Midterm exam for Numerical Analysis: Linear Algebra

9:00am - 10:45am, Oct. 29, 2019. Closed books.
Question 1: (35p) For this question, please write only the answer, no motivation.
(a) Let \mathbf{A} denote an $m \times m$ nonzero matrix for which $\mathbf{A}^{2}=\mathbf{A}$. Mark which statements are true: (Where "true" of course means that the statement is always true under the given assumptions.)

	TRUE	FALSE		
$\operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{I}-\mathbf{A})=m$.				
If $\\|\mathbf{A}\\|=1$, then range $(\mathbf{A}) \perp \operatorname{null}(\mathbf{A})$.				
If range $(\mathbf{A}) \perp \operatorname{null}(\mathbf{A})$, then $\\|\mathbf{A}\\|=1$.				
If range $(\mathbf{A}) \perp \operatorname{null}(\mathbf{A})$, then $\mathbf{A}^{*}=\mathbf{A}$.				

(b) Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{m}$, let $\alpha \in \mathbb{R}$, and set $\mathbf{A}=\mathbf{I}+\alpha \mathbf{u} \mathbf{v}^{*}$. For which values of α is \mathbf{A} is invertible?
(c) Let \mathbf{A} be defined as in problem (b). Provide a formula for \mathbf{A}^{-1} (assuming \mathbf{A} is invertible):
(d) Let \mathbf{A} be an $m \times m$ matrix with the SVD $\mathbf{A}=\mathbf{U D V}^{*}$. Set $\mathbf{B}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{A}^{*} \\ \mathbf{A} & \mathbf{0}\end{array}\right]$. Give a formula for an eigenvalue decomposition of \mathbf{B}, expressed in terms of the matrices $\mathbf{U}, \mathbf{D}, \mathbf{V}$.
(e) Let $\mathbf{u} \in \mathbb{R}^{4}$ be a non-zero vector and set $\mathbf{A}=\mathbf{I}-\frac{2}{\|\mathbf{u}\|^{2}} \mathbf{u} \mathbf{u}^{*}$. What are the eigenvalues and singular values of \mathbf{A} ?
(f) Let \mathbf{A} be an $m \times n$ matrix of rank n, where $m>n$. Provide one or two lines of matlab code that produce its pseudoinverse $\mathbf{B}=\mathbf{A}^{\dagger}$. Your answer may not involve the command pinv.
(g) Specify the following quantities, where the vectors \mathbf{x} range over \mathbb{C}^{m} :

$$
\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{\infty}}=\quad \inf _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{\infty}}=\quad \sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{2}}=
$$

As usual, $\|\cdot\|_{p}$ refers to the ℓ^{p} norm of a vector.

For questions 2-5, please motivate all your answers.
Question 2: (10p) Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
1 & 1 \\
1 & -2
\end{array}\right]
$$

Compute a singular value decomposition of \mathbf{A} (either the economy or the full SVD).

Question 3: (20p) Consider the function $f(x)=1-\cos (x)$ as a function of x from \mathbb{R} to \mathbb{R}.
(a) Compute the relative condition number $\kappa_{f}(x)$. Is f well-conditioned for every x ? If not, then specify where the potentially problematic locations are.
(b) Set $\beta=10^{-10}$ and estimate $f(\beta)$ to at least fifteen correct digits of accuracy using a Taylor expansion.
(c) What would be the output of the matlab command " $\mathrm{f}=1-\cos (1 \mathrm{e}-10)$ "? How many correct digits would you get? (Assume standard double precision accuracy, so that $\epsilon_{\text {mach }} \approx 10^{-16}$.)
(d) Give a matlab command that would accurately evaluate $f(x)$ for $x \in[-1,1]$. (There is no need to prove anything, just provide the command.)

Question 4: (15p) Let A be an $m \times m$ matrix of rank k, where $k<m$. Prove that $\|\mathbf{A}\|_{\text {Fro }} \leq \sqrt{k}\|\mathbf{A}\|$,
where $\|\cdot\|$ denotes the spectral norm, and $\|\cdot\|_{\text {Fro }}$ denotes the Frobenius norm.

Question 5: (20p) Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Perform by hand one step of the Householder QR factorization procedure on A. In other words, build a unitary matrix \mathbf{Q} such that the matrix $\mathbf{B}=\mathbf{Q}^{*} \mathbf{A}$ takes the form

$$
\mathbf{B}=\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right] .
$$

Your answer should specify both \mathbf{Q} and \mathbf{B}.
Hint: Recall that there are two possible Householder reflectors to choose from. In this problem, feel free to choose either one (no need to worry about round off errors).

