Section exam 1 for M341: Linear Algebra and Matrix Theory

9:30am - 10:45am, Oct. 6, 2022. Closed books. No notes.
Unique number 55415. Instructor Per-Gunnar Martinsson.
Question 1: (20p) For this question, please write only the answer, no motivation. 5p per question.
(a) Specify the solution set to the linear system $\left[\begin{array}{rrrr|r}1 & 0 & -2 & 0 & 3 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
-2 \\
3
\end{array}\right]
$$

(just do back substitution)
(b) Specify the solution set to the linear system $\left[\begin{array}{rrrr|r}1 & 0 & -2 & 0 & 2 \\ 0 & 1 & 5 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

For any real number t, there is a solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}2+2 t \\ -1-5 t \\ t \\ 4\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 4\end{array}\right]+\left[\begin{array}{r}2 \\ -5 \\ 1 \\ 0\end{array}\right] t$.
(c) Let t be a real number and consider the linear system $\left[\begin{array}{lll|l}1 & 1 & 1 & t \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 2 & 0\end{array}\right]$.

For which value(s) of t does the linear system have a solution?
Perform Gaussian elimination:

$$
\left[\begin{array}{rrr|r}
1 & 1 & 1 & t \\
0 & 1 & 1 & 3 \\
1 & 2 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & 1 & t \\
0 & 1 & 1 & 3 \\
0 & 1 & 1 & -t
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & 1 & t \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & -t-3
\end{array}\right]
$$

We see that the system is consistent iff $-t-3=0$, which is to say for $t=-3$ only
(d) Circle the statements that are necessarily true.
(i) If $\mathbf{A}=-\mathbf{A}^{\mathrm{T}}$, then \mathbf{A} is square and its diagonal entries are zero. T
(ii) If \mathbf{A} is any matrix, and $\mathbf{B}=\mathbf{A}^{\mathrm{T}} \mathbf{A}$, then \mathbf{B} is necessarily symmetric. T
(iii) If \mathbf{x} and \mathbf{y} are vectors of the same dimension, then $\|\mathbf{x}-\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}+\|\mathbf{y}\|^{2}$. T
(iv) If \mathbf{A} is a matrix of size 4×5, then the system $\mathbf{A} \mathbf{x}=\mathbf{0}$ has infinitely many solutions. T
(v) If \mathbf{A} is a non-zero matrix of size 5×4, then there exists a vector \mathbf{b} for which the system $\mathbf{A x}=\mathbf{b}$ has a unique solution. F

Question 2: (20p) Solve the linear system

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=1 \\
+2 x_{2}-2 x_{3}=4 \\
-x_{1}
\end{array}
$$

Please show your work.

Perform Gaussian elimination as usual:

$$
\left[\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
0 & 2 & -2 & 4 \\
-1 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
0 & 2 & -2 & 4 \\
0 & 1 & 0 & 3
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 1 & 0 & 3
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

We see that

$$
x_{3}=1
$$

Then

$$
x_{2}=2+x_{3}=2+1=3
$$

and

$$
x_{1}=1-x_{2}+x_{3}=1-3+1=-1
$$

So

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right]
$$

Question 3: (20p) Let \mathbf{x} and \mathbf{y} be two vectors of the same dimension. Prove that

$$
\begin{equation*}
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| . \tag{1}
\end{equation*}
$$

You may use as a given that if \mathbf{x} and \mathbf{y} are both nonzero, then

$$
\begin{equation*}
-1 \leq \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1 \tag{2}
\end{equation*}
$$

First observe that for any vectors \mathbf{x} and \mathbf{y}, it holds that

$$
\begin{equation*}
\mathbf{x} \cdot \mathbf{y} \leq\|\mathbf{x}\|\|\mathbf{y}\| . \tag{3}
\end{equation*}
$$

When $\|\mathbf{x}\|\|\mathbf{y}\| \neq 0$, the relation (3) is implied by the given inequality (2), and when $\|\mathbf{x}\|\|\mathbf{y}\|=0$ the relationship holds self evidently since both sides are then zero. Now

$$
\begin{equation*}
\|\mathbf{x}+\mathbf{y}\|^{2}=(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})=\mathbf{x} \cdot \mathbf{x}+\mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}=\|\mathbf{x}\|^{2}+2 \mathbf{x} \cdot \mathbf{y}+\|\mathbf{y}\|^{2} . \tag{4}
\end{equation*}
$$

Insert (3) into (4) to get

$$
\begin{equation*}
\|\mathbf{x}+\mathbf{y}\|^{2} \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2} . \tag{5}
\end{equation*}
$$

Take square roots of (5) to obtain (1). (Note that the quantities that are squared are necessarily non-negative, so there is no need to worry about \pm.)

Question 4: (20p) Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$.
(a) (8p) Let \mathbf{E}_{1} and \mathbf{E}_{2} be 3×3 matrices such that

$$
\mathbf{E}_{1} \mathbf{A}=\left[\begin{array}{rr}
a_{11}+3 a_{31} & a_{12}+3 a_{32} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right], \quad \mathbf{E}_{2} \mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32} \\
a_{21} & a_{22}
\end{array}\right]
$$

Specify the matrices \mathbf{E}_{1} and \mathbf{E}_{2}. (No motivation required.)

$$
\mathbf{E}_{1}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{E}_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(b) (8p) Specify the inverses of the matrices \mathbf{E}_{1} and \mathbf{E}_{2}. (No motivation required.)

$$
\mathbf{E}_{1}^{-1}=\left[\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{E}_{2}^{-1}=\mathbf{E}_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(c) (4p) There is a 3×3 matrix \mathbf{F} such that

$$
\mathbf{F A}=\left[\begin{array}{rr}
a_{11} & a_{12} \\
2 a_{21}-2 a_{11} & 2 a_{22}-2 a_{12} \\
a_{31} & a_{32}
\end{array}\right]
$$

Specify the matrix \mathbf{F} and its inverse. (No motivation required.)

$$
\mathbf{F}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{F}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Question 5: (20p) Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(a) (4p) Compute the following quantities. No motivation required.

$$
\mathbf{A}^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad \mathbf{A}^{3}=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

(b) (4p) Let n be a positive integer and specify the quantity indicated. No motivation required.

$$
\mathbf{A}^{n}=\left[\begin{array}{cc}
1 & n \tag{6}\\
0 & 1
\end{array}\right]
$$

(c) (8 p) Use induction to prove that your claim in (b) is true.

Base case: Consider $n=1$. Then it is obviously the case that

$$
\mathbf{A}^{n}=\mathbf{A}^{1}=\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right] .
$$

so the claim (6) holds.
Next, suppose that (6) holds for some specific number $n=k$. We want to prove that this implies that the relation also holds for $k+1$. We find

$$
\mathbf{A}^{k+1}=\left[\begin{array}{ll}
1 & 1 \tag{7}\\
0 & 1
\end{array}\right]^{k+1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{k} \stackrel{\text { ind) }}{=}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & k+1 \\
0 & 1
\end{array}\right],
$$

where in the step marked "ind", we used the induction assumption that (6) holds for $n=k$. Equation (7) is now of course (6) for $n=k+1$.
(d) (4p) If \mathbf{A} is invertible, then specify the quantities indicated. No motivation required.

$$
\begin{aligned}
& \mathbf{A}^{-1}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right], \\
& \mathbf{A}^{-2}=\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right], \\
& \mathbf{A}^{-3}=\left[\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

