Problem 1: (28p) Four points for each question. No motivation required.

(a) State the axioms for a \(\sigma \)-algebra.

(b) Let \(H \) be a Hilbert space, and let \(A \in \mathcal{B}(H) \). Which statements are necessarily true:
 (i) If \(A^* A = I \), then \(||A x|| = ||x|| \) for all \(x \in H \).
 (ii) If \(||A x|| = ||x|| \) for all \(x \in H \), then \((Ax, Ay) = (x, y) \) for all \(x, y \in H \).
 (iii) If \((Ax, Ay) = (x, y) \) for all \(x, y \in H \), then \(A \) is unitary.

(c) Let \((\varphi_n)_{n=1}^{\infty} \) be a sequence of Schwartz functions on \(\mathbb{R} \) that are all supported in the interval \(I = [-1, 1] \). Suppose further that
 \[\lim_{n \to \infty} \left(\sup_{x \in I} |\varphi_n(x) - \varphi(x)| \right) = 0. \]
 Which of the following statements are necessarily true:
 (i) \(\varphi_n \to \varphi \) in \(\mathcal{S}(\mathbb{R}) \).
 (ii) \(\varphi_n \to \varphi \) in \(\mathcal{S}^*(\mathbb{R}) \).
 (iii) \(\varphi_n \to \varphi \) in norm in \(L^p(\mathbb{R}) \) for all \(p \in [1, \infty] \).

(d) Define an operator \(A \) on \(L^2(\mathbb{R}) \) via \([Au](x) = \frac{1}{2}(u(x) + u(-x)) \). (To be rigorous, we could define \(A \) on \(\mathcal{S}(\mathbb{R}) \) and then extend it to \(L^2(\mathbb{R}) \) via a density argument.) Specify \(\sigma(A) \).

(e) Let \(p \in [1, \infty] \), and define functions \((f_n)_{n=1}^{\infty} \subset L^p(\mathbb{R}) \) via \(f_n = \frac{1}{\sqrt{n}} \chi_{[0,n]} \). For which \(p \in [1, \infty] \) does \((f_n)_{n=1}^{\infty} \) converge weakly?

(f) Define \(f \in \mathcal{S}^*(\mathbb{R}) \) via \(f(x) = \sin(x) \). What is \(\hat{f} \)?

(g) Let \(\mathcal{F} : L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) denote the Fourier transform. What do you know about the spectrum of \(\mathcal{F} \)?

Problem 2: (24p) Set \(H = L^2(\mathbb{R}) \), and consider for \(n = 1, 2, 3, \ldots \) the operator \(A_n \in \mathcal{B}(H) \) given by
 \[[A_n u](x) = e^{-x^2/2n} u(x). \]
 Each operator \(A_n \) is self-adjoint, and you may use this fact without proving it. Briefly motivate your answers to all questions below except part (e):

(a) (4p) Is \(A_n \) compact?

(b) (4p) Is \(A_n \) non-negative? Positive? Coercive?

(c) (6p) Specify \(\sigma(A_n) \), \(\sigma_p(A_n) \), \(\sigma_c(A_n) \), and \(\sigma_t(A_n) \).

(d) (6p) Does the sequence \((A_n)_{n=1}^{\infty} \) converge in \(\mathcal{B}(H) \)? If so, specify the limit and the mode of convergence.

(e) (4p) With \(\mathcal{F} \) the Fourier transform, describe the operator \(\hat{A}_n = \mathcal{F}^* A_n \mathcal{F} \in \mathcal{B}(H) \).
 That is, specify the action of \(\hat{A}_n \) without referring to \(\mathcal{F} \). Does \((\hat{A}_n)_{n=1}^{\infty} \) converge?
Problem 3: (18p) Let p be a real number such that $1 \leq p < \infty$, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^p(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$
\lim_{n \to \infty} f_n(x) = f(x), \quad \text{for all } x \in \mathbb{R}.
$$

Suppose further that all f_n satisfy

$$
|f_n(x)| \leq 2|f(x)|, \quad \text{for all } x \in \mathbb{R}.
$$

For each of the three sets of conditions on f given below, specify for which $r \in [1, \infty)$ it is necessarily the case that

$$
\lim_{n \to \infty} ||f - f_n||_{L^r(\mathbb{R})} = 0.
$$

(a) $|f| \leq \chi_{[-1,1]}$.

(b) $f \in L^p(\mathbb{R})$ and $|f(x)| \leq 1$ for all $x \in \mathbb{R}$.

(c) $f \in L^p(\mathbb{R})$.

For each part, three points for a correct answer, and three points for a correct motivation.

Problem 4: (15p) Let $(c_n)_{n=1}^{\infty}$ be a sequence of complex numbers such that

$$
\sum_{n=1}^{\infty} n^6 |c_n|^2 < \infty,
$$

and set

$$
u(x) = \sum_{n=1}^{\infty} c_n e^{i n x}.
$$

For which non-negative integers k is it necessarily the case that $u \in C^k([\pi, \pi])$? Motivate your answer without invoking the Sobolev embedding theorem.

Problem 5: (15p) Define $f \in \mathcal{S}^*(\mathbb{R})$ via $f(x) = |x|/(1 + |x|)$. Calculate the distributional derivatives f' and f''. Please motivate carefully.