Problem 1: Which of the following are true (no motivation required): (2p in total)
(a) In a Hilbert space, any bounded sequence has a weakly convergent subsequence.
(b) If \(f, g \in C(T) \), then \(||f * g||_u \leq ||f||_{L^2} ||g||_{L^2} \).
(c) The functions \((\sin(nx))_{n=1}^{\infty} \) form an orthogonal basis for \(L^2([0, \pi]) \).

(a) True - follows from the Banach-Alaoglu theorem.
(b) True - follows from Cauchy-Schwartz (\(\langle f * g \rangle(t) = \langle f, g_t \rangle \) where \(g_t(x) = g(t - x) \)).
(c) True - see Exercise 7.3.

Problem 2: Let \(A \) be a self-adjoint operator on a Hilbert space \(H \), and let \(\lambda \) be a complex number. Prove that the adjoint of \(\lambda A \) is \(\bar{\lambda} A \). For which \(\lambda \) is \(\lambda A \) necessarily skew-adjoint? (2p)

For any \(x, y \in H \), we find that
\[
\langle (\lambda A)x, y \rangle = \overline{\lambda} \langle Ax, y \rangle = \overline{\lambda} \langle x, A^* y \rangle = \langle x, (\overline{\lambda} A^*)y \rangle.
\]
Consequently, \((\lambda A)^* = -\lambda A \iff \lambda = -\lambda \iff \text{Re}(\lambda) = 0 \).

Problem 3: Let \(u \) be a function in \(L^2(T) \) and set \(\alpha_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-inx} u(x) \, dx \), for \(n \in \mathbb{Z} \). Obviously, if only finitely many \(\alpha_n \)'s are non-zero, \(u \) will be continuous. Can you give a more general condition involving only the sequence \((\alpha_n)_{n=-\infty}^{\infty} \)? (2p)

The Sobolev embedding theorem says that \(u \) is continuous if
\[
\sum_{n=-\infty}^{\infty} |n|^{2k} |\alpha_n|^2 < \infty
\]
for some \(k > 1/2 \).
Problem 4: Let H be a Hilbert space, and let $(\varphi_n)_{n=1}^{\infty}$ be an orthonormal basis for H. Consider for $t \in \mathbb{R}$ the operator $A(t) \in \mathcal{B}(H)$ defined by

$$A(t) u = \sum_{n=1}^{\infty} \left(\frac{1 + it}{1 - it} \right)^n \langle \varphi_n, u \rangle \varphi_n.$$

(a) Prove that for any $t \in \mathbb{R}$, the operator $A(t)$ is unitary. (2p)

(b) Is it the case that $A(t)$ is either self-adjoint of skew-adjoint for any t? (2p)

(c) For $p \in \mathbb{N}$, set $A_p = A(1/p)$. Does the sequence $(A_p)_{p=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, specify in which sense, and what the limit is. Motivate your answer. (4p)

Set $\lambda_n(t) = \left(\frac{1 + it}{1 - it} \right)^n$.

It follows immediately from Parseval’s equality that

(1) \[A(t)^* u = \sum_{n=1}^{\infty} \lambda_n(t) \langle \varphi_n, u \rangle \varphi_n = \sum_{n=1}^{\infty} \lambda_n(-t) \langle \varphi_n, u \rangle \varphi_n = A(-t) u. \]

(a) Since $\lambda_n(t)^{-1} = \lambda_n(-t)$, it follows that $A(t)$ is invertible and that $A(t)^{-1} = A(-t)$. That $A(t)$ is unitary is now obvious since $A(t)^* = A(-t) = A(t)^{-1}$.

(b) We find that $A(t)$ is self-adjoint iff every $\lambda_n(t)$ is a real number. This happens only for $t = 0$. Similarly, $A(t)$ is skew-adjoint iff every $\lambda_n(t)$ is a purely imaginary number. That never happens.

(c) A_p converges strongly to the identity operator, but it does not converge in norm.

We first prove that $A_p \to I$ strongly. Fix $u \in H$. Fix $\varepsilon > 0$. Pick an N such that $\sum_{n>N} |\langle \varphi_n, u \rangle|^2 < \varepsilon$. Then, using Parseval we find that

$$\limsup_{p \to \infty} ||A(1/p)u - u||^2$$

$$= \limsup_{p \to \infty} \left(\sum_{n=1}^{N} |\lambda_n(1/p) - 1|^2 |\langle \varphi_n, u \rangle|^2 + \sum_{n=N+1}^{\infty} |\lambda_n(1/p) - 1|^2 |\langle \varphi_n, u \rangle|^2 \right)$$

$$\leq \sum_{n=1}^{N} (\limsup_{p \to \infty} |\lambda_n(1/p) - 1|^2) |\langle \varphi_n, u \rangle|^2 + 2 \sum_{n=N+1}^{\infty} |\langle \varphi_n, u \rangle|^2 < 2\varepsilon.$$

Since ε was arbitrary, it follows that $\lim_{p \to \infty} ||A_p u - u|| = 0$.

To prove that A_p cannot converge in norm to I, simply pick for any $p > 0$, an $n \in \mathbb{N}$ such that $|\lambda_n(1/p) - 1| \geq 1/2$. Then

$$||A_p - I|| = \sup_{||u|| = 1} ||A_p u - u|| \geq ||A_p \varphi_n - \varphi_n|| = ||(\lambda_n(1/p) - 1) \varphi_n|| \geq 1/2.$$
Problem 5: Consider the Hilbert space $H = L^2(\mathbb{T})$, and the operator $A \in B(H)$ defined by $[A u](x) = (1 + \cos x) u(x)$. Prove that A is self-adjoint and positive, but not coercive. (5p)

Set $\varphi(x) = 1 + \cos(x)$.

That A is self-adjoint follows immediately from the fact that $1 + \cos x$ is real:

$$
\langle A u, v \rangle = \int_{-\pi}^{\pi} (1 + \cos x) u(x) v(x) \, dx = \int_{-\pi}^{\pi} \overline{u(x)} \left((1 + \cos x) v(x)\right) \, dx = \langle u, A v \rangle.
$$

That A is non-negative follows from the fact that $1 + \cos x$ is non-negative:

$$
(2) \quad \langle A u, u \rangle = \int_{-\pi}^{\pi} (1 + \cos x)|u(x)|^2 \, dx \geq 0.
$$

To further prove that A is positive, note that if we have equality in (2), then $u(x)$ must be zero everywhere except possibly on a set of measure zero, since $1 + \cos x$ is zero only for $x = \pm \pi$.

Recall that A is coercive iff

$$
\inf_{||u||=1} \langle A u, u \rangle > 0.
$$

To prove that this is not true, define the functions $u_n \in H$ by

$$
u_n(x) = \begin{cases}
\sqrt{n} & x \in [\pi - 1/n, \pi], \\
0 & x \in (-\pi, \pi - 1/n).
\end{cases}
$$

Note that $||u_n|| = 1$, so

$$
\inf_{||u||=1} \langle A u, u \rangle \leq \inf_{n \in \mathbb{N}} \langle A u_n, u_n \rangle = \inf_{n \in \mathbb{N}} \int_{\pi - 1/n}^{\pi} (1 + \cos x) |u_n(x)|^2 \, dx
\leq \inf_{n \in \mathbb{N}} \int_{\pi - 1/n}^{\pi} (1 + \cos(\pi - 1/n)) n \, dx = \inf_{n \in \mathbb{N}} \left(1 + \cos(\pi - 1/n)\right) = 0.
$$
Problem 6: Consider the Hilbert space \(H = L^2(\mathbb{R}) \). For this problem, we define \(H \) as the closure of the set of all compactly supported smooth functions on \(\mathbb{R} \) under the norm
\[
||u|| = \left(\int_{-\infty}^{\infty} |u(x)|^2 \, dx \right)^{1/2}.
\]
Which of the following sequences converge weakly in \(H \)? Motive your answers briefly.
(2p each)

(a) \((u_n)_{n=1}^\infty\) where \(u_n(x) = \begin{cases} |x - n|, & \text{for } x \in [n - 1, n + 1], \\ 0, & \text{for } x \in (-\infty, n - 1) \cup (n + 1, \infty). \end{cases} \)

(b) \((v_n)_{n=1}^\infty\) where \(v_n(x) = \sin(nx) e^{-x^2} \).

(c) \((w_n)_{n=1}^\infty\) where \(w_n(x) = e^{-x^2/n} \).

Remark: Note that there exist functions \(f \) and \(f_n \) in \(H \) such that
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) f_n(x) \, dx \neq \int_{-\infty}^{\infty} f(x) \left(\lim_{n \to \infty} f_n(x) \right) \, dx.
\]
Keeping in mind the definition of \(H \) given above, you can solve the problem without having to make such interchanges (not using any Lebesgue integrals at all).

Recall that if a sequence \((\varphi_n)_{n=1}^\infty\) is bounded, and there exists a function \(\varphi \in H \) such that
\[
\langle \varphi_n, \psi \rangle \to \langle \varphi, \psi \rangle \text{ for all } \psi \text{ in a dense subset } \mathcal{P},
\]
then \(\varphi_n \rightharpoonup \varphi \). In (a) and (b), we let \(\mathcal{P} \) be the set of compactly supported smooth functions (this is dense by definition).

(a) Since \(u_n(x) = u_1 (x - n + 1) \), it follows that \(||u_n|| = ||u_1|| \) and so \((u_n)\) is a bounded sequence. Furthermore, if \(\psi \in \mathcal{P} \), then \(\langle u_n, \psi \rangle \to 0 \) since for large enough \(n \), the support of \(u_n \) will be outside the support of \(\psi \). It follows that \(u_n \rightharpoonup 0 \).

(b) \(||v_n||^2 = \int_{-\infty}^{\infty} |\sin(nx)|^2 e^{-2x^2} \, dx \leq \int_{-\infty}^{\infty} e^{-2x^2} \, dx \) so \((v_n)\) is bounded. Furthermore, if \(\psi \in \mathcal{P} \), then
\[
|\langle v_n, \psi \rangle| = \left| \int_{-\infty}^{\infty} \sin(nx) e^{-x^2} \psi(x) \, dx \right| = \{\text{partial integration}\}
\]
\[
= \left| \int_{-\infty}^{\infty} \frac{1}{n} \cos(nx) \frac{d}{dx} \left(e^{-x^2} \psi(x)\right) \, dx \right| \leq \frac{1}{n} \int_{-\infty}^{\infty} \left| \frac{d}{dx} \left(e^{-x^2} \psi(x)\right) \right| \, dx \to 0,
\]
so \(v_n \rightharpoonup 0 \) (the boundary terms vanish since \(\psi \) has compact support).

(c) \(||w_n||^2 = \int_{-\infty}^{\infty} e^{-2x^2/n} \, dx = \{x = \sqrt{n}y\} = \sqrt{n} \int_{-\infty}^{\infty} e^{-2y^2} \, dy = \sqrt{n} ||w_1||^2 \to \infty \)
so \((w_n)\) cannot converge weakly.