Quiz for final exam

(!) This is a preview of the published version of the quiz

Started: May 15 at 1:10pm

Quiz Instructions

This exam is timed. You have 60 minutes from the time that you start. There are 12 questions total, so do not linger if you have difficulties with one question - you only have 5 minutes for each one.

Several of the questions ask you to identify which of a given number of statements are true or false. Be sure to write "T" or "F" in the given box (without the quotation marks). Do NOT write "t" or "f" or "true" or"false" or anything like that, just T or F.

Question 1

Let A and B be 5×5 matrices.
Mark which of the following statements are necessarily true (write either T or F in the box provided):
(a) If $\operatorname{rank}(A)=5$ and $\operatorname{rank}(B)=3$, then $\operatorname{rank}(A B)=3$.
(b) If $\operatorname{rank}(A)=3$ and $\operatorname{rank}(B)=3$, then $\operatorname{rank}(A B)=3$.
(c) If $\operatorname{rank}(A)=3$, then $\operatorname{dim}(\operatorname{ker}(A))=2$.

Consider the matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ t & 0 & 3\end{array}\right]$ where t is a real number.
You know that $\operatorname{det}(A)=3$.
Specify the value of t.

Question 3

1 pts

Let A be a 3×3 symmetric matrix. You know that A has three distinct eigenvalues, and that $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $v=\left[\begin{array}{r}3 \\ t \\ -1\end{array}\right]$ are both eigenvectors of A. Specify t.
\square

Let A be a 3×3 matrix. You know that A has precisely two eigenvalues, $\lambda_{1}=1$ and $\lambda_{2}=2$. Let p denote the characteristic polynomial of A, so that $p(\lambda)=\operatorname{det}(\lambda I-A)$ as usual. Which of the following three options could be the characteristic polynomial of A :
(a) $p(\lambda)=\lambda^{3}+\lambda$
(b) $p(\lambda)=\lambda^{3}-3 \lambda^{2}+3 \lambda-1$
(c) $p(\lambda)=\lambda^{3}-3 \lambda^{2}+2 \lambda$
(d) $p(\lambda)=\lambda^{3}-4 \lambda^{2}+5 \lambda-2$
(d)

O(a)
(b)

O(c)

Question 5

The matrix $\left[\begin{array}{rrrr}-4 & -2 & -3 & 0 \\ -3 & -1 & -3 & -2 \\ 4 & 2 & 1 & -4\end{array}\right]$ is row equivalent to the matrix $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2\end{array}\right]$.
Let $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ denote the solution to the linear system $\left[\begin{array}{rrr}-4 & -2 & -3 \\ -3 & -1 & -3 \\ 4 & 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}0 \\ -2 \\ -4\end{array}\right]$.

Specify the value of x_{2}.
\square

The matrices A and B are both of size 4×4. You know that $\operatorname{rank}(A)=3$ and that $\operatorname{det}(B)=1$.
Mark whether the following statements are necessarily true (write either T or F in the box provided):
(a) The equation $B x=y$ has a solution for every 4×1 vector y.
(b) The equation $A B x=0$ has infinitely many solutions.
(c) The equation $B x=A y$ has a solution for every 4×1 vector y.
(d) $\operatorname{dim}(\operatorname{ker}(A+B))=1$.

Question 7

The matrix $A=\left[\begin{array}{rrrrr}-1 & -2 & -3 & -5 & -1 \\ 1 & 0 & 1 & 1 & -1 \\ -1 & 0 & -1 & -1 & 2 \\ -2 & -1 & -3 & -4 & 1\end{array}\right]$ has the RREF $B=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Mark whether the following statements are necessarily true (write either T or F in the box provided):
(a) The first, second, and fifth columns of A form a basis for the column space of A.
(b) The first, second, and fifth columns of B form a basis for the column space of A.
(c) The first, second, and third rows of B form a basis for the row space of A.
(d) $\operatorname{rank}(A)=3$.

Question 8

Let $V=\mathcal{P}_{4}$ denote the vector space consisting of all polynomials of degree four or less.
Consider the subspace W consisting of all polynomials in V that are even. In other words, $W=\{p \in V: p(x)=p(-x)$ for every $x\}$.

Specify the dimension of W.
\square

Question 9

Let A be a 3×3 matrix that has the eigenvalues $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=3$.
Mark whether the following statements are necessarily true (write either T or F in the box provided):
(a) The matrix A^{2} has 9 as an eigenvalue.
(b) There exists a positive integer n such that $A^{n}=0$.
(c) A is necessarily invertible, and A^{-1} has $1 / 3$ as an eigenvalue.
(d) There is a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3} consisting entirely of eigenvectors of A.

Let A be a $3 x 3$ matrix, and let x, y, and b be vectors such that $A y=0$ and $A x=b$.
Mark whether the following statements are necessarily true (write either T or F in the box provided):
(a) The vector $u=x+y$ satisfies $A u=b$.
(b) The vector $v=x-2 y$ satisfies $A v=b$.
(c) The vector $w=2 x+y$ satisfies $A w=2 b$.

Question 11

Let $V=\operatorname{span}\{[1,-2,1],[-1,0,1]\}$ denote a plane through the origin in \mathbb{R}^{3}.
Let $x=[1,-1,3]$ denote a vector in \mathbb{R}^{3}.
You know that the orthogonal projection of x onto V is the vector $y=[0,-2,2]$.
Specify the square of the distance d between V and x, so that $d=\inf \{\|x-v\|: v \in V\}$.
NOTE: Be sure to specify d^{2}, and not d itself. (To avoid having to evaluate a square root, of course.)
\square

Question 12

1 pts

Consider the matrices $A=\left[\begin{array}{rrrr}2 & 1 & t & 0 \\ 3 & -1 & -2 & 7 \\ -1 & 2 & 2 & -6\end{array}\right]$ and $B=\left[\begin{array}{rrrr}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1\end{array}\right]$.
Specify the value of t for which B is the RREF of A.
Hint: You can determine through a one-line calculation.
\square

