Midterm exam for Numerical Analysis: Linear Algebra

9:00am - 10:45am, Oct. 29, 2019. Closed books.

Question 1: (35p) For this question, please write only the answer, no motivation.
(a) Let \mathbf{A} denote an $m \times m$ nonzero matrix for which $\mathbf{A}^{2}=\mathbf{A}$. Mark which statements are true: (Where "true" of course means that the statement is always true under the given assumptions.)

	TRUE	FALSE		
$\operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{I}-\mathbf{A})=m$.	TRUE			
If $\\|\mathbf{A}\\|=1$, then range $(\mathbf{A}) \perp$ null (\mathbf{A}).	TRUE			
If range $(\mathbf{A}) \perp \operatorname{null}(\mathbf{A})$, then $\\|\mathbf{A}\\|=1$.	TRUE			
If range $(\mathbf{A}) \perp$ null($\mathbf{A})$, then $\mathbf{A}^{*}=\mathbf{A}$.	TRUE			

(b) Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{m}$, let $\alpha \in \mathbb{R}$, and set $\mathbf{A}=\mathbf{I}+\alpha \mathbf{\mathbf { v } ^ { * }}$. For which values of α is \mathbf{A} is invertible?
\mathbf{A} is invertible whenever $\alpha \neq-1 / \mathbf{v}^{*} \mathbf{u}$.
(c) Let \mathbf{A} be defined as in problem (b). Provide a formula for \mathbf{A}^{-1} (assuming \mathbf{A} is invertible):
$\mathbf{A}^{-1}=\mathbf{I}-\frac{\alpha}{1+\alpha \mathbf{v}^{*} \mathbf{u}} \mathbf{u} \mathbf{v}^{*}$
(b) and (c) were HW problems. Observe that $\left(\mathbf{I}+\alpha \mathbf{u v}^{*}\right)\left(\mathbf{I}+\beta \mathbf{u} \mathbf{v}^{*}\right)=\mathbf{I}+\left(\alpha+\beta+\alpha \beta \mathbf{v}^{*} \mathbf{u}\right) \mathbf{u v}^{*}$
(d) Let \mathbf{A} be an $m \times m$ matrix with the SVD $\mathbf{A}=\mathbf{U D V}^{*}$. Set $\mathbf{B}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{A}^{*} \\ \mathbf{A} & \mathbf{0}\end{array}\right]$. Give a formula for an eigenvalue decomposition of \mathbf{B}, expressed in terms of the matrices $\mathbf{U}, \mathbf{D}, \mathbf{V}$.

$$
\mathbf{B}=\mathbf{W L W}^{*} \text { where } \mathbf{W}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mathbf{V} & -\mathbf{V} \\
\mathbf{U} & \mathbf{U}
\end{array}\right] \text { and } \mathbf{L}=\left[\begin{array}{cc}
\mathbf{D} & \mathbf{0} \\
\mathbf{0} & -\mathbf{D}
\end{array}\right] .
$$

(e) Let $\mathbf{u} \in \mathbb{R}^{4}$ be a non-zero vector and set $\mathbf{A}=\mathbf{I}-\frac{2}{\|\mathbf{u}\|^{2}} \mathbf{u} \mathbf{u}^{*}$. What are the eigenvalues and singular values of \mathbf{A} ?

The eigenvalues are $\{1,1,1,-1\}$. The singular values are $\{1,1,1,1\}$.
Observe that $\mathbf{A u}=-\mathbf{u}$ and that $\mathbf{A} \mathbf{x}=\mathbf{x}$ for every $\mathbf{x} \in\langle\mathbf{u}\rangle^{\perp}$.
(f) Let \mathbf{A} be an $m \times n$ matrix of rank n, where $m>n$. Provide one or two lines of matlab code that produce its pseudoinverse $\mathbf{B}=\mathbf{A}^{\dagger}$. Your answer may not involve the command pinv.

Option 1: $\mathrm{B}=\operatorname{inv}\left(\mathrm{A}^{\prime} * \mathrm{~A}\right) * \mathrm{~A}^{\prime}$;
Option 2: $[\mathrm{Q}, \mathrm{R}]=\operatorname{qr}(\mathrm{A}, 0) ; \mathrm{B}=\operatorname{inv}(\mathrm{R}) * \mathrm{Q}^{\prime}$;
Option 3: $[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}\left(\mathrm{A},{ }^{\prime} \mathrm{econ}{ }^{\prime}\right) ; \mathrm{B}=\mathrm{V} * \operatorname{inv}(\mathrm{D}) * \mathrm{U}$ ';
(g) Specify the following quantities, where the vectors \mathbf{x} range over \mathbb{C}^{m} :

$$
\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{\infty}}=\sqrt{m} \quad \inf _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{\infty}}=1 \quad \sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{2}}=\sqrt{m}
$$

As usual, $\|\cdot\|_{p}$ refers to the ℓ^{p} norm of a vector.

For questions 2-5, please motivate all your answers.
Question 2: (10p) Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
1 & 1 \\
1 & -2
\end{array}\right]
$$

Compute a singular value decomposition of \mathbf{A} (either the economy or the full SVD).

Solution: Observe that the columns of \mathbf{A} are already orthogonal, so if we just normalize them, we get the decomposition

$$
\mathbf{A}=\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -2 / \sqrt{6}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & \sqrt{6}
\end{array}\right]
$$

where the left factor is an orthonormal matrix. This is almost an SVD of \mathbf{A} (with the matrix of right singular vectors being I), we just need to reorder the singular values so that they decay in magnitude:

$$
\mathbf{A}=\underbrace{\left[\begin{array}{rr}
1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{3} \\
-2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right]}_{=\mathbf{U}} \underbrace{\left[\begin{array}{cc}
\sqrt{6} & 0 \\
0 & \sqrt{3}
\end{array}\right]}_{=\mathbf{D}} \underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{=\mathbf{v}^{*}}
$$

Question 3: (20p) Consider the function $f(x)=1-\cos (x)$ as a function of x from \mathbb{R} to \mathbb{R}.
(a) Compute the relative condition number $\kappa_{f}(x)$. Is f well-conditioned for every x ? If not, then specify where the potentially problematic locations are.
(b) Set $\beta=10^{-10}$ and estimate $f(\beta)$ to at least fifteen correct digits of accuracy using a Taylor expansion.
(c) What would be the output of the matlab command " $f=1-\cos (1 e-10)$ "? How many correct digits would you get? (Assume standard double precision accuracy, so that $\epsilon_{\text {mach }} \approx 10^{-16}$.)
(d) Give a matlab command that would accurately evaluate $f(x)$ for $x \in[-1,1]$. (There is no need to prove anything, just provide the command.)

Solution:

(a) Using a standard formula for the condition number of a differentiable function, we get

$$
\kappa_{f}(x)=\left|\frac{f^{\prime}(x)}{f(x) / x}\right|=\left|\frac{\sin (x) x}{1-\cos (x)}\right| .
$$

For x small, we use a Taylor expansion to see that

$$
\kappa_{f}(x)=\left|\frac{\left(x+O\left(x^{3}\right)\right) x}{(1 / 2) x^{2}+O\left(x^{4}\right)}\right|=2+O\left(x^{2}\right)
$$

so f is well-conditioned near $x=0$.
However, at points other than zero, the condition number goes to infinity whenever $1-\cos (x) \rightarrow 0$.
Answer: The condition number of f goes to infinity when $x \rightarrow 2 \pi n$ for any integer n except 0 .
(b) As $x \rightarrow 0$, we have

$$
f(x)=1-\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+O\left(x^{6}\right)\right)=\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+O\left(x^{6}\right) .
$$

Since $\left(\beta^{4} / 24\right) /\left(\beta^{2} / 2\right)=\beta^{2} / 12 \ll 10^{-15}$, we can ignore the x^{4} term, and find

$$
f(\beta) \approx \frac{1}{2} \beta^{2}=0.5 \times 10^{-20} .
$$

(c) Since $\cos (\beta) \approx 1-(1 / 2) \beta^{2}=1-(1 / 2) 10^{-20}$, we see that when $\cos (\beta)$ is evaluated in floating point arithmetic, the answer will be 1 . Consequently, $1-\cos (1 e-10)$ will evaluate to zero, which would represent an error of size $O(1)$ (relative to the exact value of $f(\beta)$). No accurate digits.
(To be absolutely strict, all we could say for sure is that $\cos (1 \mathrm{e}-10)$ evaluates to something within machine precision of 1 , not necessarily exactly one. But this does not change the answer; in fact this would result in a relative error far larger than $O(1)$.)
(d) To avoid the subtraction of two large numbers that are very close to each other, we could for instance use the trig identity

$$
1-\cos (x)=1-\cos (x / 2)^{2}+\sin (x / 2)^{2}=\sin (x / 2)^{2}+\sin (x / 2)^{2}=2 \sin (x / 2)^{2}
$$

which would lead to the answer: $f=2 *\left(\sin (1 e-10 / 2)^{\wedge} 2\right)$
Alternatively, you could use $1-\cos (x)=\frac{(1-\cos (x))(1+\cos (x))}{1+\cos (x)}=\frac{1-\cos (x)^{2}}{1+\cos (x)}=\frac{\sin (x)^{2}}{1+\cos (x)}$.

Question 4: (15p) Let \mathbf{A} be an $m \times m$ matrix of rank k, where $k<m$. Prove that

$$
\|\mathbf{A}\|_{\text {Fro }} \leq \sqrt{k}\|\mathbf{A}\|,
$$

where $\|\cdot\|$ denotes the spectral norm, and $\|\cdot\|_{\text {Fro }}$ denotes the Frobenius norm.

Solution: Let $\left\{\sigma_{j}\right\}_{j=1}^{\min (m, n)}$ denote the singular values of \mathbf{A}. Recall that

$$
\|\mathbf{A}\|=\sigma_{1} \quad \text { and } \quad\|\mathbf{A}\|_{\text {Fro }}=\left(\sum_{j=1}^{\min (m, n)} \sigma_{j}^{2}\right)^{1 / 2}
$$

When the rank of \mathbf{A} is $k, \sigma_{j}=0$ whenever $j>k$, so

$$
\|\mathbf{A}\|_{\text {Fro }}=\left(\sum_{j=1}^{k} \sigma_{j}^{2}\right)^{1 / 2} \leq\left\{\text { Use } \sigma_{j} \leq \sigma_{1} \text { for all } j .\right\} \leq\left(\sum_{j=1}^{k} \sigma_{1}^{2}\right)^{1 / 2}=\left(k \sigma_{1}^{2}\right)^{1 / 2}=\sqrt{k} \sigma_{1}=\sqrt{k}\|\mathbf{A}\|
$$

which completes the proof.

Question 5: (20p) Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Perform by hand one step of the Householder QR factorization procedure on A. In other words, build a unitary matrix \mathbf{Q} such that the matrix $\mathbf{B}=\mathbf{Q}^{*} \mathbf{A}$ takes the form

$$
\mathbf{B}=\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right] .
$$

Your answer should specify both \mathbf{Q} and \mathbf{B}.

Solution: Let $\mathbf{a}=[1,1,1,1]^{\mathrm{t}}$ denote the first column of A. Then the first Householder vector is

$$
\mathbf{v}=\|\mathbf{a}\| \mathbf{e}_{1}-\mathbf{a}=2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

This leads to the Householder reflector

$$
\mathbf{Q}=\mathbf{I}-\frac{2}{\|\mathbf{v}\|^{2}} \mathbf{v} \mathbf{v}^{*}=\mathbf{I}-\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & -1 & -1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] .
$$

Finally,

$$
\mathbf{B}=\mathbf{Q}^{*} \mathbf{A}=\left[\begin{array}{rrr}
2 & 0 & 2 \\
0 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Note: If you use the other choice of \mathbf{v}, you get

$$
\mathbf{v}=-\|\mathbf{a}\| \mathbf{e}_{1}-\mathbf{a}=-2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-1 \\
-1 \\
-1
\end{array}\right] .
$$

This leads to the Householder reflector

$$
\left.\mathbf{Q}=\mathbf{I}-\frac{2}{\|\mathbf{v}\|^{2}} \mathbf{v \mathbf { v } ^ { * }}=\mathbf{I}-\frac{1}{6}\left[\begin{array}{c}
-3 \\
-1 \\
-1 \\
-1
\end{array}\right]\left[\begin{array}{lll}
-3 & -1 & -1
\end{array}\right] 1\right]=\frac{1}{6}\left[\begin{array}{cccc}
-3 & -3 & -3 & -3 \\
-3 & 5 & -1 & -1 \\
-3 & -1 & 5 & -1 \\
-3 & -1 & -1 & 5
\end{array}\right]
$$

Finally,

$$
\mathbf{B}=\mathbf{Q}^{*} \mathbf{A}=\left[\begin{array}{rrr}
-2 & 0 & -2 \\
0 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

