Homework set 4 — M341, Spring 2024

Hand in solutions: 5df and 16 from Section 2.3.

Suggested problems (do not hand in): 4, 5b, 6b, 12, and 18 from Section 2.3.

Problem 1: Let c be a real number, and consider the matrix

	1	0	0]
E =		1		
	0	0	1	

- (a) Let A be a matrix with three rows, and consider the matrix B = EA. The matrix B is the result of performing an elementary row operation on A. Which one?
- (b) Specify a matrix **F** such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.) Observe that such a matrix **F** exists for *every* real number c, including c = 0.

Problem 2: Let c be a real number such that $c \neq 0$, and consider the matrix

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{bmatrix}$$

- (a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B} = \mathbf{E}\mathbf{A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A} . Which one?
- (b) Specify a matrix **F** such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.)
- (c) Set $\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Prove that there cannot exist a matrix \mathbf{H} such that $\mathbf{GH} = \mathbf{I}$.

Problem 3: Consider the matrix

$$\mathbf{E} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$

- (a) Let A be a matrix with three rows, and consider the matrix B = EA. The matrix B is the result of performing an elementary row operation on A. Which one?
- (b) Specify a matrix **F** such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.)

Problem 4: Consider the two linear systems

$$\begin{cases} x_1 & -x_2 & +x_3 &= & -1 \\ x_1 & -x_2 & +2x_3 &= & -2 \\ -x_1 & +2x_2 & -x_3 &= & 2 \end{cases} \quad \text{and} \quad \begin{cases} y_1 & -y_2 & +y_3 &= & -1 \\ y_1 & -y_2 & +2y_3 &= & 1 \\ -y_1 & +2y_2 & -y_3 &= & 1 \end{cases}$$

Specify a matrix **A**, and column vectors **B** and **C** so that the two systems can be written as $\mathbf{AX} = \mathbf{B}$ and $\mathbf{AY} = \mathbf{C}$, respectively. Then form the extended matrix $[\mathbf{A}|\mathbf{B}|\mathbf{C}]$, and transform it to its reduced row echelon form. Finally, specify the solutions **X** and **Y**.

P.G. Martinsson, UT-Austin, February 2024