Section exam 1 for M341 (55060) Spring 2021

Released: Sunday March 7.
Due: 5pm, Thursday March 11. This is a strict deadline. Please allow yourself a margin!
Submission logistics: Submit through GradeScope. Please ensure that you know how this works well before the deadline in case difficulties arise.

Rules:

- This is an open book exam.
- The exam should be worked individually. Unlike the homeworks, you are not allowed to collaborate.
- You are allowed to use calculators, computers, etc, if you find them helpful. None of the questions should require extensive calculations. For the questions where motivations are required, you should at a minimum describe the steps that you took to compute the answer.
- Motivate your work unless a question specifically states that you do not have to.
- Write your answer inside the box given. This is important for GradeScope to be able to correctly scan your exam.

Question 1: (16p) In each of the four questions below, you are given the extended coefficient matrix $[A \mid B]$ for a linear system $A X=B$. Write down the full set of solutions to the linear system.

Note: For each system, you are also given a row equivalent system, as a help.
No motivation is required.
(a)

$$
\left[\begin{array}{rrr|r}
-2 & -2 & -5 & -4 \\
-4 & -1 & -3 & -12 \\
2 & 2 & 4 & 2
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|r}
2 & 0 & 0 & 6 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& x_{3}=2 \\
& x_{2}+3 x_{3}=0 \quad \Rightarrow \quad x_{2}=-6 \\
& 2 x_{1}=6 \quad \Rightarrow \quad x_{1}=3
\end{aligned}
$$

The solution set is:

$$
x_{1}=3 \quad x_{2}=-6 \quad x_{3}=2
$$

(b)

$$
\left[\begin{array}{rrr|r}
0 & 3 & 6 & 4 \\
-1 & 2 & 1 & 1 \\
2 & 1 & 8 & 7
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 2 \\
0 & 2 & 4 & 3
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

The solution set is:
No sol
(c)

$$
\left[\begin{array}{rrr|r}
0 & 3 & 6 & 6 \\
-1 & 2 & 1 & 2 \\
2 & 1 & 8 & 6
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 2 \\
0 & 2 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The solution set is:

$$
\begin{aligned}
& x_{1}=2-3 t \\
& x_{2}=2-2 t \\
& x_{3}=t
\end{aligned}
$$

(d)

$$
\left[\begin{array}{rrrr|r}
1 & -2 & 1 & 1 & 1 \\
-2 & 4 & -1 & -1 & 0 \\
3 & -6 & 1 & 1 & -1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrr|r}
1 & -2 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -2 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The solution set is:

$$
\begin{aligned}
& x_{1}=-1+2 t \\
& x_{2}=t \\
& x_{3}=2-s \\
& x_{4}=s
\end{aligned}
$$

Question 2: (14p) Consider the linear system

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
3 & 3 & 8 \\
-2 & -1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
4 \\
14 \\
-9
\end{array}\right]
$$

The solution to the system is $x_{1}=3, x_{2}=-1, x_{3}=1$. In the box below, describe how you would solve the system using Gaussian elimination. Indicate clearly at each step which row operation that you perform. Use the notation based on extended coefficient matrices.

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 1 & 2 & 4 \\
3 & 3 & 8 & 14 \\
-2 & -1 & -4 & -9
\end{array}\right] \sim} \\
& R_{2} \in R_{2}-3 R_{1} \\
& R_{3} \leftarrow R_{3}+2 R \text {, } \\
& \sim\left[\begin{array}{ccc|c}
1 & 1 & 2 & 4 \\
0 & 0 & 2 & 2 \\
0 & 1 & 0 & -1
\end{array}\right] \sim \\
& R_{2} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{rrr|r}
1 & 1 & 2 & 4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 2 & 2
\end{array}\right] \sim \\
& R_{3} \leftarrow \frac{1}{2} R_{3} \\
& \omega\left[\begin{array}{ccc|c}
1 & 1 & 2 & 4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim \\
& \sim\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Question 3: (15p) Let t be a real number, and consider the linear system

$$
\begin{aligned}
x_{1}+x_{3} & =1 \\
x_{1}+(1-t) x_{2} & =t-2 \\
-x_{1}+(1-t) x_{2}+(t-1) x_{3} & =t
\end{aligned}
$$

Hint: Always avoid dividing by quantities that may be zoo!

Hint: You can solve this system by forming the extended coefficient matrix, and then driving it to REF form through Gaussian elimination. You only need three or four EROs.
(a) Specify an REF of the extended linear system:

$$
\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
1 & 1-t & 0 & t-2 \\
-1 & 1-t & t-1 & t
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
0 & 1-t & -1 & t-3 \\
0 & 1-t & t & t+1
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
0 & 1-t & -1 & t-3 \\
0 & 0 & t+1 & 4
\end{array}\right]
$$

(b) Specify all values of t (if any) for which there is no solution:

$$
t=-1 \quad \text { In this } \operatorname{cose}[A \mid B] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
0 & 2 & -1 & -4 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

(c) Specify all values of t (if any) for which there is a unique solution.

In this case, also specify the solution.

$$
\begin{aligned}
& t \neq-1 \text { and } t \neq 1 \\
& x_{1}=1-x_{3}=1-\frac{4}{1+t}=\frac{t-3}{t+1} \\
& x_{2}=\frac{1}{(1-t)}\left(t-3+x_{3}\right)=\frac{1}{(1-t)}\left(t-3+\frac{4}{1+t}\right)=\cdots=\frac{1-t}{1+t} \\
& x_{3}=\frac{4}{1+t}
\end{aligned}
$$

(d) Specify all values of t (if any) for which there are infinitely many solutions.

In this case, also specify the solution set.

$$
\begin{aligned}
& {[t=1) \text { In this } C a s e \quad[\mid B] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
0 & 0 & -1 & -2 \\
0 & 0 & 2 & 4
\end{array}\right] \sim \ldots \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{1}=-1 \\
& x_{2}=+\longleftarrow \text { free variable } \\
& x_{3}=2
\end{aligned}
$$

If you get the answer right, you get full points for just specifying the values of t and the corresponding solutions. If you get it wrong, then a brief indication of your methodology may give partial credit.

Question 4: (15p) Consider the matrix $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & 1 & -1 \\ -2 & -1 & 4\end{array}\right]$.
(a) Provide a factorization $A=E_{n} E_{n-1} \cdots E_{2} E_{1}$ where each E_{j} is a 3×3 matrix corresponding to an elementary row operation.
(b) Provide a factorization $A^{-1}=F_{m} F_{m-1} \cdots F_{2} F_{1}$ where each F_{j} is a 3×3 matrix corresponding to an elementary row operation.
Hint: To solve this problem, consider the technique for computing the inverse of a matrix that we described in Lecture 10. Once you have worked out the answer to (a), almost no additional work is required for (b).

The idea isto drive A to the identity matrix through ERO's

$$
\text { (b) }(*) \Rightarrow A^{-1}=F_{5} f_{4} f_{3} F_{2} F_{1}
$$

$$
\begin{aligned}
& F_{1}=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow F_{1} A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
-2 & 4
\end{array}\right] \\
& F_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow F_{2} F, A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right] \\
& F_{3}=\left[\begin{array}{ll}
10 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow F_{3} F_{2} F_{A} A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 2
\end{array}\right] \\
& F_{4}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow F_{4} F_{3} F_{2} F_{1} A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& F_{5}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow F_{5} F_{4} F_{3} F_{2} F_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I(*) \\
& \text { (c) }(\rightarrow) \Rightarrow A=F_{1}^{-1} F_{2}^{-1} F_{3}^{-1} F_{4}^{-1} F_{5}^{-1} \\
& \text { So } A=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{=E_{5}} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]}_{=E_{4}} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]}_{=E_{3}} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]}_{=E_{2}} \underbrace{\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
1
\end{array}\right]}_{=E_{1}}
\end{aligned}
$$

Question 5: (15p) Let n be a positive integer, and let A, B, and C all be matrices of size $n \times n$. Suppose that A, B, C, and $A+B$ are all invertible matrices. Which of the following rules are then necessarily true:
(a) $A^{-1}-B^{-1}=B^{-1}(B-A) A^{-1}$.

I typed (c) and (d) wrong. I had intended:
(b) $A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}$.
(c) $(A+B)^{-1}=\left(I+A^{-1} B\right)^{-1} A^{-1}$
true
(c) $(A+B)^{-1}=\left(I-A^{-1} B\right)^{-1} A^{-1}$.
(d) $(A+B)^{-1}=A^{-1}\left(I+A^{-1} B\right)^{-1}$
false
(d) $(A+B)^{-1}=A^{-1}\left(I-A^{-1} B\right.$
(e) $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.

Circle TRUE or FALSE, and briefly motivate your answers.
(a) TRUE FALSE

$$
B^{-1}(B-A) A^{-1}=B^{-1} B A^{-1}-B^{-1} 4 A^{-1}=A^{-1}-B^{-1}
$$

(b) TRUE FALSE

$$
A^{-1}(B-A) B^{-1}=A^{-1} B B^{-1}-A^{-1} A B^{-1}=A^{-1}-B^{-1}
$$

(c) TRUE FALSE

Set $A=I \quad B=I$
Than $(A+B)^{-1}=(2 I)^{-1}=\frac{1}{2} I$
$A^{-1}\left(I-A^{-1} B\right)^{-1}=I^{-1}(I-I)^{-1}$ does not exist.
(d) TRUE FALSE

Sect $A=B=I$ again, for instance.
(e TRUE FALSE

$$
(A B C)^{-1}=((A B) C)^{-1}=C^{-1}(A B)^{-1}=C^{-1} B^{-1} A^{-1}
$$

Question 6: (15p) Let t be a real number, and consider the matrix

$$
A=\left[\begin{array}{rr}
t & t \\
-t & t
\end{array}\right]
$$

Prove that there exists a value of t for which

$$
\|A \mathbf{x}\|=\|\mathbf{x}\|
$$

for every vector $\mathbf{x} \in \mathbb{R}^{2}$.
The correct value of t :

Proof:
Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ denote on arbitrary vector. Then

$$
A x=\left[\begin{array}{cc}
t & t \\
-t & t
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
t x_{1}+t y_{2} \\
-t x_{1}+t x_{2}
\end{array}\right]=t\left[\begin{array}{c}
x_{1}+x_{2} \\
-x_{1}+y_{2}
\end{array}\right]
$$

We find that

$$
\begin{aligned}
& \|A x\|^{2}=\left(t\left(x_{1}+x_{2}\right)\right)^{2}+\left(t\left(-x_{1}+x_{2}\right)\right)^{2}= \\
& \quad=t^{2}\left[\left(x_{1}+y_{2}\right)^{2}+\left(-x_{1}+y_{2}\right)^{2}\right]= \\
& \quad=t^{2}\left[x_{1}^{2}+2 x_{1} y_{2}+x_{2}^{2}+x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right]= \\
& \quad=t^{2}\left[2 x_{1}^{2}+2 x_{2}^{2}\right]= \\
& \quad=2 t^{2}\|x\|^{2} \\
& \text { So }\|A x\|=\sqrt{2 t^{2}}\|x\|
\end{aligned}
$$

Picking $t=\frac{1}{\sqrt{2}}$, we get $\|A \times\|=\|x\|$
(The value $t=-1 / \sqrt{2}$ also works.)

Question 7: (5p) [Note: This question is worth only five points!] Consider the matrix

$$
T=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

For a positive integer n, define the numbers a_{n}, b_{n}, and c_{n}, as the first three entries in the top row of T^{n}. In other words

$$
T^{n}=\left[\begin{array}{ccccc}
a_{n} & b_{n} & c_{n} & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] .
$$

Work out what these numbers are, and provide an induction proof of your answer for c_{n}.

$$
a_{n}=l
$$

$$
b_{n}=h
$$

$$
c_{n}=\frac{(n-1) n}{2}
$$

Proof of the claim for c_{n} : Since $T^{n}=T^{n-1} T_{1}$, we find that a_{n}, b_{n}, c_{n} satisfy:

$$
\begin{aligned}
& a_{n}=a_{n-1} \\
& b_{n}=a_{n-1}+b_{n-1} \\
& c_{n}=b_{n-1}+c_{n-1}
\end{aligned}
$$

The initial conditions are: $a_{1}=1 \quad b_{1}=1 \quad c_{1}=0$ We con now determine the sequences: $a_{n} \quad a_{1}=1$ and $a_{n}=a_{n-1} \Rightarrow a_{n}=1$ for all n $b_{n} \quad b_{n}=1+b_{n-1}$ and $b_{1}=1$ immed
$c_{n} \quad c_{n}=(n-1)+c_{n-1}$ and $c_{1}=0$.
We find $\quad c_{2}=1+0=1 \quad c_{3}=2+1=3 \quad c_{4}=3+3=6 \quad c_{5}=4+6=10 \quad c_{6}=5+10=15$ HYPOTHESIS: $\quad C_{n}=\frac{n(n-1)}{2}$
Obviously true for $n=1$. Assame true for $n-1$. Then

$$
C_{n}=(n-1)+\frac{(n-1)(n-2)}{2}=\frac{(n-1)}{2}(2+n-2)=\frac{(n-1) n}{2} .
$$

Question 8: (5p) Write a minimum of three sentences in the box below. Ideally, they would contain feedback on how you feel the class is going. Both positive and negative comments are very welcome! If you prefer to not provide feedback, then write anything you like. Any three full sentences will yield a full 5 p.

