Midterm exam for Numerical Analysis: Linear Algebra

9:00am – 10:45am, Oct. 29, 2019. Closed books.

Question 1: (35p) For this question, please write only the answer, no motivation.

(a) Let **A** denote an $m \times m$ nonzero matrix for which $\mathbf{A}^2 = \mathbf{A}$. Mark which statements are true: (Where "true" of course means that the statement is *always true* under the given assumptions.)

	TRUE	FALSE
$\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{I} - \mathbf{A}) = m.$		
If $\ \mathbf{A}\ = 1$, then range $(\mathbf{A}) \perp \text{null}(\mathbf{A})$.		
If range(\mathbf{A}) \perp null(\mathbf{A}), then $\ \mathbf{A}\ = 1$.		
If range(\mathbf{A}) \perp null(\mathbf{A}), then $\mathbf{A}^* = \mathbf{A}$.		

(b) Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$, let $\alpha \in \mathbb{R}$, and set $\mathbf{A} = \mathbf{I} + \alpha \mathbf{u} \mathbf{v}^*$. For which values of α is \mathbf{A} is invertible?

- (c) Let **A** be defined as in problem (b). Provide a formula for \mathbf{A}^{-1} (assuming **A** is invertible):
- (d) Let **A** be an $m \times m$ matrix with the SVD $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^*$. Set $\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{A}^* \\ \mathbf{A} & \mathbf{0} \end{bmatrix}$. Give a formula for an eigenvalue decomposition of **B**, expressed in terms of the matrices **U**, **D**, **V**.
- (e) Let $\mathbf{u} \in \mathbb{R}^4$ be a non-zero vector and set $\mathbf{A} = \mathbf{I} \frac{2}{\|\mathbf{u}\|^2} \mathbf{u} \mathbf{u}^*$. What are the eigenvalues and singular values of \mathbf{A} ?
- (f) Let **A** be an $m \times n$ matrix of rank n, where m > n. Provide one or two lines of matlab code that produce its *pseudoinverse* $\mathbf{B} = \mathbf{A}^{\dagger}$. Your answer may not involve the command **pinv**.
- (g) Specify the following quantities, where the vectors **x** range over \mathbb{C}^m :

$$\sup_{\mathbf{x}\neq\mathbf{0}}\frac{\|\mathbf{x}\|_2}{\|\mathbf{x}\|_\infty} = \inf_{\mathbf{x}\neq\mathbf{0}}\frac{\|\mathbf{x}\|_2}{\|\mathbf{x}\|_\infty} = \sup_{\mathbf{x}\neq\mathbf{0}}\frac{\|\mathbf{x}\|_1}{\|\mathbf{x}\|_2} =$$

As usual, $\|\cdot\|_p$ refers to the ℓ^p norm of a vector.

For questions 2 – 5, please motivate all your answers.

Question 2: (10p) Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1\\ 1 & 1\\ 1 & -2 \end{bmatrix}.$$

Compute a singular value decomposition of **A** (either the economy or the full SVD).

Question 3: (20p) Consider the function $f(x) = 1 - \cos(x)$ as a function of x from \mathbb{R} to \mathbb{R} .

- (a) Compute the relative condition number $\kappa_f(x)$. Is f well-conditioned for every x? If not, then specify where the potentially problematic locations are.
- (b) Set $\beta = 10^{-10}$ and estimate $f(\beta)$ to at least fifteen correct digits of accuracy using a Taylor expansion.
- (c) What would be the output of the matlab command " $f = 1 \cos(1e-10)$ "? How many correct digits would you get? (Assume standard double precision accuracy, so that $\epsilon_{mach} \approx 10^{-16}$.)
- (d) Give a matlab command that would accurately evaluate f(x) for $x \in [-1, 1]$. (There is no need to prove anything, just provide the command.)

Question 4: (15p) Let **A** be an $m \times m$ matrix of rank k, where k < m. Prove that

 $\|\mathbf{A}\|_{\mathrm{Fro}} \leq \sqrt{k} \|\mathbf{A}\|,$

where $\|\cdot\|$ denotes the spectral norm, and $\|\cdot\|_{\text{Fro}}$ denotes the Frobenius norm.

Question 5: (20p) Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Perform by hand *one step* of the Householder QR factorization procedure on A. In other words, build a unitary matrix Q such that the matrix $B = Q^*A$ takes the form

$$\mathbf{B} = \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}.$$

Your answer should specify both \mathbf{Q} and \mathbf{B} .

Hint: Recall that there are two possible Householder reflectors to choose from. In this problem, feel free to choose either one (no need to worry about round off errors).