SVD VERY IMPORTANT! * Every metrix hes on SVD. * Can be used to solve linear systems, least squares problems, low vare approximation,... × ON-bases for fundamental subspaces. * Economy size versus full. × Geometry - hyper ellipses MXM * EVD VS SVD: A=UEV* => AA*=UEZU* $A^*A = V \mathcal{E}^2 V^*$ * EVD is better for powers of A A=VAV'' => p(A)=Vp(A)V'' * Spectrel norm = 5, Frob norm = $(\xi \sigma_i^2)^{1/2}$ * Eckalt-Young thm.

$$\frac{PROJECTIONS}{X \ P^{2}=P}$$

$$\times M = ren(P) \ N = null(P) \ V = M \oplus N.$$

$$\times Othog. proj^{n} : P^{e}=P, ren(P) = ker(P)^{\perp}, ||P||=)$$

$$Q \times = (I - P) \times P \times I \oplus I = IP \times II^{2} + I| \oplus \times II^{2}$$

$$||X - P \times I| = inF I| X - y ||$$

$$H \times let A = ke = metrix. M = col(A). from SVD$$

$$P = othog proj^{n} cub M = A(A^{*}A)^{i}A^{*} = OO = UU^{*}$$

$$\frac{P}{From}$$

$$Q \times P = 0$$

GR FACTORIZATION A=QR * Exists for every metrix * Methods for compating: - GRAM - SCHMIDT (classical) - MUDIFIED G-S - HOUSEHOLDER * How to use it: - Solving liveer systems - Least square problems. - Finding projectors - Basis for range.

STABILITY & CONDITIONING

* Flocting point arithmetic * Round off errors. Def of Emch * Condition number * Forwards & Backwards stability * Concept of "significant digits" * Summation: Order by magnitude. * Conditioning of least squares problems

(6)

LU FACTORIZATION & GAUSSIAN ELIM (7)

EIGENVALUE PROBLEMS

ALGORITHMS FOR EVALS AND EVECS * Must be iteritive if m 35 * Power iteration. Shifted inverse iteration. -> speed of convergence * Reyleigh quotient -> Cabic convergence when 4=A*! * Block power itertion. * Tridicgord form (when A=A*) Hessenberg form × QR algorithm

KRYLON METHODS × Def of Kylov space $K_{n} = spon(b, Ab, A^{2}b, ..., A^{n}b)$ ★ Uses only matrix-vector multiply ←
 Good for large sparse matrices
 ★ Arnoldi: Build A=QHQ*
 Ax=X
 One column at a time AQn = Qn+1 Hn × GMRES Ax=6 * Lanczos Axilx symmetric matrices 3-term recurrence * Conjugate gradients - for SPD matrices

Final exam:

• Saturday Dec 14, 19:00 - 22:00. Room: BUR 136.

• Cumulative exam. All material covered in the class is included.

• Material covered after the midterm will be emphasized *slightly* heavier.

• The first question will involve several short questions based on the homeworks. Use your time wisely.