Predictive Uncertainty Quantification of An Ablating Entry Vehicle Heatshield

Roy H. Stogner,
Benjamin Kirk, Paul Bauman, Todd Oliver,
Kemelli Estacio, Nicholas Malaya, Marco Panesi, Juan Sanchez

The University of Texas at Austin

March 16, 2015
1. Entry Vehicle Physics

2. Mathematical Models and Formulations

3. Model Calibrations

4. Results
Entry Vehicle Physics

Full System, Uncertainties

- High enthalpy aerothermochemistry, hypersonic flow

- Submodel uncertainties (turbulence, nitridation, kinetics)
- Numerical limitations (discretization, UQ error)
- Modeling unknowns (missing/wrong physics?)
Calibrated Uncertainty Quantification
1 Entry Vehicle Physics

2 Mathematical Models and Formulations

3 Model Calibrations

4 Results
Introduction

Physics of Full System Simulation (FSS)

- Compressible Navier-Stokes

Conservation Equations

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, u) = 0
\]
\[
\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho uu) = -\nabla P + \nabla \cdot \tau
\]
\[
\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho Hu) = -\nabla \cdot \dot{q} + \nabla \cdot (\tau u)
\]
Mathematical Models and Formulations

Introduction

Physics of Full System Simulation (FSS)

- Compressible Navier-Stokes, in chemical non-equilibrium

Conservation Equations

\[
\frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}) = \nabla \cdot (\rho D_s \nabla c_s) + \dot{\omega}_s
\]

\[
\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla P + \nabla \cdot \mathbf{\tau}
\]

\[
\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho H \mathbf{u}) = -\nabla \cdot \dot{\mathbf{q}} + \nabla \cdot (\mathbf{\tau} \mathbf{u}) + \nabla \cdot \left(\rho \sum_{s=1}^{n_s} h_s D_s \nabla c_s \right)
\]
Introduction

Physics of Full System Simulation (FSS)

- Compressible Navier-Stokes, in chemical non-equilibrium, in thermal non-equilibrium

Conservation Equations

\[
\frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}) = \nabla \cdot (\rho \mathbf{D}_s \nabla c_s) + \dot{\omega}_s
\]

\[
\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla P + \nabla \cdot \mathbf{\tau}
\]

\[
\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho H \mathbf{u}) = -\nabla \cdot \dot{\mathbf{q}} + \nabla \cdot (\mathbf{\tau} \mathbf{u}) + \nabla \cdot \left(\rho \sum_{s=1}^{n_s} h_s \mathbf{D}_s \nabla c_s \right)
\]

\[
\frac{\partial \rho e_V}{\partial t} + \nabla \cdot (\rho e_V \mathbf{u}) = -\nabla \cdot \dot{\mathbf{q}}_V + \nabla \cdot \left(\rho \sum_{s=1}^{n_s} e_{V_s} \mathbf{D}_s \nabla c_s \right) + \dot{\omega}_V
\]
Introduction

Physics of Full System Simulation (FSS)

- Compressible Navier-Stokes, in chemical non-equilibrium, in thermal non-equilibrium
- + turbulence/transition, surface ablation + radiation

Conservation Equations

\[
\frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}) = \nabla \cdot (\rho \mathbf{D}_s \nabla c_s) + \dot{\omega}_s
\]

\[
\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla P + \nabla \cdot \mathbf{\tau}
\]

\[
\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho H \mathbf{u}) = -\nabla \cdot \dot{\mathbf{q}} + \nabla \cdot (\mathbf{\tau} \mathbf{u}) + \nabla \cdot \left(\rho \sum_{s=1}^{n_s} h_s \mathbf{D}_s \nabla c_s \right)
\]

\[
\frac{\partial \rho e_V}{\partial t} + \nabla \cdot (\rho e_V \mathbf{u}) = -\nabla \cdot \dot{\mathbf{q}}_V + \nabla \cdot \left(\rho \sum_{s=1}^{n_s} e_{V_s} \mathbf{D}_s \nabla c_s \right) + \dot{\omega}_V
\]
Stabilized Navier-Stokes

\[\frac{\partial U}{\partial t} + A_i \frac{\partial U}{\partial x_i} = \frac{\partial}{\partial x_i} \left(K_{ij} \frac{\partial U}{\partial x_j} \right) + \dot{S} \]

Conservation variables \(U \) are chosen to satisfy

\[\int_{\Omega} \left[W \cdot \left(\frac{\partial U}{\partial t} - \dot{S} \right) + \frac{\partial W}{\partial x_i} \cdot \left(K_{ij} \frac{\partial U}{\partial x_j} - A_i U \right) \right] \, d\Omega \]

\[+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \tau_{\text{SUPG}} \frac{\partial W}{\partial x_k} \cdot A_k \left(\frac{\partial U}{\partial t} + A_i \frac{\partial U}{\partial x_i} - \frac{\partial G_i}{\partial x_i} - \dot{S} \right) \, d\Omega \]

\[+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \nu_{\text{DCO}} \left(\frac{\partial W}{\partial x_i} \cdot g_{ij} \frac{\partial U}{\partial x_j} \right) \, d\Omega - \oint_{\Gamma} W \cdot (g - f) \, d\Gamma = 0 \]

for all \(W \) in the discretized function space.
Ablation Processes

- Ablation is a multi-scale, multi-physics process
- Inherently transient, moving domain

Mathematical Models and Formulations

\[q_{\text{rad}} - q_{\text{cond}} + \sum_{i=1}^{N_s} J_i h_i = \dot{m}_{\text{ch}} \rho_{\text{ch}} \]

Substrate
Virgin Material
C\(_{100}\)H\(_{89.4}\)O\(_{17.8}\)N\(_8\)(SiO\(_2\))\(_{64.2}\)

Shock Layer
Boundary Layer

\[M_a = 31 \]

Pyrolysis Zone
Pyrolysis Gas Flow
Char
Virgin Material
Substrate

R. Stogner
Ablating Heatshield UQ
March 16, 2015
Quasi-steady Ablation

- Simulation ablation timescale \ll trajectory timescale
- 1-D ablation in surface reference frame is steady
Fully Implicit Ablation Coupling

Quasi-Steady Ablation

- Boundary conditions:
 - Nonlinear Robin BC for masses, energies
 - Nonlinear Dirichlet BC for momentum
- Standard FEM weak source term for Robin BC
- Penalty formulation for nonlinear Dirichlet BC

Mathematical Formulations

\[J_i + \rho v_w C_i = \tilde{N}_i(C_i, T) \]

\[k \frac{\partial T}{\partial n} - \sum h_i(T) = \frac{\partial}{\partial n} \left(J_i + \rho v_w C_i \right) \]

\[+ \dot{m}_{ch} h_{ch}(T) - \rho v_w h(T) + \alpha \dot{q}_r'' - \sigma \epsilon T^4 \]

\[+ \rho v_w h_{f,v}^o(T_{ref}) = 0 \]

\[\rho v_w = \sum \tilde{N}_i(C_i, T_w) = \dot{m}_{ch}'' \]
Not all uncertain parameters are equal

- \(\sim 300 \) parameters
- \(< 30\) parameters account for 95\%+ uncertainty
- \(> 150\) parameters negligible to within numerical error
Primary Model Calibrations

Ablator Nitridation Uncertainty
- Probability of C(s) + N(g) → CN(g) at surface
- 4 OOM Prior Uncertainty range in literature
- β_N sensitivity enormous in prior, negligible after calibration

Air Reaction Chemistry Uncertainty
- Strong output sensitivities to $N_2 + O$, NO + O reactions
- Calibration via shock tube spectroscopy

Turbulence Model Uncertainty
- Prior “Turbulence augmentation” uncertainty: 0 – 150% range
- Posterior: 8-parameter Spalart-Allmaras with momentum-thickness transition, calibrated against supersonic boundary layer data, DNS
Ablator Nitridation Uncertainty

\[\dot{m}_{N,c}'' = -\sqrt{\frac{k_b T}{2\pi m_N}} \rho y_N \beta_N(T) \]

Nitridation coefficient \(\beta_N \)
- Probability of surface CN formation upon free nitrogen impact
- Becomes more significant at higher reentry speeds
Ablator Nitridation Uncertainty

Nitridation coefficient β_N

- “Safe” value from initial expert opinion: 0.3
- Literature disagreement, uncertainty range: $(0.00003, 0.4)$
- Highest predicted submodel uncertainty contribution
Carbon Reaction Chemistry

\[
k = A T^n e^{-\frac{T_r}{T}}
\]

- \(C_2 + M \leftrightarrow 2C + M\)
- \(CN + M \leftrightarrow C + N + M\)
- \(CO + M \leftrightarrow C + O + M\)
- \(CO + C \leftrightarrow C_2 + O\)
- \(CO + O \leftrightarrow O_2 + C\)
- \(CO + N \leftrightarrow CN + O\)
- \(N_2 + C \leftrightarrow CN + N\)
- \(CN + O \leftrightarrow NO + C\)
- \(CN + C \leftrightarrow C_2 + N\)
- \(CO + C_2 \leftrightarrow C_3 + O\)

Uncertain Reaction Rates

- Arrhenius pre-exponential uncertainty: +/- 1 OOM
- Strong ablation sensitivities to \(N_2 + C, CO + N, CO + C_2\)
- Joint calibration
Carbon Reaction Chemistry

Experimental Data

- Spectroscopy as part of Mars test campaign, Electric Arc Shock Tube (EAST) facility, NASA Ames
- 96%CO₂ + 4%N₂ test gas
- 6-7 km/s shock speeds
Turbulence Model Uncertainty

A Priori Uncertainty
- Algebraic (Baldwin-Lomax) model, no transition
- Scalar “Turbulence augmentation” factor $\in (0, 1.5)$
- Second greatest contribution to output uncertainty

Calibrated Uncertainty
- Spalart-Allmaras PDE
- Joint calibration, 8 uncertain parameters
- Multi-model Bayesian validation
1. Entry Vehicle Physics

2. Mathematical Models and Formulations

3. Model Calibrations

4. Results
Baseline, Transition

ISS return trajectory, peak heating, Mach 21

- Order of magnitude wall clock speedup over lagged ablation coupling
- Transition downstream of peak heating
- Shock radiation negligible (for this trajectory)
Latin Hypercube and Calibration

LHS
- Quantile bins in each parameter
- 1 sample per bin
- Reduce variance from additive response components
- Calibrated joint PDFs are not separable tensor products!

LHS+MCMC
- LHS for uncalibrated variables
- SRS from each calibrated+filtered joint distribution
Off-Baseline Convergence

Convergence

- Aggressive + paranoid adaptive time stepping
 - Orders of magnitude higher time steps
 - Ought to be replaced with estimator-based adaptivity
- Secondary transient spike well captured
- 8 OOM convergence
 - Transition smoothing needed?
Ablation Rate PDFs

UQ Output

- Dramatic prediction changes
 - Priors: $\approx 2.0 \times 10^{-5} m/s$
 - First calibrations: $\approx 4.4 \times 10^{-6} m/s$
 - Second calibrations: $\approx 7.8 \times 10^{-6} m/s$
- $100\times$ lower nitridation
- Faster C kinetics?
Conclusions

Forward Uncertainty Propagation

- Wide priors require fat, well-resolved tails
 - Adaptive importance sampling?
- Model inadequacy should be propagated too!
 - “Unknown unknowns” can exceed “known unknowns”

Rapid Application Development

- Rapid application development and testing is practical:
 - FIN-S at PSAAP inception: “toy” perfect gas problems
 - FIN-S 4 years later: high-enthalpy reacting multiphysics
 - 5 part-time contributors, 0 full-time FIN-S developers
- Critical factors:
 - Avoid “Not invented here” where practical
 - Modularity first, physics second
 - Multidisciplinary expertise
 - Collaborative, open source development
Open Source Tools

- **libMesh** - http://libmesh.github.io/
 - FEM discretizations, interfaces
- **GRINS** - https://github.com/GRINSfem/GRINS
 - Subsonic flow, other subsystem physics
- **ANTIOCH** - https://github.com/libantioch/antioch
 - Thermochemistry and transport
- **MASA** - https://github.com/manufactured-solutions/MASA
 - Solution verification via MMS
- **QUESO** - http://libqueso.com/
 - Model calibration, validation
- **DAKOTA** - https://dakota.sandia.gov
 - Forward uncertainty propagation, analysis