Homework set 10 - M341, Spring 2024

Due on Sunday April 21 (because of the exam on Thursday).

Hand in solutions to:

Section 4.5: 1c, 7.
Section 5.1: 25, 34.

Problem 1 (hand in): Let $N=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ be a vector of unit length (meaning that $\|N\|=1$). Consider the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(X)=X-N\left(N^{\mathrm{T}} X\right) .
$$

In other words, $f(X)=A X$ where $A=I-N N^{\mathrm{T}}$.
(a) Show that $f(f(X))=f(X)$.
(b) Set $Y=f(X)$ and define the vector Z via $Z=X-Y$, so that $X=Y+Z$. Show that Z is parallel to N, and that Y is orthogonal to N.

Note: We will return to the map f in Chapter 6. It is knows as an "orthogonal projection" onto the plane L through the origin that has normal vector N.

Problem 2 (hand in): Let $N=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ be a vector of unit length (meaning that $\|N\|=1$), as in
Problem 1. Consider the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(X)=X-2 N\left(N^{\mathrm{T}} X\right) .
$$

In other words, $f(X)=A X$ where $A=I-2 N N^{\mathrm{T}}$.
(a) show that $f(f(X))=X$ for all vectors X.
(b) Show that $\|f(X)\|=\|X\|$ for all vectors X. (Hint: Use that $\|A X\|^{2}=(A X) \cdot(A X)=$ $(A X)^{\mathrm{T}} A X=X^{\mathrm{T}} A^{\mathrm{T}} A X$.)
(c) (Optional) Describe in words what the geometric meaning of f is.

Optional problems: You are encouraged to work these! But do not hand in.
Section 4.5: 1a, 3, 4, 15, 18, 23, 24.
Section 5.1: 16, 21, 30, 33, 36.

