Quiz:
Feel free to hand this in anonymously.

Question 1: Mark in each slot:
- “no” if the value does not exist
- $\pm \infty$ if the value is infinite
- “finite” if the value exists and is finite (give an exact value if you know it but don’t spend time on trying to figure it out).

<table>
<thead>
<tr>
<th>x_n</th>
<th>$\lim_{n\to\infty} x_n$</th>
<th>$\sup{x_n}_{n=1}^\infty$</th>
<th>$\limsup_{n\to\infty} x_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/n$</td>
<td>$\frac{1}{n}$</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$(-1)^n + \sin(n)/n$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>$\sum_{j=1}^n \frac{1}{j}$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>$\sum_{j=1}^n \frac{1}{j} - \log(n)$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>$\sum_{j=1}^n \frac{1}{j^2}$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>$\sum_{j=1}^n (-1)^j/j$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>$\sum_{j=1}^n (-1)^j/j^2$</td>
<td>skip</td>
<td>skip</td>
<td>skip</td>
</tr>
</tbody>
</table>

Question 2: Circle the sums that are absolutely convergent:

$$\sum_{j=1}^n \frac{1}{j}, \quad \sum_{j=1}^n \frac{1}{j^2}, \quad \sum_{j=1}^n (-1)^j/j, \quad \sum_{j=1}^n (-1)^j/j^2.$$

Question 3: Let α denote a real number, let $B = \{x \in \mathbb{R}^2 : |x| \leq 1\}$ and set

$$f(\alpha) = \int_B \frac{1}{|x|^{\alpha}} dA.$$

(a) For which values of α is $f(\alpha)$ finite?

(b) What is the answer if B is the unit ball in \mathbb{R}^n rather than \mathbb{R}^2?

Question 4: Let f be a continuous function defined on the set Ω. For each of the examples of sets given below, answer the following questions: Is f necessarily bounded? Is f necessarily uniformly continuous? (Give a counter examples if the answer is no.)

(a) $\Omega = \{x \in \mathbb{R}^2 : |x| \leq 2\}$.

(b) $\Omega = \{x \in \mathbb{R}^2 : 0 < |x| \leq 2\}$.

(c) $\Omega = \{x \in \mathbb{R}^2 : |x| \geq 2\}$.

(d) $\Omega = \bigcup_{n=1}^\infty [1/n, 1/n + 1/n^3]$.
Question 5: Let \(\{ F_n \}_{n=1}^\infty \) be a sequence of closed sets in \(\mathbb{R}^2 \) and let \(\{ G_n \}_{n=1}^\infty \) be a sequence of open sets in \(\mathbb{R}^2 \). Which of the following four sets are necessarily open? Necessarily closed?

(a) \(\bigcup_{n=1}^\infty F_n \)
(b) \(\bigcap_{n=1}^\infty F_n \)
(c) \(\bigcup_{n=1}^\infty G_n \)
(d) \(\bigcap_{n=1}^\infty G_n \)

Question 6: The parallelogram law in \(\mathbb{R}^n \) says that for any \(x, y \in \mathbb{R}^n \)

\[|x + y|^2 + |x - y|^2 = \]

Question 7: Let \(\Omega \) be a bounded set in \(\mathbb{Q} \) (the set of rational numbers). Does the set \(\Omega \) necessarily have a least upper bound in \(\mathbb{Q} \)? If no, give a counter example.

Question 8: Let \(\Omega \) be a closed set in \(\mathbb{R}^3 \) (not necessarily bounded) and let \(\{ x_n \}_{n=1}^\infty \) denote a Cauchy sequence in \(\Omega \). Does \(x_n \) necessarily have a limit value in \(\Omega \)? If no, give a counter example.

Question 9: Let \(A \) be an \(n \times n \) matrix of real numbers. Give a sufficient condition for there to exist a unitary matrix \(U \), and a diagonal matrix \(D \) such that \(A = U D U^T \).

Question 10: Let \(f \) be a continuous function on the interval \([-\pi, \pi]\) and define for \(n = \ldots, -2, -1, 0, 1, 2, \ldots \) the complex number \(a_n \) by

\[a_n = \int_{-\pi}^{\pi} e^{inx} f(x) \, dx. \]

Give the right hand side of the following equality:

\[\sum_{n=-\infty}^{\infty} |a_n|^2 = \]