
Homework set 2 — MATH 397C — Spring 2022

Due on Thursday March 3. Please hand in solutions to problems 1, 3, 6, and 7.

Problem 1: Let A be an n× n symmetric positive definite matrix. You know that κ(A) = 100.

(1) Suppose that you run conjugate gradients (CG) to solve a linear system Ax = y. In the worst case scenario,
how many iterations would you need in order to guarantee that the initial residual has been reduced by a
factor of ε = 10−5?

(2) Suppose that C is a non-singular matrix and set B = C−∗AC−1. You know that ∥I−B∥ ≤ 1/2. If you use
C as a symmetric pre-conditioner, then how would your answer to question (a) change?

Notes: Equation (38.10) in Trefethen & Bau may be helpful. In part (b), a matrix such as C can come from an
approximate Cholesky factorization A ≈ C∗C. In such a case, C is upper triangular (and often very sparse), which
means that applying either C−∗ or C−1 to a vector is inexpensive.

Problem 2: Let A be an m × n matrix, set p = min(m,n), and suppose that the singular value decomposition of
A takes the form

(1)
A = U D V∗.

m× n m× p p× p p× n

Let k be an integer such that 1 ≤ k < p and let Ak denote the truncation of the SVD to the first k terms:

Ak = U(:, 1 : k)D(1 : k, 1 : k)V(:, 1 : k)∗.

Recall the definitions of the spectral and Frobenius norms:

∥A∥ = sup
x̸=0

∥Ax∥
∥x∥

, and ∥A∥F =

 m∑
i=1

n∑
j=1

|A(i, j)|2
1/2

.

Prove directly from the definitions of the norms that

∥A− Ak∥ = σk+1

and that

∥A− Ak∥F =

 p∑
j=k+1

σ2
j

1/2

.

1



2

Problem 3: On the course webpage, download the file hw02p3.m. This file contains an implementation of the
column pivoted QR algorithm that computes a rank-k approximation to a matrix, for any given k. Your task is now
to do two modifications to the code:

(a) Starting with the function CPQR given rank write a new function with calling sequence
[Q,R,ind] = CPQR given tolerance(A,acc)

that takes as input an accuracy, and computes a low-rank approximation to a matrix that is accurate to
precision “acc”.

(b) Write a function with calling sequence
[U,D,V] = SVD given tolerance(A,acc)

that computes a diagonal matrix D, and orthonormal matrices U and V such that

∥A−UDV∗∥ ≤ ε,

where ε is the given tolerance. The idea is to use the function CPQR given tolerance(A,acc) that
you created in part (a).

Please hand in a print-out of the code that you created.

Extra problem: The file hw02p3.m creates a plot that shows the accuracies of two low-rank approximations: The
truncated SVD on the one hand, and the truncated QR on the other. Let me encourage you to play around with this
a bit, try different matrices and see how the approximations errors compare. There is no need to hand anything in!

Problem 4: In this example, we investigate the effect blocking has on execution time of matrix computations.

(a) Suppose that we are given two n × n matrices B and C and that we seek to compute A = BC. We could
do this in Matlab either by just typing A = B*C, or, we could write a loop

for i = 1 : n

A(:,i) = B*C(:,i)

end for
The code hw02p4.m illustrates the two techniques. It turns out that while the two methods are mathemat-
ically equivalent, doing it via a loop is much slower. In this problem, please measure the time Tn required
for several different values of n. Test the hypothesis that Tn = C n3 by plotting your measure valued of
Tn versus n in a log-log-diagram. Fit a straight line through the points, and estimate C. Hand in the graph
and the values of C that you estimate for the two methods.

(b) Repeat the problem in (a), but now compare three different matrix factorization algorithms:
– [Q,R] = qr(A)

This factorization can be blocked. It is fast, but no good for low-rank approximation.
– [Q,R,J] = qr(A,’vector’)

Column pivoted QR factorization — intermediately fast, and good for low-rank approximation.
– [U,D,V] = svd(A)

Singular value decomposition — slowest, but excellent for low-rank approximation.



3

Problem 5: Recall the single pass RSVD shown in Figure 1. Consider the following piece of Matlab code:

m=12; n=20; b=3; k=5;
A = rand(m,n);
Gc = randn(n,k);
Gr = randn(m,k);
Yc = zeros(m,k);
Yr = zeros(n,k);

for i = 1:(n/b)
ind = (i-1)*b + (1:b);
A_slice = A(:,ind);
Yc = Yc + A_slice*Gc(ind,:);
???????????????????????????????????

end

fprintf(1,’Error in Yc = %12.3e\n’,max(max(abs(Yc - A *Gc))))
fprintf(1,’Error in Yr = %12.3e\n’,max(max(abs(Yr - A’*Gr))))

This snippet of code emulates how a streaming algorithm would interact with A — you read a set of b columns at
a time, and use the information in Aslice to build Yc piece by piece.

(a) Write code to replace the question marks. The result of the new code should be that after the loop completes,
the matrix Yr has also been computed. Note that this line should reference only A slice, not A itself.
(This can be solved by a single line of code, but if you use more, then that is fine too.)

(b) Currently, the code only works if n is an integer multiple of b. Modify the code so that it works for any
block size b.

Hand in the code you write.

ALGORITHM: SINGLE-PASS RANDOMIZED SVD FOR A GENERAL MATRIX

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 10).

Outputs: Matrices U, V, and D in an approximate rank-k SVD of A. (I.e. U and V are ON and D is diagonal.)

Stage A:
(1) Form two Gaussian random matrices Gc = randn(n, k + p) and Gr = randn(m, k + p).
(2) Form the sample matrices Yc = AGc and Yr = A∗Gr.
(3) Form ON matrices Qc and Qr consisting of the k dominant left singular vectors of Yc and Yr.

Stage B:
(4) Let C denote the k×k least squares solution of the joint system of equations formed by the equations(

G∗
rQc

)
C = Y∗

rQr and C
(
Q∗

rGc

)
= Q∗

cYc.
(5) Decompose the matrix C in a singular value decomposition [Û, D, V̂] = svd(C).
(6) Form U = QcÛ and V = QrV̂.

FIGURE 1. A randomized single-pass algorithm suitable for a general matrix.



4

Problem 6: On the course webpage, download the file hw02p6.m. This file contains an implementation of
the basic RSVD scheme. It computes approximate matrix factorizations using the basic RSVD, and plots the
approximation error versus the minimum error as produced by the truncated (full) SVD. The error is reported in
both the spectral and the Frobenius norms.

For this problem, code up the single pass algorithm described in Figure 1 and include it in the comparison. Hand
in a printout of your implementation of the single pass algorithm (you do not need to print out the driver code, etc,
just the actual subroutine). Also hand in the error plots for three different sets of test matrices. In the code that you
can download, two test cases are already included. You are welcome to use these two. For the third, come up with
some matrix you find interesting yourself! It could be dense, sparse, etc. Just remember that for any of this to make
sense, the singular values of the matrix you pick must show at least some degree of decay.

Note: In step (4) of the algorithm, the matrix C is determined by jointly solving two matrix equations. Note that
this is a bit complicated to implement. For simplicity, simply pick one of the two equations and determine C by
solving that one, ignoring the other.

Problem 7: The purpose of this exercise is to investigate how well certain structured random embeddings do at
approximating the range of a matrix. Given an m × n matrix A, we seek to build a sample from its range of the
form Y = AΩ, where Ω is a random matrix of size n× ℓ. We consider three different distributions:

(1) A standard Gaussian random matrix.
(2) A subsampled randomized discrete Fourier transform, Ω = DFS, where D is a diagonal matrix whose

entries are drawn randomly from {−1, 1}, where F is the discrete cosine transform (or DFT, if you prefer),
and where S is an n×ℓ sampling matrix formed by randomly drawing a subset of ℓ columns from the n×n
identity matrix.

(3) A sparse random matrix formed by randomly placing ζ nonzero entries in each row of Ω, where ζ is a small
integer (say ζ ∈ {2, 3, 4, . . . , 8}). Each non-zero entry is drawn from a standard Gaussian distribution.

Code up these choices, and write a script that evaluates the error

eℓ = ∥A− PYA∥,
where PY is the orthogonal projection onto col(Y), as a function of the number of samples ℓ drawn. Hand in some
graphs that show how the error eℓ compares to the theoretically minimal value σℓ+1 for a few different matrices
A. For instance, you can use the three test matrices provided in the routine hw02p6.m. However, add at least one
additional matrix of your choice. Briefly describe the matrices that you use.

Hint 1: There is no need to code the SRFT up efficiently. I would simply apply the full FFT or the full DFT to
create a big sample matrix Ybig = ADF, then draw ℓ columns at random from this matrix to form Y.

Hint 2: Note that PY = QQ∗ where Q is the tall thin “Q” factor in a QR factorization of Y.

Background: The preprints https://arxiv.org/abs/2104.05877 and https://arxiv.org/abs/2002.01387 may be of inter-
est to anyone wanting to learn more about structured random embeddings. There is no need to study these in order
to solve this problem, however!


