Homework set 4 - M341, Spring 2024

Hand in solutions: 5df and 16 from Section 2.3.

Suggested problems (do not hand in): 4, 5b, 6b, 12, and 18 from Section 2.3.

Problem 1: Let c be a real number, and consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.) Observe that such a matrix \mathbf{F} exists for every real number c, including $c=0$.

Problem 2: Let c be a real number such that $c \neq 0$, and consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & c
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.)
(c) Set $\mathbf{G}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. Prove that there cannot exist a matrix \mathbf{H} such that $\mathbf{G H}=\mathbf{I}$.

Problem 3: Consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.)

Problem 4: Consider the two linear systems

$$
\left\{\begin{array} { r r }
{ x _ { 1 } - x _ { 2 } + x _ { 3 } } & { = - 1 } \\
{ x _ { 1 } - x _ { 2 } + 2 x _ { 3 } } & { = } \\
{ - x _ { 1 } + 2 x _ { 2 } - x _ { 3 } } & { = } \\
{ \hline }
\end{array} \quad \text { and } \quad \left\{\begin{array}{rrrr}
y_{1} & -y_{2} & +y_{3} & = \\
y_{1} & -y_{2} & +2 y_{3} & =1 \\
-y_{1} & +2 y_{2} & -y_{3} & = \\
1
\end{array}\right.\right.
$$

Specify a matrix \mathbf{A}, and column vectors \mathbf{B} and \mathbf{C} so that the two systems can be written as $\mathbf{A X}=\mathbf{B}$ and $\mathbf{A Y}=\mathbf{C}$, respectively. Then form the extended matrix $[\mathbf{A} \mid \mathbf{B} \mathbf{C}]$, and transform it to its reduced row echelon form. Finally, specify the solutions \mathbf{X} and \mathbf{Y}.

