Uncertainty and Parameter Sensitivity in Multiphysics Reentry Flows

Roy H. Stogner

Coauthors: Paul T. Bauman, Karl W. Schulz, Rochan Upadhyay, André Maurente

Institute for Computational Engineering and Sciences
The University of Texas at Austin

January 7, 2011
PECOS and Uncertainty Quantification

Calibration
- Collect data in low level experimental scenarios
- Determine uncertain model parameter Probability Distribution Functions (PDFs)

Validation
- Exercise models in higher level scenarios
- Compare to experimental data
- Determine confidence in calibrated models

Prediction
- Exercise models in scenario of interest
- Evaluate Quantity of Interest (QoI) functionals
- Propagate uncertainty to output PDFs
PECOS and Atmospheric Entry

- Multiphysics submodels: Flow, Aerothermochemistry, Ablation, Surface chemistry, Radiation, Turbulence
- Data sources: Thermogravimetrics, Shock tube, Wind tunnel, DNS
Challenges

Uncertainty Quantification
- High individual forward solve cost
- High parameter count

Verification
- Code complexity
- Lacking analytical solutions to complex physics
- Sole interest: Quantity of Interest functionals

Validation
- Validation processes are cyclical
 - Modeling informs experiment informs modeling
 - Full System Simulation results inform model research, data collection
Modeling for Quantity of Interest

Peak Ablation Rate Scenario

- CEV-based axisymmetric capsule
- Peak heating point from ISS return trajectory
 - Mach 21.7
 - 19° Angle of Attack
 - Altitude ≈ 60 km
 - 239 K freestream temperature
 - $0.282 \frac{g}{m^3}$ freestream density

Peak Ablation Rate Ignores

- Wake domain
- Integration over trajectory
Uncertain Parameters

Submodel Uncertainties

- Hypersonic Flow
 - Chemical reaction rates
 - Diffusive flux model coefficients
 - Turbulent mixing augmentation
- Radiation
 - Absorptivity/Model Error
- Ablation
 - Virgin, char densities
 - Reaction rate, equilibrium constants

\[\sim 300 \text{ independent parameters}\]
Uncertain Priors

<table>
<thead>
<tr>
<th>Flow and Transport</th>
<th>Ablation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gupta transport curves ±10%</td>
<td>• Virgin, char densities ±10%</td>
</tr>
<tr>
<td>• Reaction rates ±1 OOM</td>
<td>• Enthalpy of formation (\approx \pm 10 - 15%)</td>
</tr>
<tr>
<td>• Turbulent augmentation model error: +50% − −100%</td>
<td>• Elemental mass fractions (\approx \pm 10 - 15%)</td>
</tr>
<tr>
<td></td>
<td>• Activation energies (\approx \pm 10 - 15%)</td>
</tr>
<tr>
<td></td>
<td>• Sublimation, oxidation coefficients (\approx \pm 10 - 15%)</td>
</tr>
<tr>
<td></td>
<td>• Nitridation coefficient (\approx \pm 1 \text{OOM})</td>
</tr>
</tbody>
</table>

Radiation

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reradiation emissivity (\approx \pm 10 - 15%)</td>
</tr>
<tr>
<td>• Absorptivity model error: +50% − −100%</td>
</tr>
</tbody>
</table>
Acknowledgements

- Flow based on DPLR, NASA/Ames
- Two temperature thermochemical nonequilibrium
- 13 species, 18 reaction classes
- Algebraic turbulence model, fully laminar through fully turbulent
- Ablation, Radiation in-house

DPLR++ Core
- Paul Bauman
- Karl Schulz
- Roy Stogner

Data Parallel Line Relaxation
- Michael Wright
- Todd White
- Mike Barnhardt

Radiation, Ablation
- Andre Maurente
- Rochan Upadhyay
Quasi-steady Ablation

- Assumes ablation timescale $<<$ trajectory timescale
- Assumes negligible substructure conduction
Ablation Interface Conditions

Recession:

\[\rho v_w = \dot{m}_c'' + \dot{m}_g'' \]

\[J_i \big|_{gas} + \rho v_w C_i = \tilde{N}_i(C_i, T) + \dot{m}_g'' C_{i,g} ; (i : 1..N_s) \]

Energy:

\[-k \frac{\partial T}{\partial y} \bigg|_{gas} - \sum_{i=1}^{N_s} h_i(T_w) J_i \big|_{gas} + \dot{m}_c'' h_c(T) - \rho v_w h_w(T) \]

\[+\alpha \dot{q}_r'' - \sigma \epsilon T_w^4 + \sum_{i=1}^{N_s} \dot{m}_g C_{i,g} h_i(T_w) + k_s \frac{\partial T}{\partial y} \big|_{solid,w} = 0 \]

- Nonlinear Robin Boundary Conditions
- Enables quasi-steady solves, restarts
• MUTATION precalculates equilibrium chemistry for a given temperature, pressure, elemental mass fraction set

• SPECAIR precalculates line-by-line intensities for a shock layer of given thickness, chemistry

• Grey gas model integrates through spectrum and shock layer, gives mean absorption coefficient
Tangent Slab Radiation Transfer Model

Decomposition

- Independent solution in each column of “slabs”
- Radiative heat transfer becomes locally 1D
- Accurate where flow field is locally 1D
Multiphysics Coupling

- Full (Multi-way) Coupling
 - Changes in radiation, ablation feed back to flow solver
 - Every parameter change requires full re-solve
- Loose vs Tight Coupling
- Uncertainty Quantification
 - Submodel sensitivities amplified or damped
 - Sensitivities to parameters missing in base models
Methodology

Forward UQ Propagation Setup

- Off-baseline perturbations resume from hand-converged baseline
- Dakota ILHS study generation, modified preprocessor builds input workspaces
- Input samples run on Hera
 - 80 processors per sample
 - 1024 total samples
 - 5 hours runtime per sample
- Automatic detection/resumption of failed runs

Postprocessing

- Quantities of interest from DPLR++, coupled models, postflow
- “make summarize” - extraction, collection, calculations
- Makefile-based job submission, lonestar/hera options
Parameter Sensitivity Triage

Deterministic Perturbations
- One parameter at a time
- Identifies insensitivities

Limitations
- Nonlinearities
- Multiparameter effects
Significant Parameters

Flow and Transport
- Turbulent augmentation!
- Transport: N_2, O, C, CO
- Reactions:
 \[N_2 + C \leftrightarrow CN + N, \]
 \[CO + N \leftrightarrow CN + O, \]
 \[N_2 + M \leftrightarrow N + N + M, \]
 \[N_2 + O \leftrightarrow NO + N \]

Radiation
- Reradiation emissivity

Ablation
- Nitridation coefficient!
- Virgin, char densities
- Enthalpy of formation
- Pyrolysis temperature
Monte Carlo Integration

Errors

- $\bar{q}^{MC} - \bar{q}$ variance: $\sigma^2_{e[\bar{q}]} = \frac{\sigma^2}{N_s}$
- $(\sigma^2_q^{MC})^2 - \sigma^2_q$ variance: $\sigma^2_{e[\sigma^2]} = \sigma^4 \left(\frac{2}{N_s-1} + \frac{\kappa}{N_s} \right)$
- $P_{MC}^C - P_C$ variance: $\sigma^2_{e[P_C]} = \frac{P_C - P_C^2}{N_s}$

- Sampling-based scheme errors are PDFs
- Errors based on variance σ^2 of sampled entity
- Error “bound” width: $\sigma_e \propto N^{-1/2}$
Incremental Latin Hypercube Sampling

Algorithm
- Form quantile bins in each parameter
- Permute samples to empty bins
 - Reducing correlations
- Randomly place each sample within its bins

Uses
- Reduce variance from additive functions
- Higher order convergence for separable functions
Results: Monte Carlo Outputs

Accuracy

• \(\sim 2 \) significant figures on mean
• \(\sim 1 \) significant figure on standard deviation
• Higher order statistics: worse
• \(\sim 0.5 \) million CPU-hours on Hera, LLNL
Results: Output PDFs

- Correlations in output sample set estimate sensitivities
- (In)sensitivities consistent with deterministic perturbation results
 - Subject to Monte Carlo error...
- Top uncertainties
 - Turbulent transport augmentation
 - Nitridation reaction rate
- Data mining possible: e.g. surrogate QoI choice analysis
Results: Parameter Sensitivities

- Forward UQ depends on input parameter PDFs!
 - Priors update with every new literature result
 - Calibrated PDFs update with new experiments
- Updating knowledge (e.g. β_N priors) changes, requires repetition of the problem
Results: Submodel Sensitivities

Submodel Updates
- Enlarged nitridation prior
- Chemistry/radiation coupling

Top Priorities
- Nitridation validation
- Turbulence model validation
Development Directions

Uncertainty Quantification

- Accelerated Stochastic Techniques
- Accelerated Full System Simulations

Verification

- Code verification - Method of Manufactured Solutions
 - Submodels independently verified
 - Combined code requires verification
 - Standardized in MMS library “MASA”
- A posteriori error estimation
 - Goal-oriented error estimates

Validation

- Submodel calibration experiments
- Multilevel model comparisons
Thank you!

Questions?