Hand in solutions: 5df, 6b, 9ab, and 18 from Section 2.3.

Suggested problems (do not hand in): 4, 5b, and 12 from Section 2.3.

Problem 1: Let *c* be a real number, and consider the matrix

			0	
E =	0	1	c	.
	0	0	1	
	_			•

- (a) Let A be a matrix with three rows, and consider the matrix B = EA. The matrix B is the result of performing an elementary row operation on A. Which one?
- (b) Specify a matrix **F** such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.) Observe that such a matrix **F** exists for *every* real number c, including c = 0.

Problem 2: Let c be a real number such that $c \neq 0$, and consider the matrix

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{bmatrix}.$$

- (a) Let \mathbf{A} be a matrix with three rows, and consider the matrix $\mathbf{B} = \mathbf{E}\mathbf{A}$. The matrix \mathbf{B} is the result of performing an elementary row operation on \mathbf{A} . Which one?
- (b) Specify a matrix \mathbf{F} such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.)
- (c) Set $\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Prove that there cannot exist a matrix \mathbf{H} such that $\mathbf{GH} = \mathbf{I}$.

Problem 3: Consider the matrix

$$\mathbf{E} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

- (a) Let A be a matrix with three rows, and consider the matrix B = EA. The matrix B is the result of performing an elementary row operation on A. Which one?
- (b) Specify a matrix **F** such that $\mathbf{EF} = \mathbf{I}$. (In other words, $\mathbf{F} = \mathbf{E}^{-1}$.)