Section exam 2 for M341: Linear Algebra and Matrix Theory Thursday, March 28, 2024. 75 minutes exam time. *Closed books. No notes.* Instructor: Per-Gunnar Martinsson

NAME:

	•	Question 2 (20 max)	•	•	•	•	Total (100 max)
Score:							

Question 1: (25p) In this question, we as usual let \mathbf{X}^{T} denote the *transpose* of a matrix \mathbf{X} . No motivation is required for these problems.

(a) (5p) Consider the matrix
$$\mathbf{A} = \begin{bmatrix} -1 & 0 & -1 \\ 4 & 2 & 7 \\ 2 & 3 & 7 \end{bmatrix}$$
 and the vector $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. In answering this question, you may use that \mathbf{A} is invertible, and that $\mathbf{A}^{-1} = \begin{bmatrix} 7 & 3 & -2 \\ 14 & 5 & -3 \\ -8 & -3 & 2 \end{bmatrix}$. Specify the solution to the linear system $\mathbf{AX} = \mathbf{B}$:

$$\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \begin{bmatrix} 7 & 3 & -2\\ 14 & 5 & -3\\ -8 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} = \begin{bmatrix} 9\\ 17\\ -10 \end{bmatrix}$$

(b) (5p) With **A** and **B** as in (a), specify the solution to the linear system $\mathbf{A}^{\mathrm{T}}\mathbf{Y} = \mathbf{B}$:

$$\mathbf{Y} = (\mathbf{A}^{\mathrm{T}})^{-1}\mathbf{B} = (\mathbf{A}^{-1})^{\mathrm{T}}\mathbf{B} = \begin{bmatrix} 7 & 14 & -8 \\ 3 & 5 & -3 \\ -2 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ 6 \\ -4 \end{bmatrix}$$

(c) (5p) Evaluate the following determinant: det $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix} = 1 \cdot 5 \cdot 8 \cdot 10 = 400$

- (d) (5p) Let **A** be a 3×3 matrix such that det(**A**) = 3. Complete the equation: det($2\mathbf{A}$) = $2^3 \cdot 3 = 24$
- (e) (5p) In this problem, **A** and **B** are two square matrices of the same dimensions. Circle the statements that are necessarily true.
 - (i) $det(\mathbf{A} + \mathbf{B}) = det(\mathbf{A}) + det(\mathbf{B})$. FALSE
 - (ii) $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$. TRUE
 - (iii) Every matrix has at least one real eigenvalue. FALSE
 - (iv) If X and Y are two eigenvectors of A, then X + Y is also an eigenvector of A. FALSE
 - (v) Suppose that W is a subspace of a vector space V, and that $\{\mathbf{v}_j\}_{j=1}^n$ is a collection of vectors in W. If \mathbf{x} is a linear combination of the vectors $\{\mathbf{v}_j\}_{j=1}^n$, then $\mathbf{x} \in W$. TRUE

Question 2: (20p) Compute all eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -2 \\ 1 & 4 \end{array} \right]$$

.

Please motivate your answers briefly.

Solution: First we evaluate the characteristic polynomial of A:

$$p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det \begin{bmatrix} \lambda - 1 & 2\\ -1 & \lambda - 4 \end{bmatrix} = (\lambda - 1)(\lambda - 4) + 2 = \lambda^2 - 5\lambda + 6$$

The eigenvalues are the solutions to $p_{\mathbf{A}}(\lambda) = 0$, so

$$\lambda = \frac{5}{2} \pm \sqrt{\frac{25}{4} - \frac{24}{4}} = \frac{5}{2} \pm \frac{1}{2}.$$

We see that the eigenvalues are 2 and 3.

Find eigenvectors for $\lambda = 2$: We seek the solutions to (2I - A)X = 0.

$$\begin{bmatrix} 1 & 2 & | & 0 \\ -1 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

We see that x_2 is free. Setting, e.g., $x_2 = 1$, we find the eigenvector

$$\mathbf{x} = \left[\begin{array}{c} -2\\ 1 \end{array} \right]$$

Find eigenvectors for $\lambda = 3$: We seek the solutions to (3I - A)X = 0.

$$\begin{bmatrix} 2 & 2 & | & 0 \\ -1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 0 \\ -1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

We see that x_2 is free. Setting, e.g., $x_2 = 1$, we find the eigenvector

$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Question 3: (15p) The matrix

$$\mathbf{A} = \begin{bmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{bmatrix}.$$

has the eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 6$. Show your work when answering (a) and (b) below:

(a) (7p) Compute the eigenspace E_3 . In other words, determine all vectors **x** such that $A\mathbf{x} = 3\mathbf{x}$.

(b) (8p) Compute the eigenspace E_6 . In other words, determine all vectors **x** such that $\mathbf{A}\mathbf{x} = 6\mathbf{x}$.

Solution to (a): We seek to solve (3I - A)X = 0. In other words

$$\begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 3 & -3 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

We see that x_3 is free. Set $x_3 = t$ to obtain $x_1 = x_3 = t$ and $x_2 = x_3 = t$. In other words, $\mathbf{x} \in E_3$ if and only if

$$\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} t$$

for some real number t.

Solution to (b): We seek to solve (6I - A)X = 0. In other words

We see that both x_2 and x_3 are free. Set $x_2 = s$ and $x_3 = t$. Then

$$x_1 = -x_2 - x_3 = -s - t$$

In other words, $\mathbf{x} \in E_6$ if and only if

$$\mathbf{x} = \begin{bmatrix} -s - t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} t$$

for some real numbers s and t.

Question 4: (20p) In this question, you are given four examples of a vector space V with some subset W identified. In each case, specify whether W is a *linear subspace* of V or not. Please motivate each answer (both the affirmative ones, and the negative ones). Five points per question.

(a) $V = \mathbb{R}^2$ and $W = \{ \mathbf{x} = [x_1, x_2] \in \mathbb{R}^2 : x_2 \ge 0 \}.$

NOT a subspace since W is not closed under scaling. To demonstrate this, consider

 $\mathbf{v} = [0, 1].$

We see that $\mathbf{v} \in W$. But $(-1)\mathbf{v} = [0, -1] \notin W$.

(b) $V = \mathbb{R}^3$, **A** is a fixed 4×3 matrix, and $W = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{A}\mathbf{x} = 0 \}$.

YES, W is a subspace. We will prove that it is closed under both addition and scaling. Then the subspace theorem asserts that W is a subspace.

Addition: Suppose that $\mathbf{x}, \mathbf{y} \in W$. Set $\mathbf{z} = \mathbf{x} + \mathbf{y}$. Then

$$Az = A(x + y) = Ax + Ay = \{Use that x, y \in W\} = 0 + 0 = 0.$$

We see that $\mathbf{z} \in W$.

Scalar multiplication: Suppose that $\mathbf{x} \in W$ and $c \in \mathbb{R}$. Set $\mathbf{z} = c\mathbf{x}$. Then

$$Az = A(cx) = cAx = \{ \text{Use that } x \in W \} = c0 = 0.$$

We see that $\mathbf{z} \in W$.

(c) V is the set of continuous functions on \mathbb{R} , that is, $V = C(\mathbb{R})$. $W = \{f \in V : f(0) = 1\}$.

NOT a subspace. For instance, the zero vector is not in W, so it cannot possibly be a subspace.

(d) V is the set of continuous functions on \mathbb{R} , that is $V = C(\mathbb{R})$. $W = \{f \in V : f(1) + f(2) = 0\}$.

YES, W is a subspace. We will prove that it is closed under both addition and scaling. Then the subspace theorem asserts that W is a subspace.

Addition: Suppose that $f, g \in W$. Set h = f + g. Then

$$h(1) + h(2) = (f(1) + g(1)) + (f(2) + g(2))$$

= (f(1) + f(2)) + (g(1) + g(2)) = {Use that $f, g \in W} = 0 + 0 = 0.$

We see that $h \in W$.

Scalar multiplication: Suppose that $f \in W$ and $c \in \mathbb{R}$. Set h = cf. Then

 $h(1) + h(2) = cf(1) + cf(2) = c(f(1) + f(2)) = \{$ Use that $f \in W\} = c0 = 0$. We see that $h \in W$. **Question 5:** (15p) Let **A** and **B** be two matrices of size $n \times n$ that are "similar".

(a) (5p) State the definition of what it means for **A** and **B** to be "similar".

A and **B** are *similar* if there exists an invertible matrix **P** such that $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}.$

(b) (5p) Prove that $det(\mathbf{A}) = det(\mathbf{B})$.

Assume that **A** and **B** are similar, so that $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ for some invertible **P**. Then

$$\det(\mathbf{A}) = \det(\mathbf{P}\mathbf{B}\mathbf{P}^{-1}) = \det(\mathbf{P})\det(\mathbf{B})\det(\mathbf{P}^{-1}) = \det(\mathbf{P})\det(\mathbf{B})\frac{1}{\det(\mathbf{P})} = \det(\mathbf{B}).$$

(c) (5p) Prove that **A** and **B** have the same eigenvalues.

Assume that **A** and **B** are similar, so that $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ for some invertible **P**.

Suppose that λ is an eigenvalue of **A** so that

$$Av = \lambda v$$

for some non-zero vector **v**. Insert $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ to get

 $\mathbf{PBP}^{-1}\mathbf{v} = \lambda \mathbf{v}.$

Left multiply by \mathbf{P}^{-1} to get

$$\mathbf{B}\mathbf{P}^{-1}\mathbf{v} = \lambda\mathbf{P}^{-1}\mathbf{v}.$$

Since **P** is invertible, $\mathbf{P}^{-1}\mathbf{v}$ is non-zero, and consequently an eigenvector of **B** with eigenvalue λ . So λ is also an eigenvalue of **B**.

To prove that every eigenvalue of **B** is also an eigenvalue of **A**, simply repeat the argument using that $\mathbf{B} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{-1}$ for $\mathbf{Q} = \mathbf{P}^{-1}$.

Alternative solution: Assume that A and B are similar, so that $A = PBP^{-1}$ for some invertible P. We will use an argument similar to the one in (b) to prove that A and B have the same characteristic polynomials.

$$p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det(\lambda \mathbf{P}\mathbf{P}^{-1} - \mathbf{P}\mathbf{B}\mathbf{P}^{-1}) = \det(\mathbf{P})\det(\lambda \mathbf{I} - \mathbf{B})\det(\mathbf{P}^{-1})$$
$$= \det(\mathbf{P})\det(\lambda \mathbf{I} - \mathbf{B})\frac{1}{\det(\mathbf{P})} = \det(\lambda \mathbf{I} - \mathbf{B}) = p_{\mathbf{B}}(\lambda).$$

Recalling that the eigenvalues are the roots of the characteristic polynomial, it follows immediately that A and B have the same eigenvalues.

Question 6: (5p) Let \mathbf{A} be a matrix of size $n \times n$ such that $\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$. Prove that if n is odd, then $\det(\mathbf{A}) = 0$. Is the same statement necessarily true if n is even (please motivate)?

Solution: Suppose that **A** is an $n \times n$ matrix such that $\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$. We observe that (1) $\det(\mathbf{A}) = \det(-\mathbf{A}^{\mathrm{T}}) = (-1)^{n} \det(\mathbf{A}^{\mathrm{T}}) = (-1)^{n} \det(\mathbf{A})$

(1)
$$\det(\mathbf{A}) = \det(-\mathbf{A}^{\mathsf{T}}) = (-1)^n \det(\mathbf{A}^{\mathsf{T}}) = (-1)^n \det(\mathbf{A}).$$

When n is odd, (1) implies that $det(\mathbf{A}) = -det(\mathbf{A})$, which shows that $det(\mathbf{A}) = 0$.

When n is even, there is no useful information in (1). Indeed, the statement is not true in this case, as illustrated by the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right].$$

We see that $\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$, while det $(\mathbf{A}) = 1$.