Midterm exam for Numerical Analysis: Linear Algebra

9:00am – 10:45am, Oct. 29, 2019. Closed books.

Question 1: (35p) For this question, please write only the answer, no motivation.

(a) Let **A** denote an $m \times m$ nonzero matrix for which $\mathbf{A}^2 = \mathbf{A}$. Mark which statements are true: (Where "true" of course means that the statement is *always true* under the given assumptions.)

	TRUE	FALSE
$\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{I} - \mathbf{A}) = m.$	TRUE	
If $\ \mathbf{A}\ = 1$, then range $(\mathbf{A}) \perp \text{null}(\mathbf{A})$.	TRUE	
If range(\mathbf{A}) \perp null(\mathbf{A}), then $\ \mathbf{A}\ = 1$.	TRUE	
If range(\mathbf{A}) \perp null(\mathbf{A}), then $\mathbf{A}^* = \mathbf{A}$.	TRUE	

- (b) Let u, v ∈ ℝ^m, let α ∈ ℝ, and set A = I + αuv*. For which values of α is A is invertible?
 A is invertible whenever α ≠ -1/v*u.
- (c) Let **A** be defined as in problem (b). Provide a formula for \mathbf{A}^{-1} (assuming **A** is invertible):

$$\mathbf{A}^{-1} = \mathbf{I} - \frac{\alpha}{1 + \alpha \mathbf{v}^* \mathbf{u}} \mathbf{u} \mathbf{v}^*$$

(b) and (c) were HW problems. Observe that $(\mathbf{I} + \alpha \mathbf{uv}^*)(\mathbf{I} + \beta \mathbf{uv}^*) = \mathbf{I} + (\alpha + \beta + \alpha \beta \mathbf{v}^* \mathbf{u})\mathbf{uv}^*$

(d) Let **A** be an $m \times m$ matrix with the SVD $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^*$. Set $\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{A}^* \\ \mathbf{A} & \mathbf{0} \end{bmatrix}$. Give a formula for an eigenvalue decomposition of **B**, expressed in terms of the matrices **U**, **D**, **V**.

$$\mathbf{B} = \mathbf{W}\mathbf{L}\mathbf{W}^* \text{ where } \mathbf{W} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{V} & -\mathbf{V} \\ \mathbf{U} & \mathbf{U} \end{bmatrix} \text{ and } \mathbf{L} = \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & -\mathbf{D} \end{bmatrix}.$$

(e) Let $\mathbf{u} \in \mathbb{R}^4$ be a non-zero vector and set $\mathbf{A} = \mathbf{I} - \frac{2}{\|\mathbf{u}\|^2} \mathbf{u} \mathbf{u}^*$. What are the eigenvalues and singular values of \mathbf{A} ?

The eigenvalues are $\{1, 1, 1, -1\}$. The singular values are $\{1, 1, 1, 1\}$.

Observe that Au = -u and that Ax = x for every $x \in \langle u \rangle^{\perp}$.

(f) Let **A** be an $m \times n$ matrix of rank n, where m > n. Provide one or two lines of matlab code that produce its *pseudoinverse* $\mathbf{B} = \mathbf{A}^{\dagger}$. Your answer may not involve the command **pinv**.

Option 1: B = inv(A'*A)*A'; Option 2: [Q,R] = qr(A,0); B = inv(R)*Q'; Option 3: [U,D,V] = svd(A,'econ'); B = V*inv(D)*U';

(g) Specify the following quantities, where the vectors **x** range over \mathbb{C}^m :

As usual, $\|\cdot\|_p$ refers to the ℓ^p norm of a vector.

For questions 2-5, please motivate all your answers.

Question 2: (10p) Consider the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 1 \\ 1 & -2 \end{array} \right]$$

Compute a singular value decomposition of **A** (either the economy or the full SVD).

Solution: Observe that the columns of A are already orthogonal, so if we just normalize them, we get the decomposition

$$\mathbf{A} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{3} & -2/\sqrt{6} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{6} \end{bmatrix}$$

where the left factor is an orthonormal matrix. This is *almost* an SVD of A (with the matrix of right singular vectors being I), we just need to reorder the singular values so that they decay in magnitude:

$$\mathbf{A} = \underbrace{\begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{3} \\ -2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}}_{=\mathbf{U}} \underbrace{\begin{bmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{3} \end{bmatrix}}_{=\mathbf{D}} \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{=\mathbf{V}^*}$$

Question 3: (20p) Consider the function $f(x) = 1 - \cos(x)$ as a function of x from \mathbb{R} to \mathbb{R} .

- (a) Compute the relative condition number $\kappa_f(x)$. Is f well-conditioned for every x? If not, then specify where the potentially problematic locations are.
- (b) Set $\beta = 10^{-10}$ and estimate $f(\beta)$ to at least fifteen correct digits of accuracy using a Taylor expansion.
- (c) What would be the output of the matlab command "f = 1 $\cos(1e-10)$ "? How many correct digits would you get? (Assume standard double precision accuracy, so that $\epsilon_{mach} \approx 10^{-16}$.)
- (d) Give a matlab command that would accurately evaluate f(x) for $x \in [-1, 1]$. (There is no need to prove anything, just provide the command.)

Solution:

(a) Using a standard formula for the condition number of a differentiable function, we get

$$\kappa_f(x) = \left| \frac{f'(x)}{f(x)/x} \right| = \left| \frac{\sin(x) x}{1 - \cos(x)} \right|.$$

For x small, we use a Taylor expansion to see that

$$\kappa_f(x) = \left| \frac{(x + O(x^3)) x}{(1/2)x^2 + O(x^4)} \right| = 2 + O(x^2)$$

so f is well-conditioned near x = 0.

However, at points other than zero, the condition number goes to infinity whenever $1 - \cos(x) \to 0$. Answer: The condition number of f goes to infinity when $x \to 2\pi n$ for any integer n except 0.

(b) As $x \to 0$, we have

$$f(x) = 1 - \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)\right) = \frac{1}{2}x^2 - \frac{1}{24}x^4 + O(x^6).$$

Since $(\beta^4/24)/(\beta^2/2) = \beta^2/12 \ll 10^{-15}$, we can ignore the x^4 term, and find

$$f(\beta) \approx \frac{1}{2}\beta^2 = 0.5 \times 10^{-20}$$

(c) Since $\cos(\beta) \approx 1 - (1/2)\beta^2 = 1 - (1/2)10^{-20}$, we see that when $\cos(\beta)$ is evaluated in floating point arithmetic, the answer will be 1. Consequently, 1-cos(1e-10) will evaluate to zero, which would represent an error of size O(1) (relative to the exact value of $f(\beta)$). No accurate digits.

(To be absolutely strict, all we could say for sure is that cos(1e-10) evaluates to something within machine precision of 1, not necessarily exactly one. But this does not change the answer; in fact this would result in a relative error far larger than O(1).)

(d) To avoid the subtraction of two large numbers that are very close to each other, we could for instance use the trig identity

$$1 - \cos(x) = 1 - \cos(x/2)^2 + \sin(x/2)^2 = \sin(x/2)^2 + \sin(x/2)^2 = 2\sin(x/2)^2,$$

which would lead to the answer: **f** = 2*(sin(1e-10/2)^ 2)

Alternatively, you could use
$$1 - \cos(x) = \frac{(1 - \cos(x))(1 + \cos(x))}{1 + \cos(x)} = \frac{1 - \cos(x)^2}{1 + \cos(x)} = \frac{\sin(x)^2}{1 + \cos(x)}.$$

Question 4: (15p) Let **A** be an $m \times m$ matrix of rank k, where k < m. Prove that

$$\|\mathbf{A}\|_{\mathrm{Fro}} \leq \sqrt{k} \|\mathbf{A}\|_{\mathrm{Fro}}$$

where $\|\cdot\|$ denotes the spectral norm, and $\|\cdot\|_{\text{Fro}}$ denotes the Frobenius norm.

Solution: Let $\{\sigma_j\}_{j=1}^{\min(m,n)}$ denote the singular values of **A**. Recall that

$$\|\mathbf{A}\| = \sigma_1$$
 and $\|\mathbf{A}\|_{\operatorname{Fro}} = \left(\sum_{j=1}^{\min(m,n)} \sigma_j^2\right)^{1/2}$.

When the rank of **A** is $k, \sigma_j = 0$ whenever j > k, so

$$\|\mathbf{A}\|_{\text{Fro}} = \left(\sum_{j=1}^{k} \sigma_{j}^{2}\right)^{1/2} \le \{\text{Use } \sigma_{j} \le \sigma_{1} \text{ for all } j.\} \le \left(\sum_{j=1}^{k} \sigma_{1}^{2}\right)^{1/2} = \left(k\sigma_{1}^{2}\right)^{1/2} = \sqrt{k}\sigma_{1} = \sqrt{k}\|\mathbf{A}\|,$$

which completes the proof.

Question 5: (20p) Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

Perform by hand *one step* of the Householder QR factorization procedure on A. In other words, build a unitary matrix Q such that the matrix $B = Q^*A$ takes the form

$$\mathbf{B} = \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}.$$

Your answer should specify both \mathbf{Q} and \mathbf{B} .

Solution: Let $\mathbf{a} = [1, 1, 1, 1]^{t}$ denote the first column of **A**. Then the first Householder vector is

$$\mathbf{v} = \|\mathbf{a}\|\mathbf{e}_1 - \mathbf{a} = 2 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} - \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\-1\\-1 \end{bmatrix}.$$

This leads to the Householder reflector

Finally,

$$\mathbf{B} = \mathbf{Q}^* \mathbf{A} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Note: If you use the other choice of \mathbf{v} , you get

$$\mathbf{v} = -\|\mathbf{a}\|\mathbf{e}_1 - \mathbf{a} = -2\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} - \begin{bmatrix} 1\\1\\1\\1\end{bmatrix} = \begin{bmatrix} -3\\-1\\-1\\-1\\-1\end{bmatrix}.$$

This leads to the Householder reflector

$$\mathbf{Q} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^* = \mathbf{I} - \frac{1}{6} \begin{bmatrix} -3\\ -1\\ -1\\ -1\\ -1 \end{bmatrix} \begin{bmatrix} -3 & -1 & -1 & -1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -3 & -3 & -3 & -3\\ -3 & 5 & -1 & -1\\ -3 & -1 & 5 & -1\\ -3 & -1 & -1 & 5 \end{bmatrix}.$$

Finally,

$$\mathbf{B} = \mathbf{Q}^* \mathbf{A} = \begin{bmatrix} -2 & 0 & -2 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$