain acoustic equations. In this section, we apply our abstract
framework devised in section 2 to time-domain acoustic equations. Alternatively, one
can consider frequency-domain acoustic equations leading to Helmholtz equations for
which a DPG method has been proposed and analyzed in [18]. The time-domain
acoustic equations in the pressure-velocity form are given by

ρc2
∂p

∂t
+∇ · u = 0 in Ω× (0, Tf),

ρ
∂u

∂t
+∇p = f in Ω× (0, Tf),

p(x, 0) = p0 (x) , u(x, 0) = u0 (x) in Ω,

u · n = λp in ∂Ω× (0, Tf),

where ρ is the density, c the speed of sound, p the pressure, and u the velocity vector.
There are several approaches to deal with time-dependent problems. For example,
one can use our DPG framework simultaneously for both space and time to arrive
at a space-time DPG formulation (see Chan, Demkowicz, and Shashkov [11] for a
space-time DPG formulation of one dimensional convection, convection-diffusion, and
Burger’s equations). Here, we explore a simple approach to cast the time-dependent
acoustic equations into a Friedrichs’ system discussed in section 2.2. To this end, we
first assume that both ρ ∈ L∞ (Ω) and c ∈ L∞ are positive and uniformly bounded
away from zero. Next, we discretize the time derivative, using the backward Euler
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method for example, to arrive at the following generic equations for each time step:

εσ +∇u = f in Ω,

μu+∇ · σ = g in Ω,

σ · n = λu on ∂Ω,

which, similar to section 3.2, is clearly a Friedrichs’ system discussed in section 2.2
with m = d+ 1. Similar to section 3.2, the graph space is

W = H (div,Ω)×H1 (Ω)

and

〈B (σ, u) , (τ , v)〉W ′(Ω)×W (Ω) = 〈σ · n, v〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

+ 〈τ · n, u〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

.

For this problem, we define the operator M as

〈M (σ, u) , (τ , v)〉W ′(Ω)×W (Ω) = 〈τ · n, u〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

− 〈σ · n, v〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

+ 2

∫
∂Ω

λuv ds.

Then, it can be shown M satisfies (2.5a) and (2.5b). Furthermore,

V =
{
(σ, u) ∈ H (div,Ω)×H1 (Ω) : σ · n = λu on ∂Ω

}
,

V ∗ =
{
(σ, u) ∈ H (div,Ω)×H1 (Ω) : σ · n = −λu on ∂Ω

}
.

For any q = (qσ , qu) ∈ W (Ω), the above results suggest a natural continuous
extension of (M −B) q from W ′ (Ω) to W ′ (Ωh) as

〈(M −B) q, (τ , v)〉W ′(Ωh)×W (Ωh)
= −2 〈qσ · n, v〉

H− 1
2 (∂Ωh)×H

1
2 (∂Ωh)

+ 2

∫
∂Ωh

λquv ds,

from which the compatibility condition (2.13) is trivially satisfied.
The study of the quotient space W̃ (Ω) = (H(div,Ω) × H1(Ω))/Q(Ω) is similar

to the convection-diffusion-reaction problem in section 3.2, and hence omitted. The
abstract DPG formulation (2.14) now equivalently becomes, ∀ (τ , v) ∈ H (div,Ωh)×
H1 (Ωh),

Given (f, g) ∈ [H (div,Ωh)]
′ × [

H1 (Ωh)
]′
.

Seek (σ, u, σ̂, û) ∈ [
L2 (Ωh)

]d × L2 (Ωh)×H− 1
2

(
Γ0
h

)×H
1
2 (Γh) such that

Nel∑
j=1

∫
Kj

σ · (ετ −∇v) + u (−∇ · τ + μv) dx

+ 〈[[τ ]], û〉
H− 1

2 (Γh)×H
1
2 (Γh)

+ 〈σ̂, [[v]]〉
H− 1

2 (Γ0
h)×H

1
2 (Γ0

h)
+

∫
∂Ωh

λûv ds

= 〈g, v〉[H1(Ωh)]
′×[H1(Ωh)]

+ 〈f, τ 〉[H(div,Ωh)]
′×[H(div,Ωh)]

.

(3.8)
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Consequently, the results in section 2 hold. Our work is one of the first efforts in
developing DPG methods for time-dependent PDEs in general, and the first for time-
domain acoustic equations in particular. Since the bilinear form is identical for all
time steps, so are the optimal test functions, assuming the trial basis functions are not
a function of time. In other words, the optimal test functions, once computed for the
first time step, can be used for all subsequent time steps. Another direct consequence
is that the stiffness matrix remains the same for all time steps, implying that matrix
factorization is only done once if a direct solver is used. Hence, the time-domain DPG
methods for acoustic equations proposed in this section are slightly more expensive
than the existing DPG methods for steady convection-diffusion problems.

3.5. Maxwell’s equations in the elliptic regime. We now apply the abstract
theory in section 2 to a version of the Maxwell’s equation considered in [21, 24]. The
governing equations in three dimensional space, i.e., d = 3, read

μH +∇× E = f in Ω,

λE −∇×H = g in Ω,

E × n = 0 on ∂Ω,

where μ, λ ∈ L∞ (Ω) are positive and bounded away from zero. Here, E and H are
the electric and the magnetic fields, respectively. Clearly, E,H, f, g are vector-valued
functions in R

3. One can cast the governing equations into the Friedrichs’ framework
discussed in section 2.2 as in [21, 24] with the graph space

W (Ω) = H (curl,Ω)×H (curl,Ω) .

We refer the readers to [21, 24] for the expressions of B and M and the proof that

V = V ∗ = {(H,E) ∈ H (curl,Ω)×H (curl,Ω) : (E × n)|∂Ω = 0} .
Now, for any q = (qH , qE) ∈ W (Ω), the natural extension of (M −B) q from W ′ (Ω)
to W ′ (Ωh) is defined as

〈(M −B) q, (h, e)〉W ′(Ωh)×W (Ωh)
=

Nel∑
j=1

−2
(∇× qE , h

)
[L(Kj)]

3 +2
(
qE ,∇× h

)
[L(Kj)]

3 .

Thus, the compatibility condition (2.13) is automatically satisfied.
Next, we study the quotient space W̃ (Ω) = H (curl,Ω)×H (curl,Ω)/Q (Ω). Here

is a result parallel to Theorem 3.2.
Theorem 3.8.

(i) The subspace Q is given by

Q =
{
q ∈ H (curl,Ω)×H (curl,Ω) : qH × n = 0 on Γh

}
.

Furthermore, (H (curl,Ω) × H(curl,Ω))/Q(Ω) is isomorphic to H− 1
2 (Γh).

In particular, the trace of a function in the quotient space (H(curl,Ω) ×
H(curl,Ω))/Q(Ω) is independent of its representations.

(ii) For each Ĥ ∈ H− 1
2 (Γh), define a new norm

[|Ĥ |]
H− 1

2 (Γh)
= ‖[q]‖(H(curl,Ω)×H(curl,Ω))/Q(Ω) ,

where [q] ∈ (H (curl,Ω)×H (curl,Ω)) /Q (Ω) such that there exists a repre-
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sentation q satisfying qH × n = Ĥ on Γh. Then, [| · |]
H− 1

2 (Γh)
is equivalent to

‖·‖
H− 1

2 (Γh)
, and hence generating the same topology in H− 1

2 (Γh). In partic-

ular, (H (curl,Ω)×H (curl,Ω)) /Q (Ω) and H− 1
2 (Γh) are homeomorphic.

Proof. For (h, e) ∈ H1 (Ωh)×H1 (Ωh) ⊂ H (curl,Ωh)×H (curl,Ωh), the bilinear
form a (q, (h, e)) becomes

a (q, (h, e)) = −
∑
e∈Γh

(
qH × ne, [[e]]

)
H− 1

2 (e)×H
1
2 (e)

.

Now enforcing a (q, (h, e)) = 0 for all (h, e) ∈ H1 (Ωh) × H1 (Ωh) ⊂ H (curl,Ωh) ×
H (curl,Ωh) concludes that q

H×n = 0 on Γh since the trace ofH1 (Ωh) spansH
1
2 (Γh).

The rest of the proof is similar to that of Theorem 3.2.
Theorem 3.8 suggests that we can identify q ∈ (H (curl,Ω)×H (curl,Ω)) /Q (Ω)

with Ĥ ∈ H− 1
2 (Γh), and we can use either [| · |]

H− 1
2 (Γh)

or ‖·‖
H− 1

2 (Γh)
as norm in

H− 1
2 (Γh). Unlike other problems in previous sections, the new unknown q cannot be

substituted by Ĥ since BKj does not generally have a boundary representation when
(h, e) ∈ H (curl,Ωh)×H (curl,Ωh). This is, however, possible if (h, e) is restricted in
H1 (Ωh) ×H1 (Ωh) (see Lemma 2.2 and (2.8)). It should be emphasized here that a
boundary representation is vital for finite dimensional approximations since one needs
to solve for the unknown flux Ĥ on the skeleton Γh instead of q on the whole domain
Ω as we now show. Suppose the subspace Vr introduced in section 2.4 is a subset of
H1 (Ωh), then the discrete equation (2.21) equivalently reads

Given (f, g) ∈ [H (curl,Ωh)×H (curl,Ωh)]
′
.

Seek
(
u, Ĥ

)
∈ UN ⊂ L (Ωh)×H− 1

2 (Γh) such that, ∀ (h, e) ∈ Vr,

Nel∑
j=1

∫
Kj

(−uE · ∇ × h+ uH · ∇ × e
)
dx−

〈
Ĥ, [[e]]

〉
H− 1

2 (Γh)×H
1
2 (Γh)

= 〈f, h〉[H(curl,Ωh)]
′×H(curl,Ωh)

+ 〈g, e〉[H(curl,Ωh)]
′×H(curl,Ωh)

.(3.9)

4. Conclusions. We have proposed a unified framework for the discontinu-
ous Petrov–Galerkin method of Demkowicz and Gopalakrishnan [13, 15] based on
Friedrichs-like systems, which embrace a large class of elliptic, parabolic, and hyper-
bolic PDEs. The well-posedness, i.e., existence, uniqueness, and stability, of the DPG
solution is established on a single abstract DPG formulation, and two abstract DPG
methods corresponding to two different, but equivalent, norms are devised. We have
then applied the single DPG framework to several linear(ized) PDEs including, but
not limited to, scalar transport, Laplace, diffusion, convection-diffusion, convection-
diffusion-reaction, linear(ized) continuum mechanics (e.g., linear(ized) elasticity, a
version of the linearized Navier–Stokes equations, etc.), time-domain acoustics, and a
version of the Maxwell’s equations. The results show that we not only recover several
existing DPG methods, but also discover new DPG methods for both PDEs currently
considered in the DPG community and new ones. As a direct consequence of the
single abstract DPG framework, all of the resulting DPG methods have been shown
to be trivially well-posed.

Ongoing research is to apply the abstract framework to the linearized Euler and
compressible Navier–Stokes equations. On the other hand, since the setting is in
real Hilbert spaces, our methodology cannot be directly applied to the Helmholtz
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equations. One of our future directions is therefore to modify the theory to complex
Hilbert spaces.
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