Homework set 5 - CSE 383C / CS 383C / M 383E / ME 397, Fall 2019

Hand in solutions to: 17.1, 18.1, 19.1, from the book.

Problem 1: Suppose that you are working on a computer that satisfies axiom (13.7) from the book for real valued x and y, so that for any $x, y \in \mathbf{F}$, we have

$$
x \otimes y=(x * y)(1+\epsilon)
$$

for some ϵ such that $|\epsilon| \leqslant \epsilon_{\text {mach }}$. Suppose now that you use the real valued floating point arithmetic to define complex floating point arithmetic. For instance for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{F}$, you define complex numbers $x=x_{1}+i x_{2}$ and $y=y_{1}+i y_{2}$, and then complex multiplication via

$$
m(x, y)=\left(\left(x_{1} \otimes y_{1}\right) \ominus\left(x_{2} \otimes y_{2}\right)\right) \oplus i\left(\left(x_{1} \otimes y_{2}\right) \oplus\left(x_{2} \otimes y_{1}\right)\right) .
$$

Prove that

$$
m(x, y)=x y(1+\delta)
$$

for some δ such that

$$
|\delta| \leqslant C \epsilon_{\mathrm{mach}}+O\left(\epsilon_{\text {mach }}^{2}\right) .
$$

You do not need to get the optimal value of C. (But there is of course also no need to be wasteful!)

Problem 2 (optional - do not hand in): Consider the same setup as in Problem 1, but now for the complex division:

$$
d(x, y)=\left(\left(\left(x_{1} \otimes y_{1}\right) \oplus\left(x_{2} \otimes y_{2}\right)\right) \oplus i\left(\left(x_{2} \otimes y_{1}\right) \ominus\left(x_{1} \otimes y_{2}\right)\right)\right) \odot\left(\left(y_{1} \otimes y_{1}\right) \oplus\left(y_{2} \otimes y_{2}\right)\right)
$$

What can you say about the stability of d ?

Problem 3: Consider the evaluation of the complex multiplication

$$
\begin{equation*}
z=(a+i b)(c+i d)=(a c-b d)+i(a d+b c) . \tag{1}
\end{equation*}
$$

Observe that formula (1) is mathematically equivalent to

$$
\begin{equation*}
z=(a c-b d)+i[(a+b)(c+d)-a c-b d] . \tag{2}
\end{equation*}
$$

The point here is that (1) involves 4 multiplications, while (2) involves 3 multiplications. This is a minor saving for scalars, but does make a difference for matrices. Suppose that $a, b, c, d \in \mathbb{R}^{m \times m}$, and work out home many floating point additions and multiplications (count them separately) are required to evaluate the product $z=(a+i b)(c+i d)$ using formulas (1) and (2), respectively.

Problem 4 (optional - do not hand in): Is there a difference in numerical stability between (1) and (2)? It may be helpful to consider what happens if $a=c=\theta$ and $d=b=1 / \theta$ for a real number θ that is very large.

