Section exam 2 for M341: Linear Algebra and Matrix Theory

9:30am – 10:45am, Nov. 17, 2022. *Closed books. No notes.* Unique number 55415. Instructor Per-Gunnar Martinsson.

Write answers to questions 1, 2, and 3 directly on the problem sheet. Please motivate your answers briefly, unless the question explicitly states otherwise.

Question 1: (24p) No motivations are required – full credit for the correct answer.

(a) Let V denote a vector space and let $S = \{\mathbf{v}_j\}_{j=1}^k$ denote a non-empty subset of V. State the definition of what it means for S to be *linearly independent*.

See book.

(b) Let V denote a vector space and let $B = \{\mathbf{v}_j\}_{j=1}^k$ denote a non-empty subset of V. State the definition of what it means for B to be a *basis* for V.

See book.

(c) Consider the map $T: \mathcal{P}_2 \to \mathcal{P}_3$ that maps $p \in \mathcal{P}_2$ to q(x) = [Tp](x) = x p(x). Is T onto and/or one-to-one? Circle one option:

	ONTO ONLY	ONE-TO-ONE ONLY	BOTH	NEITHER
--	-----------	-----------------	------	---------

(d) Consider the map $T: \mathcal{P}_3 \to \mathcal{P}_2$ that maps $p \in \mathcal{P}_3$ to q(x) = [Tp](x) = p'(x) (differentiation). Is T onto and/or one-to-one? Circle one option:

ONTO ONLY	ONE-TO-ONE ONLY	BOTH	NEITHER
-----------	-----------------	------	---------

- (e) Consider the map $T: \mathcal{P}_3 \to \mathcal{P}_3$ that maps $p \in \mathcal{P}_3$ to $q(x) = [Tp](x) = p'(x) + p(0)x^3$. Is T onto and/or one-to-one? Circle one option:
 - ONTO ONLY ONE-TO-ONE ONLY BOTH NEITHER
- (f) Let n be a positive integer, let **A** be an $n \times n$ matrix of rank n 1, and consider the map $T : \mathbb{R}^n \to \mathbb{R}^n$ that is given by $T\mathbf{x} = \mathbf{A}\mathbf{x}$. Is T onto and/or one-to-one? Circle one option:

ONTO ONLY ONE-TO-ONE ONLY BOTH NEITHER

Question 2: (15p) Specify the determinants of the following matrices. No motivation required.

$\det\left(\left[\begin{array}{rrr}1 & 3\\ 2 & 1\end{array}\right]\right) =$	$\det\left(\left[\begin{array}{rrrr} 3 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 5 & 1 \end{array}\right]\right) =$	$\det\left(\left[\begin{array}{rrrr}1&2&0&-1\\0&2&1&0\\0&0&-1&1\\1&2&1&1\end{array}\right]\right) =$
--	---	--

Answer:

- (a) 1 6 = -5. (Use standard cross rule.)
- (b) $(-1) \times 3 \times 5 \times 2 = -30$. (Swap rows two and three and then use the rule for triangular matrices.)
- (c) -6. (Do two steps of Gaussian elimination to drive the matrix to upper triangular form.)

Question 3: (20p) The matrix **A** has the three distinct eigenvalues $\lambda_1 = 1$, $\lambda_2 = -2$, $\lambda_3 = 3$ (and no other eigenvalues).

- (a) Specify the eigenvalues of \mathbf{A}^{-1} :
- (b) Specify the eigenvalues of \mathbf{A}^{T} :
- (c) Specify the eigenvalues of \mathbf{A}^2 :
- (d) Specify the eigenvalues of $\mathbf{A} + 3\mathbf{I}$:
- (e) Specify the eigenvalues of $\mathbf{A} + \mathbf{A}^{\mathrm{T}}$:

If there is not enough information provided to answer, then write "not known".

Answer:

(a) $\{1, -1/2, 1/3\}$.

- (b) $\{1, -2, 3\}.$
- (a) $\{1, 4, 9\}$.
- (a) $\{4, 1, 6\}$.
- (a) Not known.

Question 4: (15p) The matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$ has an eigenvector $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ t \end{bmatrix}$ for some $t \in \mathbb{R}$. Specify t, and also the eigenvalue associated with \mathbf{v} .

Answer:

$$\mathbf{A}\mathbf{v} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ t \end{bmatrix} = \begin{bmatrix} 1-t \\ 3+t \\ -1+t \end{bmatrix} \quad \text{and} \quad \lambda \mathbf{v} = \begin{bmatrix} \lambda \\ \lambda \\ \lambda t \end{bmatrix}$$

We have three equations for two unknowns. For instance observe that

$$1 - t = \lambda = 3 + t.$$

It follows that $t = -1$ so $\mathbf{v} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$. Then $\lambda = 1 - t = 2$.

Question 5: (20p) Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 1 & 1 & -1 \\ 0 & 0 & -1 & 3 & 0 \\ 2 & 4 & 2 & -2 & 1 \\ 1 & 2 & -2 & 8 & -1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \text{and} \qquad \mathbf{R} = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 0 & -1 & 0 & 2 \\ 2 & 2 & 1 & -1 \\ 1 & -2 & -1 & 0 \end{bmatrix}.$$

You may use that $\mathbf{A} = \mathbf{RB}$ and that det $(\mathbf{R}) = 22$. No motivation required for a/b/c/d.

- (a) Specify a basis for $ran(\mathbf{A})$.
- (b) Specify a basis for $ker(\mathbf{A})$.
- (c) Specify the dimension of row(**A**).
- (d) Specify the dimension of $ker(\mathbf{A}^{T})$.
- (e) Specify a vector $\mathbf{c} \in \mathbb{R}^4$ such that the system $\mathbf{A}\mathbf{x} = \mathbf{c}$ is inconsistent. Motivate

Motivation required!

Answer:

(a) The pivots are in positions 1, 3, and 5, so the corresponding columns of **A** work:

Į	$\begin{bmatrix} 2\\ 0\\ 2 \end{bmatrix}$	$\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$	$\begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$	ļ
l	$\begin{array}{c} 0\\ 2\\ 1\end{array}$	$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$	$\begin{bmatrix} -1 \end{bmatrix}$	

(b) The general solution to $\mathbf{B}\mathbf{x} = \mathbf{0}$ is

$$\mathbf{x} = \begin{bmatrix} -2s - 2t \\ s \\ 3t \\ t \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} -2 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} t,$$
$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} \right\}$$

 \mathbf{SO}

(c) $\dim(row(\mathbf{A})) = rank(\mathbf{A}) = 3$ (since there are three pivots).

(d) dim(ker(
$$\mathbf{A}^{\mathrm{T}}$$
)) = 4 - rank(\mathbf{A}^{T}) = 4 - rank(\mathbf{A}) = 4 - 3 = 1.

(e) Set $\mathbf{f} = [0, 0, 0, 1]^{\mathrm{T}}$. Then we know that $\mathbf{B}\mathbf{x} = \mathbf{f}$ is inconsistent. Then $\mathbf{R}\mathbf{B}\mathbf{x} = \mathbf{R}\mathbf{f}$ is inconsistent, which is to say that $\mathbf{A}\mathbf{x} = \mathbf{c}$ is inconsistent where

$$\mathbf{c} = \mathbf{R}\mathbf{f} = \begin{bmatrix} 1\\ 2\\ -1\\ 0 \end{bmatrix}$$

Problem 6 (6p) /Harder, and very few points! Consider the matrices

$$\mathbf{A} = \frac{1}{9} \begin{bmatrix} 17 & 2 & -2\\ 2 & 14 & 4\\ -2 & 4 & 14 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}, \qquad \text{and} \qquad \mathbf{V} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2\\ -2 & 2 & 1\\ 2 & 1 & 2 \end{bmatrix}.$$

In this problem, you may use that $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ and that $\mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}}$.

Define a sequence of vectors $\{\mathbf{x}_n\}_{n=0}^{\infty}$ in \mathbb{R}^3 via $\mathbf{x}_0 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and then for $n = 1, 2, 3, \ldots$, the vector \mathbf{x}_n is the solution to $\mathbf{A}\mathbf{x}_n = \mathbf{x}_{n-1}$. Specify the vector $\mathbf{z} = \lim_{n \to \infty} \mathbf{x}_n$.

Solution:

Observe that

 \mathbf{SO}

$$\mathbf{x}_n = \mathbf{A}^{-n} \mathbf{x}_0.$$

 $\mathbf{x}_n = \mathbf{A}^{-1} \mathbf{x}_{n-1},$

Using that $\mathbf{A}^{-1} = \mathbf{V} \mathbf{D}^{-1} \mathbf{V}^{\mathrm{T}}$ we get that

$$\mathbf{x}_n = \mathbf{V}\mathbf{D}^{-n}\mathbf{V}^{\mathrm{T}}\mathbf{x}_0 = \mathbf{V} \begin{bmatrix} 1 & 0 & 0\\ 0 & (1/2)^n & 0\\ 0 & 0 & (1/2)^n \end{bmatrix} \mathbf{V}^{\mathrm{T}}\mathbf{x}_0.$$

Taking limits as $n \to \infty$, we get

$$\mathbf{z} = \mathbf{V} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{V}^{\mathrm{T}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} (1/3)(1-2+2) = \frac{1}{9} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$

where $\mathbf{v}_1 = [1/3, -2/3, 2/3]^T$ is the first column of \mathbf{V} .