Section exam 2 for M341: Linear Algebra and Matrix Theory
Thursday, March 28, 2024. 75 minutes exam time. Closed books. No notes.
Instructor: Per-Gunnar Martinsson

NAME: \qquad

	Question 1 $(25 \max)$	Question 2 $(20 \max)$	Question 3 $(15 \max)$	Question 4 $(20 \max)$	Question 5 $(15 \max)$	Question 6 $(5 \max)$	Total $(100 \max)$
Score:							

Question 1: (25p) In this question, we as usual let \mathbf{X}^{T} denote the transpose of a matrix \mathbf{X}. No motivation is required for these problems.
(a) (5p) Consider the matrix $\mathbf{A}=\left[\begin{array}{rrr}-1 & 0 & -1 \\ 4 & 2 & 7 \\ 2 & 3 & 7\end{array}\right]$ and the vector $\mathbf{B}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. In answering this question, you may use that \mathbf{A} is invertible, and that $\mathbf{A}^{-1}=\left[\begin{array}{rrr}7 & 3 & -2 \\ 14 & 5 & -3 \\ -8 & -3 & 2\end{array}\right]$. Specify the solution to the linear system $\mathbf{A X}=\mathbf{B}$:

$$
\mathbf{X}=
$$

(b) (5p) With \mathbf{A} and \mathbf{B} as in (a), specify the solution to the linear system $\mathbf{A}^{\mathrm{T}} \mathbf{Y}=\mathbf{B}$:

$$
\mathbf{Y}=
$$

(c) (5p) Evaluate the following determinant: $\operatorname{det}\left(\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10\end{array}\right]\right)=$
(d) (5p) Let \mathbf{A} be a 3×3 matrix such that $\operatorname{det}(\mathbf{A})=3$. Complete the equation: $\operatorname{det}(2 \mathbf{A})=$
(e) (5p) In this problem, \mathbf{A} and \mathbf{B} are two square matrices of the same dimensions. Circle the statements that are necessarily true.
(i) $\operatorname{det}(\mathbf{A}+\mathbf{B})=\operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$.
(ii) $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.
(iii) Every matrix has at least one real eigenvalue.
(iv) If \mathbf{X} and \mathbf{Y} are two eigenvectors of \mathbf{A}, then $\mathbf{X}+\mathbf{Y}$ is also an eigenvector of \mathbf{A}.
(v) Suppose that W is a subspace of a vector space V, and that $\left\{\mathbf{v}_{j}\right\}_{j=1}^{n}$ is a collection of vectors in W. If \mathbf{x} is a linear combination of the vectors $\left\{\mathbf{v}_{j}\right\}_{j=1}^{n}$, then $\mathbf{x} \in W$.

Question 2: (20p) Compute all eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -2 \\
1 & 4
\end{array}\right]
$$

Please motivate your answers briefly.

Question 3: (15p) The matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
5 & -1 & -1 \\
-1 & 5 & -1 \\
-1 & -1 & 5
\end{array}\right] .
$$

has the eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=6$. Show your work when answering (a) and (b) below:
(a) (7p) Compute the eigenspace E_{3}. In other words, determine all vectors \mathbf{x} such that $\mathbf{A} \mathbf{x}=3 \mathbf{x}$.
(b) (8 p) Compute the eigenspace E_{6}. In other words, determine all vectors \mathbf{x} such that $\mathbf{A} \mathbf{x}=6 \mathbf{x}$.

Question 4: (20p) In this question, you are given four examples of a vector space V with some subset W identified. In each case, specify whether W is a linear subspace of V or not. Please motivate each answer (both the affirmative ones, and the negative ones). Five points per question.
(a) $V=\mathbb{R}^{2}$ and $W=\left\{\mathbf{x}=\left[x_{1}, x_{2}\right] \in \mathbb{R}^{2}: x_{2} \geq 0\right\}$.
(b) $V=\mathbb{R}^{3}, \mathbf{A}$ is a fixed 4×3 matrix, and $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{A x}=0\right\}$.
(c) V is the set of continuous functions on \mathbb{R}, that is, $V=C(\mathbb{R}) . W=\{f \in V: f(0)=1\}$.
(d) V is the set of continuous functions on \mathbb{R}, that is $V=C(\mathbb{R}) . W=\{f \in V: f(1)+f(2)=0\}$.

Question 5: (15p) Let A and B be two matrices of size $n \times n$ that are "similar".
(a) (5p) State the definition of what it means for \mathbf{A} and \mathbf{B} to be "similar".
(b) (5p) Prove that $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$.
(c) (5p) Prove that \mathbf{A} and \mathbf{B} have the same eigenvalues.

Question 6: $(5 \mathrm{p})$ Let \mathbf{A} be a matrix of size $n \times n$ such that $\mathbf{A}=-\mathbf{A}^{\mathrm{T}}$. Prove that if n is odd, then $\operatorname{det}(\mathbf{A})=0$. Is the same statement necessarily true if n is even (please motivate)?

