
Final exam for M341 (55060) Spring 2021 — SOLUTIONS

Released: Saturday May 8, 2021.

Due: 5pm on Wednesday May 12, 2021.

Submission logistics: Submit through GradeScope. Please ensure that you know how this works well
before the deadline in case difficulties arise.

Rules:

• This is an open book exam.

• The exam should be worked individually. Unlike the homeworks, you are not allowed to collaborate.

• You are allowed to use calculators, computers, etc, if you find them helpful. None of the questions
should require extensive calculations. For the questions where motivations are required, you should
at a minimum describe the steps that you took to compute the answer. For example, if you did row
eliminations, then specify the matrix you start with, and the matrix that you end up with.

• Motivate your work unless a question specifically states that you do not have to.

• Write your answer inside the box given. This is important for GradeScope to be able to correctly
scan your exam.

May 7, 2021. Per-Gunnar Martinsson, University of Texas at Austin



Question 1: (18p) Let s and t be real numbers, and consider the linear system

(1)

 x1 +t x2 +(3 + t)x3 = 2,
−x1 −2x2 −x3 = s− 5,
x1 +(2t− 2)x2 +(6 + 2t)x3 = s,

where x1,x2,x3 are the three unknown variables.

(a) For which values of s and t, if any, does the system (1) have a unique solution? Specify the solution
set if it exists.

(b) For which values of s and t, if any, does the system (1) not have any solution?
(c) For which values of s and t, if any, does the system (1) have infinitely many solutions? Specify the

solution set if it exists.

Solution: First we calculate an REF of the extended coefficient matrix 1 t 3 + t 2
−1 −2 −1 s− 5

1 2t+ 2 6 + 2t s

 ∼
 1 t 3 + t 2

0 t− 2 2 + t s− 3
0 t− 2 3 + t s− 2

 ∼
 1 t 3 + t 2

0 t− 2 2 + t s− 3
0 0 1 1

 .
We see that the important distinction is whether t = 2 or not. If t = 2, we get: 1 2 5 2

0 0 4 s− 3
0 0 1 1

 .
We can now easily tell the different situations apart:

(a) The system has a unique solution if t 6= 2. We find

x3 = 1, x2 =
s− t− 5

t− 2
, x1 = −1− t− ts− t− 5

t− 2
.

(b) The system has no solution if t = 2 and s 6= 7.

(c) The system has infinitely many solutions if t = 2 and s = 7. The RREF becomes: 1 2 5 2
0 0 1 1
0 0 0 0

 .
So the solution set is

x3 = 1, x2 = t, x3 = −3− 2t,

where t is an arbitrary real number.



Question 2: (20p) Let A be a 3× 3 matrix with rows {Ai}3i=1 so that A =

 A1

A2

A3

.

You know that det(A) = 3. For each matrix given below, specify the value of its determinant in the cases
where you have enough information to evaluate it. Please motivate each answer briefly.

(a) det

 A1

A2 + 2A1

5A3


(b) det (A + I) =

(c) det (A + A) =

(d) det
(
A−1

)
=

(e) det

 A1 · A1 A1 · A2 2A1 · A3

A2 · A1 A2 · A2 2A2 · A3

2A3 · A1 2A3 · A2 4A3 · A3

 =

Solution:

(a) det

 A1

A2 + 2A1

5A3

 (1)
= det

 A1

A2

5A3

 (2)
= 5det

 A1

A2

A3

 = 5 · 3 = 15.

Step (1) is a type 2 ERO. Step (2) is a type 3 ERO.

(b) There is simply not enough information to work this out. Consider

det

 3 0 0
0 −1 0
0 0 −1

+ I

 = det

 4 0 0
0 0 0
0 0 0

 = 0

and

det

 3 0 0
0 1 0
0 0 1

+ I

 = det

 4 0 0
0 1 0
0 0 1

 = 4.

(c) det (A + A) = det (2A) = 23det (A) = 8 · 3 = 24.

(d) det
(
A−1

)
= det (A)−1 = 3−1 = 1/3.

(e) Set B =

 A1

A2

2A3

. Then

det

 A1 · A1 A1 · A2 2A1 · A3

A2 · A1 A2 · A2 2A2 · A3

2A3 · A1 2A3 · A2 4A3 · A3

 = det
(
BBT

)
= det (B) det

(
BT
)

= det (B)2 = (2det (A))2 = (2 · 3)2 = 36.



Question 3: (18p) Let A =


0 −2 3 3
−2 0 3 3

3 3 0 −2
3 3 −2 0

 , let u =


1
1
1
1

 , and let v =


1
−1

0
0

 . Observe that

A is symmetric. You know that A has exactly three distinct eigenvalues, and that the vectors u and v are
eigenvectors of A. Specify all eigenvalues of A, and provide bases for the corresponding eigenspaces.

Solution: We first determine the eigenvalues and eigenspaces associated with u and v, since this is very
straight-forward.

Au =


4
4
4
4

 = 4u. We see that λ1 = 4. We then determine the corresponding eigenspace:

A− 4I =


−4 −2 3 3
−2 −4 3 3

3 3 −4 −2
3 3 −2 −4

 ∼ · · · ∼


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0


We see that E1 = span(u) since there is only one free variable.

Av =


2
−2

0
0

 = 2v. We see that λ2 = 2. We then determine the corresponding eigenspace:

A− 2I =


−2 −2 3 3
−2 −2 3 3

3 3 −2 −2
3 3 −2 −2

 ∼ · · · ∼


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


We now find that there is an additional linearly independent eigenvector, for instance w = [0, 0, 1,−1]T. So
E2 = span(v,w).

Now comes the slightly trickier question: How do we find the third eigenvalue and the fourth eigenvector?
Well, recall that since A is symmetric, we know that there is an orthogonal basis consisting of eigenvectors
for A. The elusive fourth eigenvector q must be orthogonal to the previous three ones, which means that 0

0
0

 =

 uTq
vTq
wTq

 =

 uT

vT

wT

q.

Now  uT

vT

wT

 =

 1 1 1 1
1 −1 0 0
0 0 1 −1

 ∼ · · · ∼
 1 0 0 1

0 1 0 1
0 0 1 −1

 .
A solution is given by q = [1, 1,−1, 1]T. It is easily verified that Aq = −8q so λ3 = −8 and E3 = span(q).



Question 4a:(10p) Let x = [1,−2, 2] be a vector, and let L = {[t, 2t, t] : t ∈ R} be a line in R3. Compute
the distance d between x and L, where d = inf{‖x− y‖ : y ∈ L}. Explain how you can use the notion of a
projection of a vector (the function proja(b) that we discussed in Lecture 3) to compute d.

Solution:

(a) L = span(u) where u = [1, 2, 1]. We compute the orthogonal projection y of x onto L:

y = proju(x) =
u · x
‖u‖2

u =
−1

6
[1, 2, 1].

We find that

d = ‖x− y‖ = ‖16 [7,−10, 13]‖ = 1
6‖[7,−10, 13]‖ = 1

6

√
49 + 100 + 169 =

√
318

6
= 2.97 · · ·

Question 4b:(10p) Let x = [2,−1,−1] be a vector, and let L = span
(
[1, 1, 1], [1, 2, 1]

)
be a plane through

the origin in R3. Determine an orthogonal basis for L, and specify the distance d between x and L, where
d = inf{‖x− y‖ : y ∈ L}.

Solution:

Set u = [1, 1, 1] and v = [1, 2, 1] so that L = span(u, v). Next, let us take one step of Gram-Schmidt to find
a new basis vector w so that {u,w} forms an orthogonal basis for L. We first determine the direction:

w′ = v − u · v
‖u‖2

u = [1, 2, 1]− 4

3
[1, 1, 1] =

1

3
[−1, 2,−1].

Rescaling to get easier numbers to work with (this is not a necessary step!), we set w = [−1, 2,−1]. We can
now easily compute the orthogonal projection y of x onto L:

y = projL(x) =
u · x
‖u‖2

u +
w · x
‖w‖2

w = 0 +
−3

6
[−1, 2,−1] = [1/2,−1, 1/2].

Finally

d = ‖x− y‖ = ‖[2,−1,−1]− [1/2,−1, 1/2]‖ = ‖[3/2, 0,−3/2‖ =
√

(3/2)2 + (−3/2)2 =
3√
2

= 2.12 · · ·



Question 5a: (7p) (7p) Let A and B be a 4×4 matrices. You know that there are two linearly independent
vectors u and v such that Au = Av. You also know that dim(range(AB)) = 3. Do you have enough
information to determine the rank of A? Specify the rank if the answer is yes.

Solution: Set w = u − v. We know that w 6= 0 since u and v are linearly independent. Since Aw =
Au− Av = 0, we know that dim(ker(A)) ≥ 1 and consequently.

rank(A) = 4− dim(ker(A)) ≤ 4− 1 = 3.

It is clear that range(AB) ⊆ range(A). Since dim(range(AB)) = 3, it follows that

rank(A) = dim(range(A)) ≥ 3.

Taken together, the two inequalities imply that dim(range(A)) = 3.

Question 5b: (7p) Let L be a linear map from P2 to P3, and let K be a linear map from P3 to P3.
Define the linear map M from P2 to P3 via M(p) = K(L(p)). You know that ker(L) = {0} and that
dim(range(K)) = 4. Is M one-to-one? Is M onto?

Solution: Since ker(L) = {0}, we know the L is one-to-one.

We also know the K is one-to-one since dim(ker(K)) = 4− dim(range(K)) = 4− 4 = 0.

Now suppose that M(p) = K(L(p)) = 0. Since K is one-to-one, we know that L(p) = 0. Since L is
one-to-one, we know that p = 0. It follows that M is one-to-one

M maps a vectors space of dimension 3 to a vector space of dimension 4. This means that it is impossible
for M to be onto.

Question 5c: (4p) Let V denote the linear space consisting of all functions f of the form

(2) f(x) = a0 +
5∑

j=1

(
aj cos(jx) + bj sin(jx)

)
,

where aj and bj are real numbers. Let t denote a real number, and consider the operator L defined by
g = Lf where g(x) = f(x − t). For which values of t is L a linear operator from V to V ? When is the
operator L one-to-one?

Solution: For any x, t, and j, we have

cos(j(x− t)) = cos(jx) cos(jt) + sin(jx) sin(jt)

sin(j(x− t)) = cos(jx) sin(jt)− sin(jx) cos(jt).

It follows that if f is any function of the form (2) and g = Lf , then

g(x) = f(x− t) = a0 +
5∑

j=1

(
a′j cos(jx) + b′j sin(jx)

)
,

where

a′j = aj cos(jt) + bj sin(jt)

b′j = aj sin(jt)− bj cos(jt).

So g ∈ V . It is straight-forward to verify that L(c1f1 + c2f2) = c1L(f1) + c2L(f2) so L is indeed linear.

L is a linear map from V to V for every t.

It remains to check if L is one-to-one. Suppose g = L(f) = 0. This means that g(x) = f(x − t) = 0 for

every x. But then we must have f(x) = 0 for every x too. So f = 0, and L is one-to-one for every t.



Question 6: (6p) Let A be a matrix of size m× k, and rank k. Set

B =
(
ATA

)−1
AT.

In answering this question, you may without proof use that: (i) The matrix ATA is invertible. (ii) The
matrix A can be written in the form A = UC where U is an m× k matrix that satisfies UTU = I and where
C is an invertible matrix. (Both of these facts follow from the statement that A has rank k.)

(a) Prove that BA = I.
(b) Prove that AB is the orthogonal projection (as defined in Section 6.2) onto the column space of A.

Solution: (a)

BA =
(
ATA

)−1
ATA =

(
ATA

)−1(
ATA

)
= I

(b) Using the relation A = UC we find that

AB = A
(
ATA

)−1
AT = UC

(
CTUTUC

)−1
CTUT.

Use that UTU = I and that C is invertible to find that

AB = UC
(
CTC

)−1
CTUT = UCC−1

(
CT
)−1

CTUT = UUT.

Let {ui}ki=1 denote the columns of U. The set {ui}ki=1 forms a spanning set for the column space of A since
if y = Ax, then y = Ux′ where x′ = Cx.

Next, observe that {ui}ki=1 is an orthonormal set since UTU = I.

So {ui}ki=1 is an ON-basis for the column space of A, and we find that for any x ∈ Rm we have

ABx = UUTx =
k∑

i=1

(
ui · x

)
ui.

We recognize precisely the formula for orthogonal projection onto a set with ON basis {ui}ki=1.


