Section exam 2 for M341: Linear Algebra and Matrix Theory
Thursday, March 28, 2024. 75 minutes exam time. Closed books. No notes.
Instructor: Per-Gunnar Martinsson

NAME: ___

<table>
<thead>
<tr>
<th>Question 1</th>
<th>Question 2</th>
<th>Question 3</th>
<th>Question 4</th>
<th>Question 5</th>
<th>Question 6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(25 max)</td>
<td>(20 max)</td>
<td>(15 max)</td>
<td>(20 max)</td>
<td>(15 max)</td>
<td>(5 max)</td>
<td>(100 max)</td>
</tr>
</tbody>
</table>

Score: ___

Question 1: (25p) In this question, we as usual let X^T denote the transpose of a matrix X. No motivation is required for these problems.

(a) (5p) Consider the matrix $A = \begin{bmatrix} -1 & 0 & -1 \\ 4 & 2 & 7 \\ 2 & 3 & 7 \end{bmatrix}$ and the vector $B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. In answering this question, you may use that A is invertible, and that $A^{-1} = \begin{bmatrix} 7 & 3 & -2 \\ 14 & 5 & -3 \\ -8 & -3 & 2 \end{bmatrix}$.

Specify the solution to the linear system $AX = B$:

$$X = A^{-1}B = \begin{bmatrix} 7 & 3 & -2 \\ 14 & 5 & -3 \\ -8 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 17 \\ -10 \end{bmatrix}$$

(b) (5p) With A and B as in (a), specify the solution to the linear system $A^T Y = B$:

$$Y = (A^T)^{-1}B = (A^{-1})^T B = \begin{bmatrix} 7 & 14 & -8 \\ 3 & 5 & -3 \\ -2 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ 6 \\ -4 \end{bmatrix}$$

(c) (5p) Evaluate the following determinant: $\det \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix} = 1 \cdot 5 \cdot 8 \cdot 10 = 400$

(d) (5p) Let A be a 3×3 matrix such that $\det(A) = 3$. Complete the equation: $\det(2A) = 2^3 \cdot 3 = 24$

(e) (5p) In this problem, A and B are two square matrices of the same dimensions. Circle the statements that are necessarily true.

(i) $\det(A + B) = \det(A) + \det(B)$. FALSE

(ii) $\det(AB) = \det(A) \det(B)$. TRUE

(iii) Every matrix has at least one real eigenvalue. FALSE

(iv) If X and Y are two eigenvectors of A, then $X + Y$ is also an eigenvector of A. FALSE

(v) Suppose that W is a subspace of a vector space V, and that $\{v_j\}_{j=1}^n$ is a collection of vectors in W. If x is a linear combination of the vectors $\{v_j\}_{j=1}^n$, then $x \in W$. TRUE
Question 2: (20p) Compute all eigenvalues and eigenvectors of the matrix

\[A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \].

Please motivate your answers briefly.

Solution: First we evaluate the characteristic polynomial of \(A \):

\[p_A(\lambda) = \det(\lambda I - A) = \det \begin{bmatrix} \lambda - 1 & -2 \\ -1 & \lambda - 4 \end{bmatrix} = (\lambda - 1)(\lambda - 4) + 2 = \lambda^2 - 5\lambda + 6 \]

The eigenvalues are the solutions to \(p_A(\lambda) = 0 \), so

\[\lambda = \frac{5}{2} \pm \sqrt{\frac{25}{4} - 24} = \frac{5}{2} \pm \frac{1}{2} \].

We see that the eigenvalues are 2 and 3.

Find eigenvectors for \(\lambda = 2 \): We seek the solutions to \((2I - A)X = 0 \).

\[
\begin{bmatrix}
1 & 2 & 0 \\
-1 & -2 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

We see that \(x_2 \) is free. Setting, e.g., \(x_2 = 1 \), we find the eigenvector

\[x = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \].

Find eigenvectors for \(\lambda = 3 \): We seek the solutions to \((3I - A)X = 0 \).

\[
\begin{bmatrix}
2 & 2 & 0 \\
-1 & -1 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 1 & 0 \\
-1 & -1 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

We see that \(x_2 \) is free. Setting, e.g., \(x_2 = 1 \), we find the eigenvector

\[x = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \].
Question 3: (15p) The matrix

\[
A = \begin{bmatrix}
5 & -1 & -1 \\
-1 & 5 & -1 \\
-1 & -1 & 5
\end{bmatrix}
\]

has the eigenvalues \(\lambda_1 = 3 \) and \(\lambda_2 = 6 \). Show your work when answering (a) and (b) below:

(a) (7p) Compute the eigenspace \(E_3 \). In other words, determine all vectors \(x \) such that \(Ax = 3x \).

(b) (8p) Compute the eigenspace \(E_6 \). In other words, determine all vectors \(x \) such that \(Ax = 6x \).

Solution to (a): We seek to solve \((3I - A)x = 0\). In other words

\[
\begin{bmatrix}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 1 & -2 & 0 \\
1 & -2 & 1 & 0 \\
-2 & 1 & 1 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 1 & -2 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & -3 & 0
\end{bmatrix}
\]

We see that \(x_3 \) is free. Set \(x_3 = t \) to obtain \(x_1 = x_3 = t \) and \(x_2 = x_3 = t \). In other words, \(x \in E_3 \) if and only if

\[
x = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} t
\]

for some real number \(t \).

Solution to (b): We seek to solve \((6I - A)x = 0\). In other words

\[
\begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

We see that both \(x_2 \) and \(x_3 \) are free. Set \(x_2 = s \) and \(x_3 = t \). Then

\[
x_1 = -x_2 - x_3 = -s - t.
\]

In other words, \(x \in E_6 \) if and only if

\[
x = \begin{bmatrix}
-s - t \\
s \\
t
\end{bmatrix} = \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix} s + \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix} t
\]

for some real numbers \(s \) and \(t \).
Question 4: (20p) In this question, you are given four examples of a vector space V with some subset W identified. In each case, specify whether W is a linear subspace of V or not. Please motivate each answer (both the affirmative ones, and the negative ones). Five points per question.

(a) $V = \mathbb{R}^2$ and $W = \{ x = [x_1, x_2] \in \mathbb{R}^2 : x_2 \geq 0 \}$.

NOT a subspace since W is not closed under scaling. To demonstrate this, consider $v = [0, 1]$.

We see that $v \in W$. But $-1v = [0, -1] \notin W$.

(b) $V = \mathbb{R}^3$, A is a fixed 4×3 matrix, and $W = \{ x \in \mathbb{R}^3 : Ax = 0 \}$.

YES, W is a subspace. We will prove that it is closed under both addition and scaling. Then the subspace theorem asserts that W is a subspace.

Addition: Suppose that $x, y \in W$. Set $z = x + y$. Then

$$Az = A(x + y) = Ax + Ay = \{ \text{Use that } x, y \in W \} = 0 + 0 = 0.$$

We see that $z \in W$.

Scalar multiplication: Suppose that $x \in W$ and $c \in \mathbb{R}$. Set $z = cx$. Then

$$Az = A(cx) = cAx = \{ \text{Use that } x \in W \} = c0 = 0.$$

We see that $z \in W$.

(c) V is the set of continuous functions on \mathbb{R}, that is, $V = C(\mathbb{R})$. $W = \{ f \in V : f(0) = 1 \}$.

NOT a subspace. For instance, the zero vector is not in W, so it cannot possibly be a subspace.

(d) V is the set of continuous functions on \mathbb{R}, that is $V = C(\mathbb{R})$. $W = \{ f \in V : f(1) + f(2) = 0 \}$.

YES, W is a subspace. We will prove that it is closed under both addition and scaling. Then the subspace theorem asserts that W is a subspace.

Addition: Suppose that $f, g \in W$. Set $h = f + g$. Then

$$h(1) + h(2) = (f(1) + g(1)) + (f(2) + g(2))$$
$$= (f(1) + f(2)) + (g(1) + g(2)) = \{ \text{Use that } f, g \in W \} = 0 + 0 = 0.$$

We see that $h \in W$.

Scalar multiplication: Suppose that $f \in W$ and $c \in \mathbb{R}$. Set $h = cf$. Then

$$h(1) + h(2) = cf(1) + cf(2) = c(f(1) + f(2)) = \{ \text{Use that } f \in W \} = c0 = 0.$$

We see that $h \in W$.
Question 5: (15p) Let A and B be two matrices of size $n \times n$ that are “similar”.

(a) (5p) State the definition of what it means for A and B to be “similar”.

A and B are similar if there exists an invertible matrix P such that
\[A = PBP^{-1}. \]

(b) (5p) Prove that $\det(A) = \det(B)$.

Assume that A and B are similar, so that $A = PBP^{-1}$ for some invertible P. Then
\[
\det(A) = \det(PBP^{-1}) = \det(P)\det(B)\det(P^{-1}) = \det(P)\det(B)\frac{1}{\det(P)} = \det(B).
\]

(c) (5p) Prove that A and B have the same eigenvalues.

Assume that A and B are similar, so that $A = PBP^{-1}$ for some invertible P.

Suppose that λ is an eigenvalue of A so that
\[Av = \lambda v \]
for some non-zero vector v. Insert $A = PBP^{-1}$ to get
\[PBP^{-1}v = \lambda v. \]

Left multiply by P^{-1} to get
\[BP^{-1}v = \lambda P^{-1}v. \]

Since P is invertible, $P^{-1}v$ is non-zero, and consequently an eigenvector of B with eigenvalue λ. So λ is also an eigenvalue of B.

To prove that every eigenvalue of B is also an eigenvalue of A, simply repeat the argument using that $B = QAQ^{-1}$ for $Q = P^{-1}$.

Alternative solution: Assume that A and B are similar, so that $A = PBP^{-1}$ for some invertible P. We will use an argument similar to the one in (b) to prove that A and B have the same characteristic polynomials.

\[
p_A(\lambda) = \det(\lambda I - A) = \det(\lambda PP^{-1} - PBP^{-1}) = \det(P)\det(\lambda I - B)\det(P^{-1})
\]
\[= \det(P)\det(\lambda I - B)\frac{1}{\det(P)} = \det(\lambda I - B) = p_B(\lambda).\]

Recalling that the eigenvalues are the roots of the characteristic polynomial, it follows immediately that A and B have the same eigenvalues.
Question 6: (5p) Let A be a matrix of size $n \times n$ such that $A = -A^T$. Prove that if n is odd, then $\det(A) = 0$. Is the same statement necessarily true if n is even (please motivate)?

Solution: Suppose that A is an $n \times n$ matrix such that $A = -A^T$. We observe that

$$\det(A) = \det(-A^T) = (-1)^n \det(A^T) = (-1)^n \det(A).$$

When n is odd, (1) implies that $\det(A) = -\det(A)$, which shows that $\det(A) = 0$.

When n is even, there is no useful information in (1). Indeed, the statement is not true in this case, as illustrated by the matrix

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

We see that $A = -A^T$, while $\det(A) = 1$.