Section exam 2 for M341: Linear Algebra and Matrix Theory

9:30am – 10:45am, Nov. 17, 2022. *Closed books. No notes.* Unique number 55415. Instructor Per-Gunnar Martinsson.

Write answers to questions 1, 2, and 3 directly on the problem sheet. Please motivate your answers briefly, unless the question explicitly states otherwise.

Question 1: (24p) No motivations are required – full credit for the correct answer.

(a) Let V denote a vector space and let $S = \{\mathbf{v}_j\}_{j=1}^k$ denote a non-empty subset of V. State the definition of what it means for S to be *linearly independent*.

(b) Let V denote a vector space and let $B = \{\mathbf{v}_j\}_{j=1}^k$ denote a non-empty subset of V. State the definition of what it means for B to be a *basis* for V.

(c) Consider the map $T: \mathcal{P}_2 \to \mathcal{P}_3$ that maps $p \in \mathcal{P}_2$ to q(x) = [Tp](x) = x p(x). Is T onto and/or one-to-one? Circle one option:

ONTO ONLY ONE-TO-ONE ONLY	BOTH	NEITHER
---------------------------	------	---------

(d) Consider the map $T: \mathcal{P}_3 \to \mathcal{P}_2$ that maps $p \in \mathcal{P}_3$ to q(x) = [Tp](x) = p'(x) (differentiation). Is T onto and/or one-to-one? Circle one option:

ONTO ONLY ONE-TO-ONE ONLY BOTH NEITHER

- (e) Consider the map $T: \mathcal{P}_3 \to \mathcal{P}_3$ that maps $p \in \mathcal{P}_3$ to $q(x) = [Tp](x) = p'(x) + p(0)x^3$. Is T onto and/or one-to-one? Circle one option:
 - ONTO ONLY ONE-TO-ONE ONLY BOTH NEITHER
- (f) Let n be a positive integer, let **A** be an $n \times n$ matrix of rank n 1, and consider the map $T: \mathbb{R}^n \to \mathbb{R}^n$ that is given by $T\mathbf{x} = \mathbf{A}\mathbf{x}$. Is T onto and/or one-to-one? Circle one option:

	ONTO ONLY	ONE-TO-ONE ONLY	BOTH	NEITHER
--	-----------	-----------------	------	---------

Question 2: (15p) Specify the determinants of the following matrices. No motivation required.

$\det\left(\left[\begin{array}{rrr}1&3\\2&1\end{array}\right.\right.$	$\Big]\Big) =$	$\det\left(\left[\begin{array}{c}3\\0\\0\end{array}\right]\right)$	$\left. \begin{array}{cc} 1 & 2 \\ 0 & 2 \\ 5 & 1 \end{array} \right] \right) =$	de	$\mathbf{t} \left(\begin{bmatrix} 1 & 2 \\ 0 & 2 \\ 0 & 0 & -1 \\ 1 & 2 \end{bmatrix} \right)$	$ \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = $
Q1 (24)	Q2 (15)	Q3 (20)	Q4 (15)	Q5 (20)	Q6 (6)	Total (100)

Question 3: (20p) The matrix **A** has the three distinct eigenvalues $\lambda_1 = 1$, $\lambda_2 = -2$, $\lambda_3 = 3$ (and no other eigenvalues).

- (a) Specify the eigenvalues of \mathbf{A}^{-1} :
- (b) Specify the eigenvalues of \mathbf{A}^{T} :
- (c) Specify the eigenvalues of \mathbf{A}^2 :
- (d) Specify the eigenvalues of $\mathbf{A} + 3\mathbf{I}$:
- (e) Specify the eigenvalues of $\mathbf{A} + \mathbf{A}^{\mathrm{T}}$:

If there is not enough information provided to answer, then write "not known".

Hand in answers to problems 4, 5, 6 on separate sheets!

Question 4: (15p) The matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$ has an eigenvector $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ t \end{bmatrix}$ for some $t \in \mathbb{R}$. Specify t, and also the eigenvalue associated with \mathbf{v} .

Question 5: (20p) Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 1 & 1 & -1 \\ 0 & 0 & -1 & 3 & 0 \\ 2 & 4 & 2 & -2 & 1 \\ 1 & 2 & -2 & 8 & -1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \text{and} \qquad \mathbf{R} = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 0 & -1 & 0 & 2 \\ 2 & 2 & 1 & -1 \\ 1 & -2 & -1 & 0 \end{bmatrix}.$$

You may use that $\mathbf{A} = \mathbf{RB}$ and that det $(\mathbf{R}) = 22$. No motivation required for a/b/c/d.

- (a) Specify a basis for $ran(\mathbf{A})$.
- (b) Specify a basis for $ker(\mathbf{A})$.
- (c) Specify the dimension of row(**A**).
- (d) Specify the dimension of $ker(\mathbf{A}^{T})$.
- (e) Specify a vector $\mathbf{c} \in \mathbb{R}^4$ such that the system $\mathbf{A}\mathbf{x} = \mathbf{c}$ is inconsistent. Motivation required!

Problem 6 (6p) [Harder, and very few points!] Consider the matrices

$$\mathbf{A} = \frac{1}{9} \begin{bmatrix} 17 & 2 & -2 \\ 2 & 14 & 4 \\ -2 & 4 & 14 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \qquad \text{and} \qquad \mathbf{V} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

In this problem, you may use that $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ and that $\mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}}$.

Define a sequence of vectors $\{\mathbf{x}_n\}_{n=0}^{\infty}$ in \mathbb{R}^3 via $\mathbf{x}_0 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and then for $n = 1, 2, 3, \ldots$, the vector \mathbf{x}_n is the solution to $\mathbf{A}\mathbf{x}_n = \mathbf{x}_{n-1}$. Specify the vector $\mathbf{z} = \lim_{n \to \infty} \mathbf{x}_n$. (Full credit for the correct answer alone.)