Quiz for section exam 2

(!) This is a preview of the published version of the quiz

Started: Apr 25 at 4:29pm

Quiz Instructions

This exam is timed. You have 50 minutes from the time that you start. There are 10 questions total, so do not linger if you have difficulties with one question - you only have 5 minutes for each one.

Several of the questions ask you to identify which of a given number of statements are true or false. Be sure to write "T" or "F" in the given box (without the quotation marks). Do NOT write "t" or "f" or "true" or"false" or anything like that, just T or F.

Question 1 pts

Let $A=\left[\begin{array}{rrr}-4 & 12 & 6 \\ -2 & 5 & 2 \\ 1 & 0 & 1\end{array}\right]$ The matrix A has an eigenvector $v=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$. Specify the corresponding eigenvalue.
\square

Question 2

Let t be a real number, and let $A=\left[\begin{array}{rrr}2 & t & 3 \\ -1 & 4 & -1 . \\ -3 & 9 & -4\end{array}\right]$ For which value of t is the
vector $v=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ an eigenvector of A ?
\square

Question 3

1 pts

The matrix A has the characteristic polynomial $p(\lambda)=\lambda^{3}-\lambda$ How many distinct eigenvalues does A have?
\square

Let A be a matrix of size $n \times n$.
Which of the following statements are necessarily true?
Write either "T" or " F " in the space provided.
(a) If λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}.
(b) If 0 is an eigenvalue of A, then $\operatorname{det}(A)=0$
(c) If $A^{17}=0$, then at least one eigenvalue of A is zero.
(d) If $A^{17}=0$, then all eigenvalues of A are zero.

Question 5

Let A be a 3×3 matrix that whose rank is 2 .
Which of the following statements are true?
Write either "T" or "F" in the space provided.
(a) It is possible that the rank of A^{2} is 3.
(b) It is possible that the rank of A^{2} is 2 .
(c) It is possible that the rank of A^{2} is 1 . \square
(d) It is possible that the rank of A^{2} is 0 .

Question 6

Let A be a 3×3 matrix, and let $\{u, v, w\}$ be a set of three linearly independent (nonzero) vectors in \mathbb{R}^{3}. You know that $A u=3 u$, that $A v=3 v$, and that $A w=7 w$.

Which of the following statements are true?
Write either "T" or "F" in the space provided.
(a) The vector $u+v$ is an eigenvector of A.
(b) The vector $u+w$ is an eigenvector of A.
(c) The vector $u-v$ is an eigenvector of A with eigenvalue 0 .

Question 7

Let A and B be matrices of the same size. Suppose further that there exists an invertible matrix V for which $A=V B V^{-1}$

Which of the following statements are necessarily true?
Write either "T" or "F" in the space provided.
(a) $\operatorname{det}(A)=\operatorname{det}(B)$
(b) If λ is an eigenvalue of A, then λ is also an eigenvalue of B.
(c) If v is an eigenvector of A, then v is also an eigenvector of B.

Question 8

Let $V=\mathbb{R}^{3}$ and $W=\mathbb{R}^{4}$. Further, let A be a matrix of size 4×3.
Which of the following statements are necessarily true?
Write either "T" or "F" in the space provided.
(a) If $\{u, v, w\}$ is a linearly independent set in V, then $\{A u, A v, A w\}$ is a linearly independent set in W.
(b) If $\{A u, A v, A w\}$, a linearly independent set in W, then $\{u, v, w\}$ is a linearly independent set in V.
(c) If $\{A u, A v, A w$ is a linearly independent set in W, then $\{A u, A v, A w\}$ is a basis for W.

Question 9

Let A be a matrix of size 4×3. You know that there exists a nonzero vector x such that $A x=0$. You also know that there exist two vectors y and z such that $\{A x, A y\}$ is a linearly independent set in \mathbb{R}^{4}.

Which of the following statements are necessarily true?
Write either "T" or "F" in the space provided.
(a) It is possible that the rank of A is 1 . \square
(b) It is possible that the rank of A is 2 . \square
(c) It is possible that the rank of A is 3 . \square
(d) It is possible that the rank of A is 4 .

Let $V=\mathcal{P}_{2}$ and $W=\mathcal{P}_{3}$. Further, let M be the subspace of W defined by

$$
M=\{x p(x): p \in V .\} \text { n other words, a polynomial } q \text { belongs to } M \text { if and only if it }
$$ is of the form $q(x)=x p(x)$ for some polynomial p in V. What is the dimension of M ?

