Problem 1: (12p) No motivation required for these problems.

(a) (3p) Let \(n^2 \in \mathbb{Z} \) and define \(f_n \in S^*(\mathbb{R}) \) via \(f_n(x) = \sin(nx) \). What is \(\hat{f}_n \)?

(b) (3p) State for which \(p \in [1, \infty] \), if any, the unit ball in \(L^p(\mathbb{R}) \) is weakly compact.

(c) (3p) Set \(H = L^2(\mathbb{R}) \) and define \(T \in \mathcal{B}(H) \) via \([Tu](x) = u(-x) \). What is \(\sigma(T) \)?

(d) (3p) Let \(H \) be a Hilbert space. State the definition of a unitary operator on \(H \).

Solution

(a) Observe that
- \(\sin(nx) = (1/2i) (e^{inx} - e^{-inx}) \),
- \(\mathcal{F} \delta = \beta \) (where \(\beta = 1/\sqrt{2\pi} \)),
- \([\mathcal{F}(e^{inx} g)](t) = \hat{g}(t-n) \).

Combining, we find
\[
\hat{f}_n(t) = (1/2i) (\beta \delta(t-n) - \beta \delta(t+n)) = \frac{i}{2\sqrt{2\pi}} \delta(t+n) - \frac{i}{2\sqrt{2\pi}} \delta(t-n).
\]

(b) This is Banach-Alaoglu, which applies in reflexive spaces. Consequently, the unit ball is weakly compact when \(p \in (1, \infty) \).

(c) Observe that \(T \) is both unitary and self-adjoint. This means that the spectrum is contained in the intersection of the real line and the unit circle, which is to say \(\sigma(T) \subseteq \{-1, 1\} \). It is then easily verified that any even function is an eigenvector associated with \(\lambda = 1 \) and any odd function is an eigenvector associated with \(\lambda = -1 \). So \(\sigma(T) = \sigma_p(T) = \{-1, 1\} \).

(d) A unitary operator is a bijective operator that preserves the inner product.

Problem 2: (13p) Let \(H \) be a Hilbert space, and let \(A \) denote a bounded linear operator on \(H \).

(a) (3p) State the definition of the resolvent set \(\rho(A) \) of \(A \).

(b) (10p) Prove that the resolvent set \(\rho(A) \) is an open subset of \(\mathbb{C} \).

Solution

(a) \(\rho(A) \) is the set of complex numbers \(\lambda \) such that \(A - \lambda I \) is one-to-one and onto.

(b) Fix \(\lambda \in \rho(A) \). Then \(A - \lambda I \) is continuously invertible by the open mapping theorem. Set \(\varepsilon = 1/\| (A - \lambda I)^{-1} \| \) and observe that \(\varepsilon > 0 \). For any \(\mu \in B_\varepsilon(\lambda) \), we find
\[
A - \mu I = A - \lambda I - (\mu - \lambda) I = (A - \lambda I) [I - (\mu - \lambda) (A - \lambda I)^{-1}].
\]

Now observe that
\[
\| (\mu - \lambda) (A - \lambda I)^{-1} \| \leq |\mu - \lambda| \| (A - \lambda I)^{-1} \| < \varepsilon \| (A - \lambda I)^{-1} \| = 1.
\]

Consequently, the Neumann series argument shows that the expression in brackets in (1) is invertible.
Problem 3: (16p) Define for \(\alpha, \beta \in (0, \infty) \) and for \(n = 1, 2, 3, \ldots \) functionals \(A_n, B_n \in S^*(\mathbb{R}) \) via

\[
A_n(\varphi) = \sum_{j=1}^{n} \alpha^j \varphi(j), \quad \text{and} \quad B_n(\varphi) = \sum_{j=1}^{n} j^\beta \varphi(j).
\]

(a) (8p) For which \(\alpha \in (0, \infty) \) does the sequence \((A_n)_{n=1}^\infty \) converge in \(S^*(\mathbb{R}) \)?

(b) (8p) For which \(\beta \in (0, \infty) \) does the sequence \((B_n)_{n=1}^\infty \) converge in \(S^*(\mathbb{R}) \)?

Solution

Answer: For \(\alpha \in (0, 1) \) and for any \(\beta \in (0, \infty) \).

To prove that, e.g., \((B_n) \) converges, we need to show that for every \(\varphi \in S \), the sequence \((B_n(\varphi))_{n=1}^\infty \) converges to some number \(B(\varphi) \), where \(B \in S^* \).

To prove that \((A_n) \) converges, we will show that there exists a \(\varphi \in S \), such that the sequence \((B_n(\varphi))_{n=1}^\infty \) diverges.

- **Case 1:** \(\beta \in (0, \infty) \)

 Pick \(k \) such that \(k > \beta + 1 \). Then
 \[
 |B_n(\varphi)| \leq \sum_{j=1}^{\infty} j^\beta |\varphi(j)| \leq \sum_{j=1}^{\infty} j^\beta \frac{||\varphi||_{0,k}}{(1+j^2)^{k/2}} \sim ||\varphi||_{0,k} \sum_{j=1}^{\infty} j^{\beta-k} < \infty.
 \]

- **Case 2:** \(\alpha \in (0, 1] \)

 The proof is entirely analogous to Case 1 since the “weights” are bounded:
 \[
 |A_n(\varphi)| \leq \sum_{j=1}^{\infty} |\varphi(j)| \leq \sum_{j=1}^{\infty} \frac{||\varphi||_{0,2}}{1+j^2} \leq C ||\varphi||_{0,2}.
 \]

- **Case 3:** \(\alpha \in (1, \infty) \)

 Note that the weights grow exponentially in this case, which means that we cannot dominate the sum using a polynomial decay factor. We instead seek a Schwartz function \(\varphi \) such that \(\alpha^j \varphi(j) \to \infty \). To this end, pick \(\gamma \in (1, \alpha) \), and set
 \[
 \varphi(x) = \gamma^{-x^2/\sqrt{1+x^2}}.
 \]

 Then \(\varphi \in S(\mathbb{R}) \), but
 \[
 A_n(\varphi) = \sum_{j=1}^{n} \alpha^j \varphi(j) \sim \sum_{j=1}^{n} \alpha^j \gamma^{-j} = \sum_{j=1}^{n} (\alpha/\gamma)^j \to \infty.
 \]
Problem 4: (23p) Let T denote the unit circle as usual, and define a function $f \in L^2(T)$ via $f(x) = x$, where T is parameterized using $x \in [-\pi, \pi]$.

(a) (5p) What are the Fourier coefficients of f?

(b) (5p) For which $s \in [0, \infty)$ is it the case that $f \in H^s(T)$?

(c) (5p) Use your result in (a) to prove that $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

(d) (5p) Let g denote the real-valued function obtained via periodic continuation of f to a 2π periodic function on \mathbb{R}. Prove that $g \in S^s(\mathbb{R})$.

(e) (3p) What is the Fourier transform of the function $g \in S^s(\mathbb{R})$ defined in (d)?

No motivation required for this part. (Hint: Problem 1(a) may be useful.)

Solution

(a) Set $\beta = 1/\sqrt{2\pi}$. Then $\alpha_n = \beta \int_{-\pi}^{\pi} e^{-inx} x \, dx = \beta i \int_{-\pi}^{\pi} \sin(nx) x \, dx = \cdots = \frac{2\beta i \pi (-1)^n}{n}$.

(b) We find $\|f\|_{L^2}^2 = \sum (1 + |n|^2) \alpha_n^2 = \sum (1 + |n|^2) \frac{4\beta^2 \pi^2}{n^2} \sim \sum n^{2s} n^{-2}$. The sum is finite iff $2s - 2 < -1$, which is to say $s < 1/2$.

(c) Parseval’s theorem states that $\|f\|_{L^2}^2 = \sum |\alpha_n|^2$. Now

$$\sum_{n=-\infty}^{\infty} |\alpha_n|^2 = 2 \sum_{n=1}^{\infty} \frac{4\beta^2 \pi^2}{n^2} = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2},$$

and

$$\|f\|_{L^2}^2 = \int_{-\pi}^{\pi} x^2 \, dx = 2 \int_{0}^{\pi} x^2 \, dx = \frac{2}{3} \pi^3.$$

(d) For a given $\varphi \in S$, we can bound T_f as follows:

$$|T_f(\varphi)| = \left| \int_{-\infty}^{\infty} f(x) \varphi(x) \, dx \right| \leq \int_{-\infty}^{\infty} |f(x)| \|\varphi\|_{0.2} \, dx \leq \int_{-\infty}^{\infty} \pi |\varphi|_{0.2} \, dx = \pi^2 \|\varphi\|_{0.2}.$$

(e) We have $f(x) = \sum_{n=-\infty}^{\infty} \alpha_n \beta e^{inx}$. Since $[Fe^{inx}](t) = \beta \delta(t - n)$, we get

$$\hat{f}(t) = \sum_{n=-\infty}^{\infty} \alpha_n \beta^2 \delta(t - n) = \sum_{n=-\infty}^{\infty} \frac{2\beta i \pi (-1)^n}{n} \beta^2 \delta(t - n) = \sum_{n=-\infty}^{\infty} \frac{i(-1)^n}{n \sqrt{2\pi}} \delta(t - n).$$

We treated the sum in a cavalier manner, but we only needed the answer!

Note: The Fourier sum simplifies as $f(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)$. The first 20 terms look like:
Problem 5: (18p) Set \(I = (0, 1) \) and let \((f_n)_{n=1}^{\infty}\) be a sequence of Lebesgue integrable real valued functions on the interval \(I = (0, 1) \) such that for every \(x \in I \),
\[
\lim_{n \to \infty} f_n(x) = x.
\]
Consider for \(n = 1, 2, 3, \ldots \) the three sequences
\[
a_n = \int_0^1 f_n(x) \, dx
\]
\[
b_n = \int_0^1 \frac{f_n(x)}{1 + (f_n(x))^2} \, dx
\]
\[
c_n = \int_0^1 \left| \sum_{j=1}^n f_j(x) \right| \, dx.
\]
Which of the sequences must necessarily converge as \(n \to \infty \)? Is it for any of the convergent sequences possible to say what the limit is? Motivate your answers.

Solution

The sequence \(a_n \): This may or may not converge.
If say \(f_n(x) = x \) for all \(x \), then \(a_n \to 1/2 \).
If on the other hand \(f_n = n^2 \chi(0,1/n) + x \chi(1/n,1) \), then \(a_n \to \infty \).

The sequence \(b_n \): The absolute value of the integrand is bounded by \(g(x) = 1 \). Since \(0^1 g \, dx = 1 \) is finite, Lebesgue dominated convergence applies and we find that
\[
\lim_{n \to \infty} b_n = \lim_{n \to \infty} \int_0^1 \frac{f_n(x)}{1 + (f_n(x))^2} \, dx = \int_0^1 \lim_{n \to \infty} \frac{f_n(x)}{1 + (f_n(x))^2} \, dx = \int_0^1 \frac{x}{1 + x^2} \, dx
\]
\[
= \left[\frac{1}{2} \log(1 + x^2) \right]_0^1 = \frac{1}{2} (\log(2) - \log(1)) = \frac{\log(2)}{2}.
\]

The sequence \(c_n \): Since the integrand is non-negative, Fatou’s lemma applies:
\[
\liminf_{n \to \infty} c_n = \liminf_{n \to \infty} \int_0^1 \left| \sum_{j=1}^n f_j(x) \right| \, dx \geq \int_0^1 \liminf_{n \to \infty} \left| \sum_{j=1}^n f_j(x) \right| \, dx.
\]
For any \(x \), we have \(\sum_{j=1}^n f_j(x) \to \infty \), so \(\liminf_{n \to \infty} \left| \sum_{j=1}^n f_j(x) \right| = \infty \), and consequently \(c_n \to \infty \).
Problem 6: (18p) Let \((f_n)_{n=1}^\infty\) be a sequence of functions in \(L^2(\mathbb{R})\) that converges pointwise to a function \(f\). In other words,
\[
\lim_{n \to \infty} f_n(x) = f(x), \quad \text{for all } x \in \mathbb{R}.
\]
Suppose further that all \(f_n\) satisfy
\[
|f_n(x)| \leq 2|f(x)|, \quad \text{for all } x \in \mathbb{R}.
\]
For each of the three sets of conditions on \(f\) given below, specify for which \(r \in [1, \infty)\) it is necessarily the case that
\[
\lim_{n \to \infty} ||f - f_n||_{L^r(\mathbb{R})} = 0.
\]
(a) \((6p)\) \(f \in L^2(\mathbb{R})\), and for \(|x| \geq 2\), it is the case that \(f(x) = 0\).
(b) \((6p)\) \(f \in L^2(\mathbb{R})\) and \(|f(x)| \leq 2\) for all \(x \in \mathbb{R}\).
(c) \((6p)\) \(f \in L^2(\mathbb{R})\) and \(f \in L^3(\mathbb{R})\).

\underline{Solution}

Answers: (a) \(r \in [1, 2]\). (b) \(r \in [2, \infty)\). (c) \(r \in [2, 3]\).

We need to prove the claim when it is true, and provide counter-examples when it is not. The basic question we need to resolve is when
\[
(2) \quad \lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) - f_n(x)|^r \, dx = 0.
\]
The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end, we construct a dominator \(h\) via
\[
|f(x) - f_n(x)|^r \leq (|f(x)| + |f_n(x)|)^r \leq (|f(x)| + 2|f(x)|)^r = 3^r |f(x)|^r =: h(x).
\]
We will analyze each of the three assumptions to see when \(\int h < \infty\).

(a) Suppose \(r \in [1, 2]\). Then \(h(x) = 3^r |f(x)|^r \leq 3^r \max(1, |f(x)|^2)\). Since \(f \in L^2\), and since in this case, \(h\) has compact support, we find \(\int h < \infty\).

Suppose \(r > 2\). When \(|f(x)| > 1\), we have \(|f(x)|^r > |f(x)|^2\), so \(h\) does not necessarily have finite integral and the LDCT does not apply. We look for a counter-example. Pick a real number \(\alpha\) such that \(-\frac{1}{2} < \alpha < -\frac{1}{4}\), and set \(f(x) = x^\alpha \chi_{(0,1)}\). Then \(f \in L^2\). Set \(f_n = (1 - 1/n) f\). Then \(f_n \to f\) pointwise, but \(||f - f_n||_r^r = ||(1/n)f||_r^r = \int_0^1 n^{-r} x^{\alpha r} \, dx = \infty\).

(b) Suppose \(r \in [2, \infty)\). Then \(h(x) = 3^r |f(x)|^r \leq 6^r |f(x)/2|^r \leq 6^r |f(x)/2|^2\), since \(|f(x)/2| \leq 1\) and \(r \geq 2\). We find \(\int h \leq 6^r (1/4)||f||_2^2 < \infty\), so LDCT applies.

Suppose \(r \in [1, 2]\). In this case, the LDCT does not apply, and we look for a counter-example. Pick a real number \(\alpha\) such that \(-\frac{1}{2} < \alpha < -\frac{1}{4}\), and set \(f(x) = x^\alpha \chi_{[1, \infty)}\). Then \(f \in L^2\). Set \(f_n = (1 - 1/n) f\). Then \(f_n \to f\) pointwise, but \(||f - f_n||_r^r = ||(1/n)f||_r^r = \int_1^\infty n^{-r} x^{\alpha r} \, dx = \infty\).

(c) Suppose \(r \in [2, 3]\). Then by interpolation (see Homework 14 – Problem 12.15), \(f \in L^r\). It follows that \(\int h < \infty\), and so the LDCT applies.

Suppose \(r < 2\). In this case, construct a counter-example as in part (b) of a function \(f\) that does not decay fast enough to belong to \(L^r\).

Suppose \(r > 3\). In this case, construct a counter-example as in part (a) of a function \(f\) that has a sufficiently strong singularity that it does not belong to \(L^r\).