Section exam 2 for M341: Linear Algebra and Matrix Theory Thursday, March 28, 2024. 75 minutes exam time. *Closed books. No notes.* Instructor: Per-Gunnar Martinsson

NAME: _____

	$\begin{array}{c} \text{Question 1} \\ (25 \text{ max}) \end{array}$	Question 2 (20 max)	$\begin{array}{c} \text{Question 3} \\ (15 \text{ max}) \end{array}$	$\begin{array}{c} \text{Question 4} \\ (20 \text{ max}) \end{array}$	$\begin{array}{c} \text{Question 5} \\ (15 \text{ max}) \end{array}$	$\begin{array}{c} \text{Question 6} \\ (5 \text{ max}) \end{array}$	Total (100 max)
Score:							

Question 1: (25p) In this question, we as usual let \mathbf{X}^{T} denote the *transpose* of a matrix \mathbf{X} . No motivation is required for these problems.

(a) (5p) Consider the matrix
$$\mathbf{A} = \begin{bmatrix} -1 & 0 & -1 \\ 4 & 2 & 7 \\ 2 & 3 & 7 \end{bmatrix}$$
 and the vector $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. In answering this question, you may use that \mathbf{A} is invertible, and that $\mathbf{A}^{-1} = \begin{bmatrix} 7 & 3 & -2 \\ 14 & 5 & -3 \\ -8 & -3 & 2 \end{bmatrix}$.
Specify the solution to the linear system $\mathbf{AX} = \mathbf{B}$:

 $\mathbf{X} =$

(b) (5p) With **A** and **B** as in (a), specify the solution to the linear system $\mathbf{A}^{\mathrm{T}}\mathbf{Y} = \mathbf{B}$:

 $\mathbf{Y} =$

(c) (5p) Evaluate the following determinant: det
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix} =$$

(d) (5p) Let **A** be a 3×3 matrix such that det(**A**) = 3. Complete the equation: det(2**A**) =

- (e) (5p) In this problem, **A** and **B** are two square matrices of the same dimensions. Circle the statements that are necessarily true.
 - (i) $det(\mathbf{A} + \mathbf{B}) = det(\mathbf{A}) + det(\mathbf{B}).$
 - (ii) $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$.
 - (iii) Every matrix has at least one real eigenvalue.
 - (iv) If X and Y are two eigenvectors of A, then X + Y is also an eigenvector of A.
 - (v) Suppose that W is a subspace of a vector space V, and that $\{\mathbf{v}_j\}_{j=1}^n$ is a collection of vectors in W. If \mathbf{x} is a linear combination of the vectors $\{\mathbf{v}_j\}_{j=1}^n$, then $\mathbf{x} \in W$.

Question 2: (20p) Compute all eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -2 \\ 1 & 4 \end{array} \right].$$

Please motivate your answers briefly.

Question 3: (15p) The matrix

$$\mathbf{A} = \begin{bmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{bmatrix}.$$

has the eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 6$. Show your work when answering (a) and (b) below:

(a) (7p) Compute the eigenspace E_3 . In other words, determine all vectors **x** such that $A\mathbf{x} = 3\mathbf{x}$.

(b) (8p) Compute the eigenspace E_6 . In other words, determine all vectors **x** such that $\mathbf{A}\mathbf{x} = 6\mathbf{x}$.

Question 4: (20p) In this question, you are given four examples of a vector space V with some subset W identified. In each case, specify whether W is a *linear subspace* of V or not. Please motivate each answer (both the affirmative ones, and the negative ones). Five points per question.

(a)
$$V = \mathbb{R}^2$$
 and $W = \{ \mathbf{x} = [x_1, x_2] \in \mathbb{R}^2 : x_2 \ge 0 \}.$

(b) $V = \mathbb{R}^3$, **A** is a fixed 4×3 matrix, and $W = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{A}\mathbf{x} = 0 \}$.

(c) V is the set of continuous functions on \mathbb{R} , that is, $V = C(\mathbb{R})$. $W = \{f \in V : f(0) = 1\}$.

(d) V is the set of continuous functions on \mathbb{R} , that is $V = C(\mathbb{R})$. $W = \{f \in V : f(1) + f(2) = 0\}.$

Question 5: (15p) Let **A** and **B** be two matrices of size $n \times n$ that are "similar".

(a) (5p) State the definition of what it means for \mathbf{A} and \mathbf{B} to be "similar".

(b) (5p) Prove that $det(\mathbf{A}) = det(\mathbf{B})$.

(c) (5p) Prove that **A** and **B** have the same eigenvalues.

Question 6: (5p) Let \mathbf{A} be a matrix of size $n \times n$ such that $\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$. Prove that if n is odd, then $\det(\mathbf{A}) = 0$. Is the same statement necessarily true if n is even (please motivate)?