Homework set 4 - M341, TuTh 9:30am - 10:45am section, Fall 2022

Hand in solutions: $5 \mathrm{df}, 6 \mathrm{~b}, 9 \mathrm{ab}$, and 18 from Section 2.3.

Suggested problems (do not hand in): 4, 5b, and 12 from Section 2.3.

Problem 1: Let c be a real number, and consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.) Observe that such a matrix \mathbf{F} exists for every real number c, including $c=0$.

Problem 2: Let c be a real number such that $c \neq 0$, and consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & c
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.)
(c) Set $\mathbf{G}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. Prove that there cannot exist a matrix \mathbf{H} such that $\mathbf{G H}=\mathbf{I}$.

Problem 3: Consider the matrix

$$
\mathbf{E}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B}=\mathbf{E A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A}. Which one?
(b) Specify a matrix \mathbf{F} such that $\mathbf{E F}=\mathbf{I}$. (In other words, $\mathbf{F}=\mathbf{E}^{-1}$.)

