Homework set 5 - MATH 397C - Spring 2022

Due on Thursday May 5. Hand in solutions to problems 1, 2, 6, and 7.
Problem 1: The objective of this problem is to computationally investigate the error incurred by truncating multipole expansions. Consider the following geometry: Let Ω_{τ} and Ω_{σ} be two well-separated boxes with centers \boldsymbol{c}_{τ} and \boldsymbol{c}_{σ}. Let $\boldsymbol{y} \in \Omega_{\sigma}$ be a source point and let $\boldsymbol{x} \in \Omega_{\tau}$ be a target point. Consider the error function

$$
e(P)=\sup \left\{|\log | \boldsymbol{x}-\boldsymbol{y}\left|-\mathbf{B}_{P}\left(\boldsymbol{x}, \boldsymbol{c}_{\tau}\right) \mathbf{Z}_{P}\left(\boldsymbol{c}_{\tau}, \boldsymbol{c}_{\sigma}\right) \mathbf{C}_{P}\left(\boldsymbol{c}_{\sigma}, \boldsymbol{y}\right)\right|: \boldsymbol{y} \in \Omega_{\sigma} \boldsymbol{x} \in \Omega_{\tau}\right\}
$$

where P is the length of the multipole expansion, and where

$$
\begin{aligned}
\mathbf{C}_{P}\left(\boldsymbol{c}_{\sigma}, \boldsymbol{y}\right) & \in \mathbb{C}^{P \times 1} \\
\mathbf{Z}_{P}\left(\boldsymbol{c}_{\tau}, \boldsymbol{c}_{\sigma}\right) & \in \mathbb{C}^{P \times P} \\
\mathbf{B}_{P}\left(\boldsymbol{x}, \boldsymbol{c}_{\tau}\right) & \in \mathbb{C}^{1 \times P}
\end{aligned}
$$

$$
\mathbf{Z}_{P}\left(\boldsymbol{c}_{\tau}, \boldsymbol{c}_{\sigma}\right) \in \mathbb{C}^{P \times P} \quad \text { maps an outgoing expansion to an incoming expansion }
$$

maps an incoming expansion to a target
(a) Estimate $e(P)$ experimentally for the geometry:

$$
\Omega_{\sigma}=[-1,1] \times[-1,1], \quad \Omega_{\tau}=[3,5] \times[-1,1] .
$$

(b) Fit the function you determined in (a) to a curve $e(P) \sim c \cdot \alpha^{P}$. What is α ?
(c) Is the supremum for a given P attained for any specific pair $\{\boldsymbol{x}, \boldsymbol{y}\}$? If so, find (experimentally) the pair. Does the choice depend on P ?
(d) Repeat questions (a), (b), (c) for a different geometry of your choice. (Provide a picture.)

Hint: The provided file main_T_ops_are_fun.m might be useful.
Problem 2: The objective of this exercise is to familiarize yourself with the provided prototype FMM. The questions below refer to the basic FMM provided in the file main_fmm. m when executed on a uniform particle distribution. For this case, precompute only the translation operators $\mathbf{T}^{(\mathrm{ofo})}, \mathbf{T}^{\text {(ifo) })}$, and $\mathbf{T}^{\text {(ifi) }}$ (i.e. set f lag_precomp=0).
(a) Estimate and plot the execution time of the FMM for the choices

$$
N_{\text {tot }}=1000,2000,4000,8000,16000,32000,64000 .
$$

Set nmax $=50$. Provide plots that track the following costs:
$t_{\text {tot }}$ total execution time, including initialization.
$t_{\text {init }}$ cost of initialization (computing the tree, the object T_OPS, etc.).
$t_{\text {ofs }} \quad$ cost of applying $\mathbf{T}^{\text {(ofs) }}$.
$t_{\text {ofo }} \quad$ cost of applying $\mathbf{T}^{\text {(ofo) }}$.
$t_{\text {ifo }} \quad$ cost of applying $\mathbf{T}^{\text {(ifo) }}$.
$t_{\text {ifi }} \quad$ cost of applying $\mathbf{T}^{(\text {ifi) }}$.
$t_{\mathrm{tfi}} \quad$ cost of applying $\mathbf{T}^{\text {(tfi) }}$.
$t_{\text {close }} \quad$ cost of directly evaluating close range interactions.
(b) Repeat exercise (a) but now for a few different choices of nmax. Which one is the best one? Provide a new plot of the times required for this optimal choice.

Problem 3: [Optional] Repeat Problem 3.2 but now use a non-uniform point distribution of your choice.

Problem 4: [Optional] Can you think of a better way of computing the interaction lists? Here "better" could mean either a cleaner code that executes in more or less the same time, or a code that executes significantly faster than the provided one. If your code is both cleaner and faster then so much the better!

Problem 5: [Optional] Code up the single-level Barnes-Hut method and investigate computationally how many boxes you should use for optimal performance for any given precision and given total number $N_{\text {tot }}$ of charges. Create a plot of the best possible time $t_{\text {optimal }}$ for several $N_{\text {tot }}$ and estimate the dependence of $t_{\text {optimal }}$ on $N_{\text {tot }}$. To keep things simple, consider only uniform particle distributions. You need only consider a fixed precision (say $P=10$) but an ambitious solution should compute the optimal time for several different choices (say $P=$ $5,10,15,20)$.

Problem 6: In this problem, n and k are positive integers such that $k<n, \mathbf{A}$ is an $N \times N$ invertible matrix, and $\mathbf{B}=\mathbf{A}^{-1}$. Let us further assume that every diagonal block of \mathbf{A} is invertible.
(a) Suppose that $N=2 n$, and that we can write \mathbf{A} and \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right], \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right],
$$

where each block is of size $n \times n$. Suppose further that \mathbf{A}_{12} and \mathbf{A}_{21} have rank k. What is the highest possible value for the rank of \mathbf{B}_{12} ?
(b) Suppose that $N=4 n$, and that we can write \mathbf{A} and \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} & \mathbf{A}_{14} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} & \mathbf{A}_{24} \\
\mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{A}_{34} \\
\mathbf{A}_{41} & \mathbf{A}_{42} & \mathbf{A}_{43} & \mathbf{A}_{44}
\end{array}\right], \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{llll}
\mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} & \mathbf{B}_{14} \\
\mathbf{B}_{21} & \mathbf{B}_{22} & \mathbf{B}_{23} & \mathbf{B}_{24} \\
\mathbf{B}_{31} & \mathbf{B}_{32} & \mathbf{B}_{33} & \mathbf{B}_{34} \\
\mathbf{B}_{41} & \mathbf{B}_{42} & \mathbf{B}_{43} & \mathbf{B}_{44}
\end{array}\right],
$$

where each block is of size $n \times n$. Suppose further that $\mathbf{A}_{12}, \mathbf{A}_{21}, \mathbf{A}_{34}, \mathbf{A}_{43},\left[\begin{array}{ll}\mathbf{A}_{13} & \mathbf{A}_{14} \\ \mathbf{A}_{23} & \mathbf{A}_{24}\end{array}\right]$, and $\left[\begin{array}{ll}\mathbf{A}_{31} & \mathbf{A}_{32} \\ \mathbf{A}_{41} & \mathbf{A}_{42}\end{array}\right]$ all have rank k. What is the highest possible value for the rank of \mathbf{B}_{12} ?
(c) [Optional:] Consider the natural generalization to a matrix consisting of 8×8 blocks. What is the maximal rank of \mathbf{B}_{12} ? What about a matrix with $2^{p} \times 2^{p}$ blocks?

Please motivate your answers. If you rely on any formula for the inverse of a blocked matrix, then you may freely assume that any inverse that appears actually exists.

Problem 7: In this problem, let k and n be integers such that $0<k<n$. Further, let $\mathbf{D} \in \mathbb{R}^{n \times n}, \mathbf{U} \in \mathbb{R}^{n \times k}$, $\mathbf{V} \in \mathbb{R}^{n \times k}$, and $\tilde{\mathbf{A}} \in \mathbb{R}^{k \times k}$.
(a) Set $\mathbf{A}=\mathbf{I}+\mathbf{U} \mathbf{V}^{*}$. Prove that if $\mathbf{I}+\mathbf{V}^{*} \mathbf{U}$ is non-singular, then

$$
\mathbf{A}^{-1}=\mathbf{I}-\mathbf{U}\left(\mathbf{I}+\mathbf{V}^{*} \mathbf{U}\right)^{-1} \mathbf{V}^{*}
$$

(b) Set $\mathbf{A}=\mathbf{D}+\mathbf{U} \tilde{\mathbf{A}} \mathbf{V}^{*}$. Prove that if \mathbf{D} and $\mathbf{I}+\tilde{\mathbf{A}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}$ are both invertible, then

$$
\begin{equation*}
\mathbf{A}^{-1}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U}\left(\mathbf{I}+\tilde{\mathbf{A}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1} \tilde{\mathbf{A}} \mathbf{V}^{*} \mathbf{D}^{-1} \tag{1}
\end{equation*}
$$

Hint: You could write $\mathbf{A}=\mathbf{D}\left(\mathbf{I}+\left(\mathbf{D}^{-1} \mathbf{U}\right)\left(\tilde{\mathbf{A}} \mathbf{V}^{*}\right)\right)$ and apply (a).
(c) As in (b), set $\mathbf{A}=\mathbf{D}+\mathbf{U} \tilde{\mathbf{A}} \mathbf{V}^{*}$, and assume that \mathbf{D} and $\mathbf{I}+\tilde{\mathbf{A}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}$ are both invertible. Consider the linear system

$$
\left[\begin{array}{rr}
\mathbf{D} & \mathbf{U A} \tag{2}\\
-\mathbf{V}^{*} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\tilde{\mathbf{x}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right]
$$

Prove that if $\left[\begin{array}{l}\mathbf{x} \\ \tilde{\mathbf{x}}\end{array}\right]$ solves (2), then \mathbf{x} solves $\mathbf{A x}=\mathbf{b}$.
(d) Assume again that \mathbf{D} is invertible. You can then perform one step of a block LDU factorization to obtain the equality

$$
\left[\begin{array}{rr}
D & U A \tag{3}\\
-\mathbf{V}^{*} & \mathbf{I}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I} & 0 \\
\mathbf{X} & \mathbf{I}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{D} & 0 \\
0 & \mathbf{Y}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{I} & \mathbf{Z} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]
$$

for some matrices \mathbf{X}, \mathbf{Y}, and \mathbf{Z}. Specify \mathbf{X}, \mathbf{Y}, and \mathbf{Z}
(e) [Optional:] Observe that the formula (1) is not ideal for inverting a block separable matrix. The reason is that neither $\tilde{\mathbf{A}}$ nor $\left(\mathbf{I}+\tilde{\mathbf{A}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1}$ is block diagonal, so multiplying them together would be costly. In class, we instead used

$$
\begin{equation*}
\mathbf{A}^{-1}=\mathbf{G}+\mathbf{E}(\hat{\mathbf{D}}+\tilde{\mathbf{A}})^{-1} \mathbf{F}^{*} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\mathbf{D}}=\left(\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1} \\
& \mathbf{E}=\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \\
& \mathbf{F}=\left(\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}\right)^{*} \\
& \mathbf{G}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}
\end{aligned}
$$

For (4) to hold, we need to assume that $\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}$ is non-singular. Observe that $\hat{\mathbf{D}}, \mathbf{E}, \mathbf{F}$, and \mathbf{G} are all block diagonal. Prove (4). Hint: Huge bonus points if someone can think of a clean and elegant proof. I do not particularly like any that I have thought of, personally.

