Section exam 2 for M341: Linear Algebra and Matrix Theory 9:30am - 10:45am, Nov. 17, 2022. Closed books. No notes. Unique number 55415. Instructor Per-Gunnar Martinsson.

Write answers to questions 1,2 , and 3 directly on the problem sheet.
Please motivate your answers briefly, unless the question explicitly states otherwise.
Question 1: $(24 \mathrm{p})$ No motivations are required - full credit for the correct answer.
(a) Let V denote a vector space and let $S=\left\{\mathbf{v}_{j}\right\}_{j=1}^{k}$ denote a non-empty subset of V. State the definition of what it means for S to be linearly independent.

See book.
(b) Let V denote a vector space and let $B=\left\{\mathbf{v}_{j}\right\}_{j=1}^{k}$ denote a non-empty subset of V. State the definition of what it means for B to be a basis for V.

See book.
(c) Consider the map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ that maps $p \in \mathcal{P}_{2}$ to $q(x)=[T p](x)=x p(x)$. Is T onto and/or one-to-one? Circle one option:

$$
\begin{array}{llll}
\text { ONTO ONLY } & \text { ONE-TO-ONE ONLY BOTH } & \text { NEITHER }
\end{array}
$$

(d) Consider the map $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ that maps $p \in \mathcal{P}_{3}$ to $q(x)=[T p](x)=p^{\prime}(x)$ (differentiation). Is T onto and/or one-to-one? Circle one option:

$$
\begin{array}{|llll}
\hline \text { ONTO ONLY } \quad \text { ONE-TO-ONE ONLY } \quad \text { BOTH } \quad \text { NEITHER }
\end{array}
$$

(e) Consider the map $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ that maps $p \in \mathcal{P}_{3}$ to $q(x)=[T p](x)=p^{\prime}(x)+p(0) x^{3}$. Is T onto and/or one-to-one? Circle one option:

$$
\begin{array}{llll}
\text { ONTO ONLY } & \text { ONE-TO-ONE ONLY } & \text { BOTH }
\end{array}
$$

(f) Let n be a positive integer, let \mathbf{A} be an $n \times n$ matrix of rank $n-1$, and consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that is given by $T \mathbf{x}=\mathbf{A x}$. Is T onto and/or one-to-one? Circle one option:

$$
\begin{array}{llll}
\text { ONTO ONLY } & \text { ONE-TO-ONE ONLY } & \text { BOTH } & \text { NEITHER } \\
\hline
\end{array}
$$

Question 2: (15p) Specify the determinants of the following matrices. No motivation required.

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right]\right)=\quad \operatorname{det}\left(\left[\begin{array}{lll}
3 & 1 & 2 \\
0 & 0 & 2 \\
0 & 5 & 1
\end{array}\right]\right)=\quad \operatorname{det}\left(\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
0 & 2 & 1 & 0 \\
0 & 0 & -1 & 1 \\
1 & 2 & 1 & 1
\end{array}\right]\right)=
$$

Answer:
(a) $1-6=-5$. (Use standard cross rule.)
(b) $(-1) \times 3 \times 5 \times 2=-30$. (Swap rows two and three and then use the rule for triangular matrices.)
(c) -6. (Do two steps of Gaussian elimination to drive the matrix to upper triangular form.)

Question 3: (20p) The matrix \mathbf{A} has the three distinct eigenvalues $\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=3$ (and no other eigenvalues).
(a) Specify the eigenvalues of \mathbf{A}^{-1} :
(b) Specify the eigenvalues of \mathbf{A}^{T} :
(c) Specify the eigenvalues of \mathbf{A}^{2} :
(d) Specify the eigenvalues of $\mathbf{A}+3 \mathbf{I}$:
(e) Specify the eigenvalues of $\mathbf{A}+\mathbf{A}^{\mathrm{T}}$:

If there is not enough information provided to answer, then write "not known".

Answer:
(a) $\{1,-1 / 2,1 / 3\}$.
(b) $\{1,-2,3\}$.
(a) $\{1,4,9\}$.
(a) $\{4,1,6\}$.
(a) Not known.

Question 4: (15p) The matrix $\mathbf{A}=\left[\begin{array}{rrr}2 & -1 & -1 \\ 1 & 2 & 1 \\ -2 & 1 & 1\end{array}\right]$ has an eigenvector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ t\end{array}\right]$ for some $t \in \mathbb{R}$.
Specify t, and also the eigenvalue associated with \mathbf{v}.

Answer:

$$
\mathbf{A} \mathbf{v}=\left[\begin{array}{rrr}
2 & -1 & -1 \\
1 & 2 & 1 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
t
\end{array}\right]=\left[\begin{array}{r}
1-t \\
3+t \\
-1+t
\end{array}\right] \quad \text { and } \quad \lambda \mathbf{v}=\left[\begin{array}{c}
\lambda \\
\lambda \\
\lambda t
\end{array}\right]
$$

We have three equations for two unknowns. For instance observe that

$$
1-t=\lambda=3+t .
$$

It follows that $t=-1$ so $\mathbf{v}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$. Then $\lambda=1-t=2$.

Question 5: (20p) Consider the matrices
$\mathbf{A}=\left[\begin{array}{rrrrr}2 & 4 & 1 & 1 & -1 \\ 0 & 0 & -1 & 3 & 0 \\ 2 & 4 & 2 & -2 & 1 \\ 1 & 2 & -2 & 8 & -1\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rrrrr}1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], \quad$ and $\quad \mathbf{R}=\left[\begin{array}{rrrr}2 & 1 & -1 & 1 \\ 0 & -1 & 0 & 2 \\ 2 & 2 & 1 & -1 \\ 1 & -2 & -1 & 0\end{array}\right]$.
You may use that $\mathbf{A}=\mathbf{R B}$ and that $\operatorname{det}(\mathbf{R})=22$. No motivation required for $a / b / c / d$.
(a) Specify a basis for $\operatorname{ran}(\mathbf{A})$.
(b) Specify a basis for $\operatorname{ker}(\mathbf{A})$.
(c) Specify the dimension of $\operatorname{row}(\mathbf{A})$.
(d) Specify the dimension of $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$.
(e) Specify a vector $\mathbf{c} \in \mathbb{R}^{4}$ such that the system $\mathbf{A x}=\mathbf{c}$ is inconsistent. Motivation required!

Answer:

(a) The pivots are in positions 1,3 , and 5 , so the corresponding columns of \mathbf{A} work:

$$
\left\{\left[\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

(b) The general solution to $\mathbf{B} \mathbf{x}=\mathbf{0}$ is

$$
\mathbf{x}=\left[\begin{array}{r}
-2 s-2 t \\
s \\
3 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right] s+\left[\begin{array}{r}
-2 \\
0 \\
3 \\
1 \\
0
\end{array}\right] t
$$

so

$$
\left\{\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
0 \\
3 \\
1 \\
0
\end{array}\right]\right\}
$$

(c) $\operatorname{dim}(\operatorname{row}(\mathbf{A}))=\operatorname{rank}(\mathbf{A})=3$ (since there are three pivots).
(d) $\operatorname{dim}\left(\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)\right)=4-\operatorname{rank}\left(\mathbf{A}^{\mathrm{T}}\right)=4-\operatorname{rank}(\mathbf{A})=4-3=1$.
(e) Set $\mathbf{f}=[0,0,0,1]^{\mathrm{T}}$. Then we know that $\mathbf{B x}=\mathbf{f}$ is inconsistent. Then $\mathbf{R B} \mathbf{x}=\mathbf{R f}$ is inconsistent, which is to say that $\mathbf{A x}=\mathbf{c}$ is inconsistent where

$$
\mathbf{c}=\mathbf{R} \mathbf{f}=\left[\begin{array}{r}
1 \\
2 \\
-1 \\
0
\end{array}\right]
$$

Problem 6 (6p) [Harder, and very few points!] Consider the matrices

$$
\mathbf{A}=\frac{1}{9}\left[\begin{array}{rrr}
17 & 2 & -2 \\
2 & 14 & 4 \\
-2 & 4 & 14
\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], \quad \text { and } \quad \mathbf{V}=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & -2 \\
-2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right] .
$$

In this problem, you may use that $\mathbf{A}=\mathbf{V D V}^{-1}$ and that $\mathbf{V}^{-1}=\mathbf{V}^{\mathrm{T}}$.
Define a sequence of vectors $\left\{\mathbf{x}_{n}\right\}_{n=0}^{\infty}$ in \mathbb{R}^{3} via $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and then for $n=1,2,3, \ldots$, the vector \mathbf{x}_{n} is the solution to $\mathbf{A} \mathbf{x}_{n}=\mathbf{x}_{n-1}$. Specify the vector $\mathbf{z}=\lim _{n \rightarrow \infty} \mathbf{x}_{n}$.

Solution:

Observe that

$$
\mathbf{x}_{n}=\mathbf{A}^{-1} \mathbf{x}_{n-1},
$$

so

$$
\mathbf{x}_{n}=\mathbf{A}^{-n} \mathbf{x}_{0} .
$$

Using that $\mathbf{A}^{-1}=\mathbf{V} \mathbf{D}^{-1} \mathbf{V}^{\mathbf{T}}$ we get that

$$
\mathbf{x}_{n}=\mathbf{V D}^{-n} \mathbf{V}^{\mathrm{T}} \mathbf{x}_{0}=\mathbf{V}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & (1 / 2)^{n} & 0 \\
0 & 0 & (1 / 2)^{n}
\end{array}\right] \mathbf{V}^{\mathrm{T}} \mathbf{x}_{0} .
$$

Taking limits as $n \rightarrow \infty$, we get

$$
\mathbf{z}=\mathbf{V}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{V}^{\mathrm{T}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right](1 / 3)(1-2+2)=\frac{1}{9}\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]
$$

where $\mathbf{v}_{1}=[1 / 3,-2 / 3,2 / 3]^{\mathrm{T}}$ is the first column of \mathbf{V}.

