Problem 1: Consider the Hilbert space $H = l^2(N)$; let e_n denote the canonical basis vectors. Which of the following sequences converge weakly? Which have convergent subsequences?

(a) $x_n = n e_n$.
(b) $y_n = n^{-1/2} \sum_{j=1}^{n} e_j$.
(c) $x_n = e_n + e_m$ where $m = 1 + \text{mod}(n, 2)$.

Problem 2: Consider the Hilbert space $H = L^2([-\pi, \pi])$, and the sequence of functions $\varphi_n(x) = x^2 \sin(n x)$. Does $(\varphi_n)_{n=1}^{\infty}$ converge strongly in H? Does $(\varphi_n)_{n=1}^{\infty}$ converge weakly in H? If you answer yes to either question, specify the limit.

Problem 3: Let A denote a self-adjoint operator on a Hilbert space H. Let u denote an element of H and set $u_n = e^{i n A} u$. Prove that $(u_n)_{n=1}^{\infty}$ has a weakly convergent subsequence.

Problem 4: Let H_1 and H_2 be two Hilbert spaces. Let $U : H_1 \rightarrow H_2$ be a unitary operator, and let $A_1 \in \mathcal{B}(H_1)$ be a self-adjoint operator. Define the operator $A_2 \in \mathcal{B}(H_2)$ by $A_2 = U A_1 U^{-1}$. Prove that A_2 is self-adjoint.

Problem 5 (optional): Consider the Hilbert space $H = L^2([-\pi, \pi])$, and let P denote the set of trigonometric polynomials (which is dense in H. For $u \in P$, let A denote the operator $Au = 100 u + 18 u'' + u'''$. Prove that

$$\sup_{u \in P, \|u\|=1} \langle Au, u \rangle = \infty.$$

Conclude that A cannot be extended to a bounded linear operator on H. Prove that for $u, v \in P$, $\langle A u, v \rangle = \langle u, A v \rangle$. Determine

$$\inf_{u \in P, \|u\|=1} \langle Au, u \rangle.$$

Prove that

$$\langle u, v \rangle_A = \langle Au, v \rangle$$

is a bilinear form on P. Prove that on P, the norm $\| \cdot \|_A$ induced by $\langle \cdot, \cdot \rangle_A$ is equivalent to the norm

$$\|u\|_{H^2(\mathbb{T})} = \sqrt{\|u\|_{L^2(\mathbb{T})}^2 + \|u''\|_{L^2(\mathbb{T})}^2}.$$

Conclude that the closure of P under the norm $\| \cdot \|_A$ is the space $H^2(\mathbb{T})$ (as defined in Section 7.2).