Write answers to questions 1, 2, and 3 directly on the problem sheet.
Please motivate your answers briefly, unless the question explicitly states otherwise.

Question 1: (24p) No motivations are required – full credit for the correct answer.
(a) Let V denote a vector space and let $S = \{v_j\}_{j=1}^k$ denote a non-empty subset of V.
State the definition of what it means for S to be *linearly independent*.

(b) Let V denote a vector space and let $B = \{v_j\}_{j=1}^k$ denote a non-empty subset of V.
State the definition of what it means for B to be a *basis* for V.

(c) Consider the map $T : P_2 \to P_3$ that maps $p \in P_2$ to $q(x) = [Tp](x) = xp(x)$. Is T onto and/or one-to-one? Circle one option:

<table>
<thead>
<tr>
<th>ONTO ONLY</th>
<th>ONE-TO-ONE ONLY</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
</table>

(d) Consider the map $T : P_3 \to P_2$ that maps $p \in P_3$ to $q(x) = [Tp](x) = p'(x)$ (differentiation). Is T onto and/or one-to-one? Circle one option:

<table>
<thead>
<tr>
<th>ONTO ONLY</th>
<th>ONE-TO-ONE ONLY</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
</table>

(e) Consider the map $T : P_3 \to P_3$ that maps $p \in P_3$ to $q(x) = [Tp](x) = p'(x) + p(0)x^3$. Is T onto and/or one-to-one? Circle one option:

<table>
<thead>
<tr>
<th>ONTO ONLY</th>
<th>ONE-TO-ONE ONLY</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
</table>

(f) Let n be a positive integer, let A be an $n \times n$ matrix of rank $n-1$, and consider the map $T : \mathbb{R}^n \to \mathbb{R}^n$ that is given by $Tx = Ax$. Is T onto and/or one-to-one? Circle one option:

<table>
<thead>
<tr>
<th>ONTO ONLY</th>
<th>ONE-TO-ONE ONLY</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
</table>

Question 2: (15p) Specify the determinants of the following matrices. No motivation required.

\[
\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 2 & 1 & 1 \end{vmatrix} = \]

\[
\begin{array}{c|c|c|c|c|c|c|c}
 Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & Total \\
(24) & (15) & (20) & (15) & (20) & (6) & (100)
\end{array}
\]
Question 3: (20p) The matrix A has the three distinct eigenvalues $\lambda_1 = 1$, $\lambda_2 = -2$, $\lambda_3 = 3$ (and no other eigenvalues).

(a) Specify the eigenvalues of A^{-1}:

(b) Specify the eigenvalues of A^T:

(c) Specify the eigenvalues of A^2:

(d) Specify the eigenvalues of $A + 3I$:

(e) Specify the eigenvalues of $A + A^T$:

If there is not enough information provided to answer, then write “not known”.

Hand in answers to problems 4, 5, 6 on separate sheets!

Question 4: (15p) The matrix $A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$ has an eigenvector $v = \begin{bmatrix} 1 \\ 1 \\ t \end{bmatrix}$ for some $t \in \mathbb{R}$.

Specify t, and also the eigenvalue associated with v.

Question 5: (20p) Consider the matrices $A = \begin{bmatrix} 2 & 4 & 1 & 1 \\ 0 & 0 & -1 & 3 \\ 2 & 4 & 2 & -2 \\ 1 & 2 & -2 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, and $R = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 0 & -1 & 0 & 2 \\ 2 & 2 & 1 & -1 \\ 1 & -2 & -1 & 0 \end{bmatrix}$.

You may use that $A = RB$ and that $\det(R) = 22$. No motivation required for a/b/c/d.

(a) Specify a basis for $\text{ran}(A)$.

(b) Specify a basis for $\text{ker}(A)$.

(c) Specify the dimension of $\text{row}(A)$.

(d) Specify the dimension of $\text{ker}(A^T)$.

(e) Specify a vector $c \in \mathbb{R}^4$ such that the system $Ax = c$ is inconsistent. Motivation required!

Problem 6 (6p) [Harder, and very few points!] Consider the matrices $A = 1/9 \begin{bmatrix} 17 & 2 & -2 \\ 2 & 14 & 4 \\ -2 & 4 & 14 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, and $V = 1/3 \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$.

In this problem, you may use that $A = VDV^{-1}$ and that $V^{-1} = V^T$.

Define a sequence of vectors $\{x_n\}_{n=0}^\infty$ in \mathbb{R}^3 via $x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and then for $n = 1, 2, 3, \ldots$, the vector x_n is the solution to $Ax_n = x_{n-1}$. Specify the vector $z = \lim_{n \to \infty} x_n$. (Full credit for the correct answer alone.)