Final exam for M341: Linear Algebra and Matrix Theory

1:00pm $-3: 00 \mathrm{pm}$, Dec. 10, 2022. Closed books. No notes.
Unique number 55415. Instructor Per-Gunnar Martinsson.
Question 1: $(28 \mathrm{p})$ No motivations required - only the actual answer will be graded.
(a) The 5×3 matrix \mathbf{A} has rank two. What is the dimension of its null space?

$$
\operatorname{dim}(\operatorname{ker}(\mathbf{A}))=
$$

(b) Set $\mathbf{A}=\left[\begin{array}{rr}3 & 2 \\ -1 & -0.5\end{array}\right]$. Compute the inverse of \mathbf{A}.

$$
\mathbf{A}^{-1}=
$$

(c) Determine the numbers s and t such that $\left[\begin{array}{rrr}4 & 3 & -2 \\ 4 & 2 & -1 \\ -5 & -3 & 2\end{array}\right]^{-1}=\left[\begin{array}{rrr}-1 & s & -1 \\ 3 & t & 4 \\ 2 & 3 & 4\end{array}\right]$.

$$
s=\quad t=
$$

(d) Evaluate the determinant of the matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 1 & 2 \\ 0 & 5 & 1 \\ 2 & 1 & 1\end{array}\right]$.

$$
\operatorname{det}(\mathbf{A})=
$$

(e) Let \mathbf{A} and \mathbf{B} be square invertible matrices of the same dimension.

Circle the statements that are always true:
(i) $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{B}) \operatorname{det}(\mathbf{A})$
(ii) $\operatorname{det}(-\mathbf{A})=-\operatorname{det}(\mathbf{A})$
(iii) $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$.
(iv) If \mathbf{A} is triangular, then $\operatorname{det}(\mathbf{A})$ equals the product of its diagonal entries.
(f) Let \mathbf{A} and \mathbf{B} be square invertible matrices of the same dimension.

Circle the statements that are always true:
(i) $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$.
(ii) $(\mathbf{A}-\mathbf{I})^{2}=\mathbf{A}^{2}-2 \mathbf{A}+\mathbf{I}$.
(iii) $(\mathbf{A B})^{-1}=\mathbf{A}^{-1} \mathbf{B}^{-1}$.
(iv) $(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}$.
(g) Evaluate $\|\mathbf{a}+\mathbf{b}\|^{2}+\|\mathbf{a}-\mathbf{b}\|^{2}$ when \mathbf{a} and \mathbf{b} are two vectors such that $\|\mathbf{a}\|=1$ and $\|\mathbf{b}\|=2$.

$$
\|\mathbf{a}+\mathbf{b}\|^{2}+\|\mathbf{a}-\mathbf{b}\|^{2}=
$$

Q1 (28)	Q2 (20)	Q3 (20)	Q4 (20)	Q5 (12)	Total (100)

Question 2: (20p) Consider the matrices and vectors

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
0 & 1 & 2 & 1 \\
1 & 1 & 3 & 3 \\
-1 & 1 & 1 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}
1 \\
2 \\
6 \\
-2
\end{array}\right] .
$$

You may in solving this problem use that the RREF of \mathbf{A} is \mathbf{B}.
(a) (12p) Specify all solutions \mathbf{x} to the linear system $\mathbf{A x}=\mathbf{y}$.
(b) (4p) Specify a basis for the column space (= range) of \mathbf{A}.
(c) (4p) Specify a basis for the null space $(=$ kernel) of \mathbf{A}.

Hint: When solving (a), you may want to use plain Gaussian elimination as taught in the class.
The RREF of A may be useful to help you check that you did not commit arithmetic errors, however.

Question 3: (20p) Compute all eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
-2 & -2 \\
6 & 5
\end{array}\right] .
$$

Please briefly motivate your computations.

Question 4: (20p) Consider the vector space $V=\mathcal{P}_{2}$, consisting of all polynomials of order two or less. Please remember to briefly motivate your answers to the questions below.
(a) (5p) Is $\mathcal{B}_{1}=\left\{1+x-2 x^{2},-2+2 x+3 x^{2}\right\}$ a basis for V ?
(b) $(5 \mathrm{p})$ Is $\mathcal{B}_{2}=\left\{1, x+x^{2}, x-x^{2}\right\}$ a basis for V ?
(c) $(5 \mathrm{p})$ Is $\mathcal{B}_{3}=\left\{1+x, 1+x^{2}, 2+x+x^{2}\right\}$ a basis for $V ?$
(d) (5p) Is $\mathcal{B}_{4}=\left\{1+x-2 x^{2},-2+3 x+3 x^{2}, 3-x+2 x^{2}, 1+x+x^{2}\right\}$ a basis for $V ?$

Question 5: (12p) Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be an orthonormal set of vectors in \mathbb{R}^{3}.
(a) (4p) Provide the definition of "orthonormal set".
(b) (4p) Let \mathbf{a} be a vector such that $\mathbf{a} \cdot \mathbf{u}=1, \mathbf{a} \cdot \mathbf{v}=-1, \mathbf{a} \cdot \mathbf{w}=2$. What is $\|\mathbf{a}\|$?
(c) (4p) (Harder.) Given a vector $\mathbf{x} \in \mathbb{R}^{3}$, we learned in class that there is a unique vector $\mathbf{y} \in \operatorname{span}(\mathbf{u}, \mathbf{v})$ such that $\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}-s \mathbf{u}-t \mathbf{v}\|$ for every $s, t \in \mathbb{R}$. Let T denote the map such that $\mathbf{y}=T(\mathbf{x})$. Is T linear? If yes, then specify a matrix \mathbf{A} such that $T(\mathbf{x})=\mathbf{A x}$.

