Homework set 1 - CSE 383C / CS 383C / M 383E / ME 397, Fall 2019
 P.G. Martinsson, UT-Austin, Sep. 2019

From the book: 1.4, 2.2, 2.3, 2.6, 3.1, 3.3, 3.5.
If you found the topics in the initial lectures challenging, then I recommend that you do all the homeworks for chapters 1, 2, and 3. Understanding this material well will help tremendously in what follows.

Problem 1: Consider the vector space $X=\mathbb{C}^{m}$ with the ℓ^{∞}-norm $\|\mathbf{x}\|=\max \left|x_{i}\right|$. What is the corresponding induced norm of a matrix? Hint: We solved this problem in class for the ℓ^{1} norm. The argument for the ℓ^{∞} norm is very similar.

Problem 2: Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]
$$

Compute an estimate to the norm on \mathbf{A} induced by the norm ℓ^{p} for $p=1.3$. Explain your methodology.

Problem 3-5 are optional and you are not asked to hand in solutions. They consist of the proof that $\|\cdot\|_{p}$ is a norm for $p \in[1, \infty]$.

Problem 3: Let λ be a real number such that $\lambda \in(0,1)$, and let a and b be two non-negative real numbers. Prove that

$$
\begin{equation*}
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b \tag{1}
\end{equation*}
$$

with equality iff $a=b$. Hint: Consider $b=0$ first. When $b \neq 0$, change variables to $t=a / b$.

Problem 4: [Hölder's inequality] Suppose that p is a real number such that $1<p<\infty$, and let q be such that $p^{-1}+q^{-1}=1$. Let $\mathbf{f}, \mathbf{g} \in \mathbb{C}^{m}$ and prove that

$$
\begin{equation*}
|\mathbf{f} \cdot \mathbf{g}| \leq\|\mathbf{f}\|_{p}\|\mathbf{g}\|_{q} . \tag{2}
\end{equation*}
$$

Prove that equality holds iff $\alpha|\mathbf{f}(i)|^{p}=\beta|\mathbf{g}(i)|^{q}$ for some α, β such that $\alpha \beta \neq 1$.
Hint: Consider first the case where $\|\mathbf{f}\|_{p}=0$ or $\|\mathbf{g}\|_{q}=0$. For the case $\|\mathbf{f}\|_{p}\|\mathbf{g}\|_{q} \neq 0$, use (1) with

$$
a=\left|\frac{\mathbf{f}(i)}{\|\mathbf{f}\|_{p}}\right|^{p}, \quad b=\left|\frac{\mathbf{g}(i)}{\|\mathbf{g}\|_{q}}\right|^{q}, \quad \lambda=\frac{1}{p} .
$$

Problem 3: [Minkowski's inequality] Prove that for $p \in[1, \infty]$, and for $\mathbf{f}, \mathbf{g} \in \mathbb{C}^{m}$, we have

$$
\|\mathbf{f}+\mathbf{g}\|_{p} \leq\|\mathbf{f}\|_{p}+\|\mathbf{g}\|_{p} .
$$

Hint: Consider the cases $p=1, \infty$ separately. For $p \in(1, \infty)$, note that

$$
\begin{equation*}
|\mathbf{f}(i)+\mathbf{g}(i)|^{p} \leq(|\mathbf{f}(i)|+|\mathbf{g}(i)|)|\mathbf{f}(i)+\mathbf{g}(i)|^{p-1} \tag{3}
\end{equation*}
$$

Then sum both sides of (3) and apply (2) to the right hand side.

