Final exam for M341: Linear Algebra and Matrix Theory SOLUTIONS

1:00pm $-3: 00 \mathrm{pm}$, Dec. 10, 2022. Closed books. No notes.
Unique number 55415. Instructor Per-Gunnar Martinsson.
Question 1: (28p) No motivations required - only the actual answer will be graded.
(a) The 5×3 matrix \mathbf{A} has rank two. What is the dimension of its null space?

$$
\operatorname{dim}(\operatorname{ker}(\mathbf{A}))=3-\operatorname{rank}(\mathbf{A})=3-2=1
$$

(b) Set $\mathbf{A}=\left[\begin{array}{rr}3 & 2 \\ -1 & -0.5\end{array}\right]$. Compute the inverse of \mathbf{A}.

$$
\mathbf{A}^{-1}=\left[\begin{array}{rr}
-1 & -1 \\
2 & 6
\end{array}\right]
$$

(c) Determine the numbers s and t such that $\left[\begin{array}{rrr}4 & 3 & -2 \\ 4 & 2 & -1 \\ -5 & -3 & 2\end{array}\right]^{-1}=\left[\begin{array}{rrr}-1 & s & -1 \\ 3 & t & 4 \\ 2 & 3 & 4\end{array}\right]$.

$$
s=0 \quad t=2
$$

(d) Evaluate the determinant of the matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 1 & 2 \\ 0 & 5 & 1 \\ 2 & 1 & 1\end{array}\right]$.

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 5 & 1 \\
2 & 1 & 1
\end{array}\right]=\left\{R_{3} \leftarrow R_{3}-R_{1}\right\}=\operatorname{det}\left[\begin{array}{rrr}
2 & 1 & 2 \\
0 & 5 & 1 \\
0 & 0 & -1
\end{array}\right]=-10
$$

(e) Let \mathbf{A} and \mathbf{B} be square invertible matrices of the same dimension. Circle the statements that are always true:
(i) $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{B}) \operatorname{det}(\mathbf{A})$ TRUE
(ii) $\operatorname{det}(-\mathbf{A})=-\operatorname{det}(\mathbf{A})$ (not true for $n \times n$ matrices with n even)
(iii) $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$. TRUE
(iv) If \mathbf{A} is triangular, then $\operatorname{det}(\mathbf{A})$ equals the product of its diagonal entries. TRUE
(f) Let \mathbf{A} and \mathbf{B} be square invertible matrices of the same dimension.

Circle the statements that are always true:
(i) $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$. TRUE
(ii) $(\mathbf{A}-\mathbf{I})^{2}=\mathbf{A}^{2}-2 \mathbf{A}+\mathbf{I}$. TRUE
(iii) $(\mathbf{A B})^{-1}=\mathbf{A}^{-1} \mathbf{B}^{-1}$. (only true when \mathbf{A}^{-1} and \mathbf{B}^{-1} commute)
(iv) $(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}$. (only true when \mathbf{A} and \mathbf{B} commute)
(g) Evaluate $\|\mathbf{a}+\mathbf{b}\|^{2}+\|\mathbf{a}-\mathbf{b}\|^{2}$ when \mathbf{a} and \mathbf{b} are two vectors such that $\|\mathbf{a}\|=1$ and $\|\mathbf{b}\|=2$.

$$
\|\mathbf{a}+\mathbf{b}\|^{2}+\|\mathbf{a}-\mathbf{b}\|^{2}=\{\text { parallelogram law }\}=2\|\mathbf{a}\|^{2}+2\|\mathbf{b}\|^{2}=2 \cdot 1+2 \cdot 2^{2}=10
$$

Question 2: (20p) Consider the matrices and vectors

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
0 & 1 & 2 & 1 \\
1 & 1 & 3 & 3 \\
-1 & 1 & 1 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}
1 \\
2 \\
6 \\
-2
\end{array}\right]
$$

You may in solving this problem use that the RREF of \mathbf{A} is \mathbf{B}.
(a) (12p) Specify all solutions \mathbf{x} to the linear system $\mathbf{A x}=\mathbf{y}$.
(b) (4p) Specify a basis for the column space (= range) of \mathbf{A}.
(c) (4p) Specify a basis for the null space ($=$ kernel) of \mathbf{A}.

Solution:

(a) Perform Gaussian elimination on the system $[\mathbf{A} \mid \mathbf{y}]$ as usual

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 \\
1 & 1 & 3 & 3 & 6 \\
-1 & 1 & 1 & -1 & -2
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 \\
0 & 2 & 4 & 3 & 5 \\
0 & 0 & 0 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll|l}
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We see that x_{3} is a free variable. Set $t=x_{3}$. Then the solution is

$$
\begin{aligned}
& x_{1}=2-t, \\
& x_{2}=1-2 t, \\
& x_{3}=t, \\
& x_{4}=1,
\end{aligned}
$$

where t is any real number. Alternatively,

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
0
\end{array}\right] t, \quad t \in \mathbb{R}
$$

(b) The pivot columns are $\{1,2,4\}$. Extract the corresponding columns of \mathbf{A} to get the basis

$$
\left\{\left[\begin{array}{r}
1 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
3 \\
-1
\end{array}\right]\right\}
$$

(c) Looking at the general solution in (a), we find the basis

$$
\left\{\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

Question 3: (20p) Compute all eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
-2 & -2 \\
6 & 5
\end{array}\right] .
$$

Please briefly motivate your computations.

Solution: We first compute the characteristic polynomial

$$
p(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\operatorname{det}\left[\begin{array}{rr}
\lambda+2 & 2 \\
-6 & \lambda-5
\end{array}\right]=(\lambda+2)(\lambda-5)+12=\lambda^{2}-3 \lambda+2 .
$$

Solving $p(\lambda)=0$, we find that

$$
\lambda_{1,2}=\frac{3}{2} \pm \sqrt{\frac{3^{2}}{2^{2}}-2}=\frac{3}{2} \pm \frac{1}{2}
$$

so $\lambda_{1}=1$ and $\lambda_{2}=2$. Next we look for eigenvectors.
$\lambda_{1}=1$ We seek all nontrivial solutions to $(\mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}$.

$$
\left[\begin{array}{rr|r}
(1+2) & 2 & 0 \\
-6 & (1-5) & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
3 & 2 & 0 \\
-6 & -4 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Set $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ -3\end{array}\right]$. (Any other solution is a scaling of \mathbf{v}_{1}.)
$\lambda_{2}=2$ We seek all nontrivial solutions to $(2 \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}$.

$$
\left[\begin{array}{rr|r}
(2+2) & 2 & 0 \\
-6 & (2-5) & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
4 & 2 & 0 \\
-6 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Set $\mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$. (Any other solution is a scaling of \mathbf{v}_{2}.)

Question 4: (20p) Consider the vector space $V=\mathcal{P}_{2}$, consisting of all polynomials of order two or less. Please remember to briefly motivate your answers to the questions below.
(a) (5p) Is $\mathcal{B}_{1}=\left\{1+x-2 x^{2},-2+2 x+3 x^{2}\right\}$ a basis for V ?
(b) (5p) Is $\mathcal{B}_{2}=\left\{1, x+x^{2}, x-x^{2}\right\}$ a basis for V ?
(c) (5p) Is $\mathcal{B}_{3}=\left\{1+x, 1+x^{2}, 2+x+x^{2}\right\}$ a basis for V ?
(d) (5p) Is $\mathcal{B}_{4}=\left\{1+x-2 x^{2},-2+3 x+3 x^{2}, 3-x+2 x^{2}, 1+x+x^{2}\right\}$ a basis for V ?

Solution:

(a) No. The dimension of V is three, so no set with only two elements can span V.
(b) The dimension of V is three, and three vectors are provided, so we need to check if they are linearly independent. Suppose that

$$
0=c_{1}(1)+c_{2}\left(x+x^{2}\right)+c_{3}\left(x-x^{2}\right)=1 \times\left(c_{1}\right)+x \times\left(c_{2}+c_{3}\right)+x^{2} \times\left(c_{2}-c_{3}\right)
$$

So the question is whether the linear system

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\mathbf{0}
$$

has any non trivial solutions. One step of Gaussian elimination yields

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\mathbf{0}
$$

so the answer is no. Since any set of three linearly independent vectors in a three dimensional space is necessarily a spanning set, we see that \mathcal{B}_{2} is a basis.
(c) Three vectors are provided, so we need to check if they are linearly independent. Suppose that

$$
0=c_{1}(1+x)+c_{2}\left(1+x^{2}\right)+c_{3}\left(2+x+x^{2}\right)=1 \times\left(c_{1}+c_{2}+2 c_{3}\right)+x \times\left(c_{1}+c_{3}\right)+x^{2} \times\left(c_{2}+c_{3}\right) .
$$

So the question is whether the linear system

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\mathbf{0}
$$

has any non trivial solutions. Two step of Gaussian elimination yields

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & -1 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\mathbf{0} \quad \Rightarrow \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\mathbf{0}
$$

so the anser is yes, for instance $c_{1}=1, c_{2}=1, c_{3}=-1$. So \mathcal{B}_{3} is not a basis.
(d) No. The dimension of V is three, so any set with 4 vectors must be linearly dependent.

Question 5: $(12 \mathrm{p})$ Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be an orthonormal set of vectors in \mathbb{R}^{3}.
(a) $(4 \mathrm{p})$ Provide the definition of "orthonormal set".
(b) (4p) Let \mathbf{a} be a vector such that $\mathbf{a} \cdot \mathbf{u}=1, \mathbf{a} \cdot \mathbf{v}=-1, \mathbf{a} \cdot \mathbf{w}=2$. What is $\|\mathbf{a}\|$?
(c) (4p) (Harder.) Given a vector $\mathbf{x} \in \mathbb{R}^{3}$, we learned in class that there is a unique vector $\mathbf{y} \in \operatorname{span}(\mathbf{u}, \mathbf{v})$ such that $\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}-s \mathbf{u}-t \mathbf{v}\|$ for every $s, t \in \mathbb{R}$. Let T denote the map such that $\mathbf{y}=T(\mathbf{x})$. Is T linear? If yes, then specify a matrix \mathbf{A} such that $T(\mathbf{x})=\mathbf{A x}$.

Solution:

(a) It must be the case that

$$
\mathbf{u} \cdot \mathbf{u}=1, \quad \mathbf{u} \cdot \mathbf{v}=0, \quad \mathbf{u} \cdot \mathbf{w}=0, \quad \mathbf{v} \cdot \mathbf{v}=1, \quad \mathbf{v} \cdot \mathbf{w}=0, \quad \mathbf{w} \cdot \mathbf{w}=1
$$

(b) Since $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ has three elements, and \mathbb{R}^{3} has dimension 3 , the set is not only an ON-set, but in fact an ON-basis. Now recall from class that if $\left\{\mathbf{u}_{i}\right\}_{i=1}^{n}$ is an ON-basis, then for any vector a we have

$$
\|\mathbf{a}\|^{2}=\sum_{i=1}^{n}\left(\mathbf{u}_{i} \cdot \mathbf{a}\right)^{2}
$$

In the present case we get

$$
\|\mathbf{a}\|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{6}
$$

(c) From the information given, we know that \mathbf{y} is the orthogonal projection of \mathbf{x} onto the space spanned by $\{\mathbf{u}, \mathbf{v}\}$. In Chapter 6 , we learned that this projection is given by the formula

$$
\mathbf{y}=(\mathbf{u} \cdot \mathbf{x}) \mathbf{u}+(\mathbf{v} \cdot \mathbf{x}) \mathbf{v}
$$

Treating \mathbf{u} and \mathbf{v} as 3×1 matrices, we rewrite the formula as

$$
\mathbf{y}=\mathbf{u}\left(\mathbf{u}^{\mathrm{T}} \mathbf{x}\right)+\mathbf{v}\left(\mathbf{v}^{\mathrm{T}} \mathbf{x}\right)=\left(\mathbf{u} \mathbf{u}^{\mathrm{T}}+\mathbf{v} \mathbf{v}^{\mathrm{T}}\right) \mathbf{x}
$$

so the answer is yes, with

$$
\mathbf{A}=\mathbf{u} \mathbf{u}^{\mathrm{T}}+\mathbf{v v}^{\mathrm{T}}
$$

