Problem 1: (28p) Four points for each question. No motivation required.

(a) State the axioms for a σ-algebra.
(b) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$. Which statements are necessarily true:
 (i) If $A^* A = I$, then $||A x|| = ||x||$ for all $x \in H$.
 (ii) If $||A x|| = ||x||$ for all $x \in H$, then $(Ax, Ay) = (x, y)$ for all $x, y \in H$.
 (iii) If $(Ax, Ay) = (x, y)$ for all $x, y \in H$, then A is unitary.
(c) Let $(\varphi_n)_{n=1}^\infty$ be a sequence of Schwartz functions on \mathbb{R} that are all supported in the interval $I = [-1, 1]$. Suppose further that
 $$\lim_{n \to \infty} \left(\sup_{x \in I} |\varphi_n(x) - \varphi(x)| \right) = 0.$$
 Which of the following statements are necessarily true:
 (i) $\varphi_n \to \varphi$ in $\mathcal{S}(\mathbb{R})$.
 (ii) $\varphi_n \to \varphi$ in $\mathcal{S}'(\mathbb{R})$.
 (iii) $\varphi_n \to \varphi$ in norm in $L^p(\mathbb{R})$ for all $p \in [1, \infty]$.
(d) Define an operator A on $L^2(\mathbb{R})$ via $[A u](x) = \frac{1}{2}(u(x) + u(-x))$. (To be rigorous, we could define A on $\mathcal{S}(\mathbb{R})$ and then extend it to $L^2(\mathbb{R})$ via a density argument.) Specify $\sigma(A)$.
(e) Let $p \in [1, \infty]$, and define functions $(f_n)_{n=1}^\infty \subset L^p(\mathbb{R})$ via $f_n = \frac{1}{\sqrt{n}} \chi_{[0, n]}$. For which $p \in [1, \infty]$ does $(f_n)_{n=1}^\infty$ converge weakly?
(f) Define $f \in \mathcal{S}'(\mathbb{R})$ via $f(x) = \sin(x)$. What is \hat{f}?
(g) Let $\mathcal{F} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform. What is the spectrum of \mathcal{F}?

Solution:

(a) See text book.
(b) (i) is TRUE since $||Ax||^2 = (Ax, Ax) = (A^* Ax, x) = (Ix, x) = ||x||^2$.
 (ii) is TRUE due to the polarization identity.
 (iii) is FALSE since the condition does not imply that the operator is onto (the right-shift operator on $\ell^2(\mathbb{N})$ provides a counter example).
(c) (i) is FALSE since, for instance, $||\varphi_n - \varphi||_{1,0} = ||\varphi' - \varphi'||_u$ need not converge to zero.
 (ii) is TRUE.
 (iii) is TRUE.
(d) $\sigma(A) = \{0, 1\}$. (Note that A is a projection operator.)
(e) For $p \geq 2$, we have $||f_n||_p = n^{\frac{1}{p} - \frac{1}{2}}$. For $p > 2$, we see that $\lim_{n \to \infty} ||f_n||_p = 0$, while for $p < 2$, we have $\lim_{n \to \infty} ||f_n||_p = \infty$ so (f_n) cannot possibly converge weakly. In the borderline case $p = 2$ we have $||f_n||_2 = 1$, but we can show weak convergence by verifying that $(f_n, g) \to 0$ for all g in a dense subset (such as the compactly supported functions).
(f) $\hat{f} = \frac{\sqrt{2\pi}}{2i} \left(\tau_1 \delta - \tau_{-1} \delta \right)$ (so that $(\hat{f}, \varphi) = \frac{\sqrt{2\pi}}{2i} \left(\varphi(-1) - \varphi(1) \right)$). To see this, observe that $\sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix})$, that $\mathcal{F}[e^{ikx} \varphi] = \tau_k \hat{\varphi}$, and that $\mathcal{F}[1] = \sqrt{2\pi} \delta$.
(g) $\sigma(\mathcal{F}) = \sigma_p(\mathcal{F}) = \{1, -1, i, -i\}$. Partial credit is given for the answer that $\sigma(\mathcal{F}) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ which you can deduce from the fact that \mathcal{F} is unitary.
Problem 2: (24p) Set $H = L^2(\mathbb{R})$, and consider for $n = 1, 2, 3, \ldots$ the operator $A_n \in \mathcal{B}(H)$ given by

$$[A_n u](x) = e^{-x^2/2n} u(x).$$

Each operator A_n is self-adjoint, and you may use this fact without proving it. Briefly motivate your answers to all questions below except part (c):

(a) (4p) Is A_n compact?
(b) (4p) Is A_n non-negative? Positive? Coercive?
(c) (6p) Specify $\sigma(A_n)$, $\sigma_p(A_n)$, $\sigma_c(A_n)$, and $\sigma_t(A_n)$.
(d) (6p) Does the sequence $(A_n)_{n=1}^\infty$ converge in $\mathcal{B}(H)$? If so, specify the limit and the mode of convergence.
(e) (4p) With \mathcal{F} the Fourier transform, describe the operator $\hat{A}_n = \mathcal{F}^* A_n \mathcal{F} \in \mathcal{B}(H)$.

That is, specify the action of \hat{A}_n without referring to \mathcal{F}. Does $(\hat{A}_n)_{n=1}^\infty$ converge?

Solution:

(a) No, A_n is not compact. To prove this, set $\varphi_j = 2^{j/2} \chi_{(2^{-j-1}, 2^{-j+1})}$. Then $(\varphi_j)_{j=1}^\infty$ is a bounded sequence, but $(A_n \varphi_j)_{j=1}^\infty$ cannot have a convergent subsequence since it is an orthogonal sequence in which the vectors satisfy $\|A_n \varphi_j\| \geq e^{-1/2}$.

(b) A_n is positive (and hence non-negative). To see this, fix a non-zero vector u. Then pick an R such that $\int_{|x| \leq R} |u(x)|^2 \, dx = \epsilon > 0$. Then

$$(A_n u, u) = \int_{-\infty}^\infty e^{-x^2/2n} |u(x)|^2 \, dx \geq \int_{-R}^R e^{-x^2/2n} |u(x)|^2 \, dx \geq e^{-R^2/2n} \epsilon > 0.$$

To see that A_n is not coercive, set $\psi_j = \chi_{(j, j+1)}$. Then $\|\psi_j\| = 1$, and $\lim_{j \to \infty} \|A_n \psi_j\| = 0$.

(c) $\sigma(A_n) = \sigma_c(A_n) = [0, 1]$. $\sigma_p(A_n) = \sigma_t(A_n) = \emptyset$.

(d) (A_n) converges strongly to the identity. To prove this, fix any $u \in H$. Then

$$\|A_n u - u\|^2 = \int_{-\infty}^\infty \left(e^{-x^2/2n} - 1\right)^2 |u(x)|^2 \, dx.$$

The integrand in (1) converges pointwise to zero as $n \to \infty$. Moreover, the integrand is dominated by $|u(x)|^2$, and $\int_R |u|^2 < \infty$. Therefore, the LDCT applies, and $\lim_{n \to \infty} \|A_n u - u\|^2 = 0$.

To see that (A_n) cannot converge in norm, set $\psi_j = \chi_{(j, j+1)}$. Then $\|\psi_j\| = 1$, and so $\|A_n - I\| \geq \|(A_n - I) \psi_j\| \geq 1 - e^{-j^2/2n}$. Taking the limit as $j \to \infty$, we see $\|A_n - I\| \geq 1$.

(e) The key observation is that multiplication by a function in physical space corresponds to convolution in Fourier space. To formalize, set $\varphi_n(x) = e^{-x^2/2n}$, and pick $v \in H$. Then

$$\hat{A}_n v = \mathcal{F}^* [A_n [\mathcal{F} v]] = \mathcal{F}^* [A_n \hat{v}] = \mathcal{F}^* [\varphi_n \hat{v}] = \sqrt{2\pi} \varphi_n * \hat{v}.$$

Since $\varphi_n(t) = \sqrt{n} e^{-nt^2/2}$, we find

$$[\hat{A}_n v](t) = \sqrt{n} \sqrt{2\pi} \int_{-\infty}^\infty e^{-n(t-s)^2/2} v(s) \, ds.$$

Finally, observe that since \mathcal{F} is unitary, the convergence properties of (\hat{A}_n) are exactly the same as those of (A_n). In other words, (\hat{A}_n) converges strongly (and not in norm) to $\mathcal{F}^* I \mathcal{F} = I$.
Problem 3: (18p) Let p be a real number such that $1 \leq p < \infty$, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^p(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \text{for all } x \in \mathbb{R}.$$

Suppose further that all f_n satisfy

$$|f_n(x)| \leq 2|f(x)|, \quad \text{for all } x \in \mathbb{R}.$$

For each of the three sets of conditions on f given below, specify for which $r \in [1, \infty)$ it is necessarily the case that

$$\lim_{n \to \infty} ||f - f_n||_{L^r(\mathbb{R})} = 0.$$

(a) $|f| \leq \chi_{[-1,1]}$.

(b) $f \in L^p(\mathbb{R})$ and $|f(x)| \leq 1$ for all $x \in \mathbb{R}$.

(c) $f \in L^p(\mathbb{R})$.

For each part, three points for a correct answer, and three points for a correct motivation.

Solution:

(a) $r \in [1, \infty)$.
(b) $r \in [p, \infty)$.
(c) $r = p$.

To motivate, we need to prove the claim when it is true, and provide counter-examples when it is not. The basic question we need to resolve is when

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) - f_n(x)|^r \, dx = 0.$$

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end, we construct a dominator h via

$$|f(x) - f_n(x)|^r \leq (|f(x)| + |f_n(x)|)^r \leq (|f(x)| + 2|f(x)|)^r = 3^r |f(x)|^r =: h(x).$$

We will analyze each of the three assumptions to see when $\int h < \infty$.

(a) If $|f| \leq \chi_{[-1,1]}$, then $h \leq 3^r \chi_{[-1,1]}$ so $\int h < r^3 2 < \infty$ and LDCT applies.

(b) Case 1 - $r \geq p$: In this case, $h(x) = 3^r |f(x)|^r \leq 3^r |f(x)|^p$ since $|f(x)| \leq 1$. Therefore, $\int h \leq \frac{3^r}{r^3} ||f||_p^p < \infty$, and LDCT applies.

Case 2 - $r < p$: In this case, the LDCT does not apply, and we look for a counter-example. Pick a real number α such that $-\frac{1}{r} < \alpha < -\frac{1}{p}$, and set $f(x) = x^\alpha \chi_{[1,\infty)}$. Then $f \in L^p$. Set $f_n = (1 - 1/n) f$. Then $f_n \to f$ pointwise, but $||f - f_n||_r^r = ||(1/n)f||_r^r = \int_1^{\infty} n^{-r} x^{\alpha r} \, dx = \infty$.

(c) Case 1 - $r > p$: When $|f|$ is not necessarily bounded, $|f|^r$ is not bounded by $|f|^p$ and the LDCT does not apply. We look for a counter-example. Pick a real number α such that $-\frac{1}{r} < \alpha < -\frac{1}{r}$, and set $f(x) = x^\alpha \chi_{(0,1)}$. Then $f \in L^p$. Set $f_n = (1 - 1/n) f$. Then $f_n \to f$ pointwise, but $||f - f_n||_r^r = ||(1/n)f||_r^r = \int_0^1 n^{-r} x^{\alpha r} \, dx = \infty$.

Case 2 - $r = p$: In this case, $\int h = \int 3^p |f|^p = 3^p ||f||_p^p < \infty$ so LDCT applies.

Case 3 - $r < p$: In this case, the same counter-example we constructed in part (b) works.

Note: A complete motivation requires counter-examples for the case where the claim does not hold. However, nobody provided them, so only one point was docked for such an omission.
Problem 4: (15p) Let \((c_n)_{n=1}^{\infty}\) be a sequence of complex numbers such that
\[
\sum_{n=1}^{\infty} n^6 |c_n|^2 < \infty,
\]
and set
\[u(x) = \sum_{n=1}^{\infty} c_n e^{inx}. \]
For which non-negative integers \(k\) is it necessarily the case that \(u \in C^k([-\pi, \pi])\)? Motivate your answer without invoking the Sobolev embedding theorem.

Solution: For \(k = 0, 1, 2\).

Set \(u_N = \sum_{n=1}^{N} c_n e^{inx}\). Then \(u_N \in C^k\) for all \(k\). If we can prove that \((u_N)_{N=1}^{\infty}\) is Cauchy in \(C^k\), then we invoke the fact that \(C^k\) is complete to argue that the limit function \(u \in C^k\).

Set
\[
B = \sum_{n=1}^{\infty} n^6 |c_n|^2 < \infty,
\]
let \(j\) be a non-negative integer, and let \(M\) and \(N\) be integers such that \(M < N\). Then for any \(x\) we find
\[
|\partial^{\bar{j}} (u_N(x) - u_M(x))| = |\partial^{\bar{j}} \sum_{n=M+1}^{N} c_n e^{inx}| = \left| \sum_{n=M+1}^{N} (in)^{\bar{j}} c_n e^{inx} \right| \leq \sum_{n=M+1}^{N} n^\bar{j} |c_n| \leq \{\text{Cauchy-Schwartz}\}
\]
\[
\leq \left(\sum_{n=M+1}^{N} n^{2\bar{j} - 6} \right)^{1/2} \left(\sum_{n=M+1}^{N} n^6 |c_n|^2 \right)^{1/2} \leq \left(\sum_{n=M+1}^{\infty} n^{2\bar{j} - 6} \right)^{1/2} B = D_{M,j} B,
\]
where
\[
D_{M,j} = \left(\sum_{n=M+1}^{\infty} n^{2\bar{j} - 6} \right)^{1/2}.
\]
It follows that
\[
||u_N - u_M||_{C^k} \leq \sum_{j=0}^{k} D_{M,j} B.
\]
Observe that \(\lim_{M \to \infty} D_{M,j} = 0\) when \(2\bar{j} - 6 < -1\). Since \(j\) is an integer, this happens when \(j = 0, 1, 2\).

Note: Most answers to this question consisted of a demonstration that the sum \(\partial^{\bar{k}} u = \sum c_n (in)^{\bar{k}} e^{inx}\) converges in the \(L^2\)-norm when \(\bar{k} \leq 3\). This shows that \(u \in H^3\), not that \(u \in C^3\). To get to \(C^3\), you need to invoke some type of Sobolev embedding results such as the one used above.

Also note that while the question asked for a motivation that did not merely invoke the Sobolev embedding theorem, it can of course be used to arrive at the correct answer. The theorem says that \(H^m(\mathbb{T}^d) \subset C^k(\mathbb{T}^d)\) when \(k < m - d/2\). In our case, we find that \(u \in H^3(\mathbb{T}^1)\), so \(m = 3\) and \(d = 1\). We must have \(k < 3 - 1/2\), or, in other words, \(k = 0, 1, 2\).
Problem 5: (15p) Define \(f \in S^*(\mathbb{R}) \) via \(f(x) = \frac{|x| - 1}{1 + |x|} \). Calculate the distributional derivatives \(f' \) and \(f'' \). Please motivate carefully.

Solution: Observe that \(f(x) = \frac{1 + |x| - 1}{1 + |x|} = 1 - \frac{1}{1 + |x|} \).

First we evaluate \(f' \). Fix \(\varphi \in S \). Then

\[
\langle f', \varphi \rangle = -\langle f, \varphi' \rangle = -\int_{-\infty}^{\infty} \varphi' + \int_{-\infty}^{0} \frac{1}{1 - x} \varphi' + \int_{0}^{\infty} \frac{1}{1 + x} \varphi' = \varphi(0) - \int_{-\infty}^{0} \varphi - \varphi(0) + \int_{0}^{\infty} \varphi = \langle g, \varphi \rangle
\]

where \(g = f' \) is a regular function given by

\[
f'(x) = g(x) = \frac{\text{sign}(x)}{(1 + |x|)^2}.\]

(The definition of \(g(0) \) is arbitrary.)

Observe that in the calculation above we used that \(\lim_{x \to \pm\infty} \varphi(x) = 0 \) for any \(\varphi \in S \).

Proceeding to \(f'' = g' \), we find

\[
\langle f'', \varphi \rangle = -\langle g', \varphi \rangle = -\int_{-\infty}^{0} \frac{2}{(1 - x)^2} \varphi' - \int_{0}^{\infty} \frac{2}{(1 + x)^3} \varphi' = \varphi(0) - \int_{-\infty}^{0} \frac{2}{(1 - x)^3} \varphi + \varphi(0) - \int_{0}^{\infty} \frac{2}{(1 + x)^3} \varphi.
\]

We see that

\[
f'' = g' = 2\delta + h,
\]

where \(h \) is a regular function given by

\[
h(x) = -\frac{2}{(1 + |x|)^3}.
\]

Note: Many solutions given involved sign errors, mistaken calculations of the derivative, etc. Such errors of course only result in a very minor loss of points, but notice that they are entirely unnecessary. The signs are obvious if you simply sketch the graphs of \(f \) and \(f' \). Moreover, away from the origin, \(f \) is a regular function and its distributional derivatives must coincide with its classical derivatives, which can easily be evaluated.