Homework set 7 - M341, TuTh 9:30am - 10:45am section, Fall 2022

Hand in solutions to:

Section 3.3: 8.
Section 3.4: 1(a,d), 2(b), 3(b,d,f).

Problem 1 (hand in): Evaluate the determinants of the following matrices:

$$
\begin{array}{cc}
\mathbf{A}=\left[\begin{array}{rrr}
7 & 1 & 13 \\
0 & 3 & -5 \\
0 & 0 & 5
\end{array}\right] & \mathbf{B}=\left[\begin{array}{rrrr}
-4 & 3 & -2 & -2 \\
0 & 2 & 3 & -9 \\
4 & -3 & 7 & 6 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{C}=\left[\begin{array}{lrrr}
1 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right] & \mathbf{D}=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

Please motivate briefly how you arrived at the answer. (You are welcome to use a computer to verify your answers, of course. But please do not answer with just a number.)

Problem 2 (optional):

(a) Determine the characteristic polynomial of $\left[\begin{array}{rr}0 & 1 \\ -c_{0} & -c_{1}\end{array}\right]$.
(b) Determine the characteristic polynomial of $\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ -c_{0} & -c_{1} & -c_{2}\end{array}\right]$.
(c) Determine the characteristic polynomial of the $n \times n$ matrix $\left[\begin{array}{rrrrrr}0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -c_{0} & -c_{1} & -c_{2} & -c_{3} & \cdots & -c_{n-1}\end{array}\right]$.
(d) Justify the claim that "an algorithm that computes all eigenvalues of a given $n \times n$ matrix can be used to find the roots of any polynomial of degree $n-1$ ".

Optional problems: You are encouraged to work these! But do not hand in.
Section 3.2: 7, 9.
Section 3.4: 5(c,e), 11, 16.

