Problem 1: Let c be a real number, and consider the matrix

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) Let A be a matrix with three rows, and consider the matrix $B = EA$. The matrix B is the result of performing an elementary row operation on A. Which one?

(b) Specify a matrix F such that $EF = I$. (In other words, $F = E^{-1}$.) Observe that such a matrix F exists for every real number c, including $c = 0$.

Problem 2: Let c be a real number such that $c \neq 0$, and consider the matrix

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{bmatrix}.$$

(a) Let A be a matrix with three rows, and consider the matrix $B = EA$. The matrix B is the result of performing an elementary row operation on A. Which one?

(b) Specify a matrix F such that $EF = I$. (In other words, $F = E^{-1}$.)

(c) Set $G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Prove that there cannot exist a matrix H such that $GH = I$.

Problem 3: Consider the matrix

$$E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

(a) Let A be a matrix with three rows, and consider the matrix $B = EA$. The matrix B is the result of performing an elementary row operation on A. Which one?

(b) Specify a matrix F such that $EF = I$. (In other words, $F = E^{-1}$.)

Problem 4: Consider the two linear systems

\[
\begin{align*}
\begin{cases}
 x_1 - x_2 + x_3 &= -1 \\
 x_1 - x_2 + 2x_3 &= -2 \\
 -x_1 + 2x_2 - x_3 &= 2
\end{cases}
\quad \text{and} \quad
\begin{cases}
 y_1 - y_2 + y_3 &= -1 \\
 y_1 - y_2 + 2y_3 &= 1 \\
 -y_1 + 2y_2 - y_3 &= 1
\end{cases}
\end{align*}
\]

Specify a matrix A, and column vectors B and C so that the two systems can be written as $AX = B$ and $AY = C$, respectively. Then form the extended matrix $[A|B \ C]$, and transform it to its reduced row echelon form. Finally, specify the solutions X and Y.

P.G. Martinsson, UT-Austin, February 2024