
Final exam for Numerical Analysis: Linear Algebra
December 14, 2019. Closed books.

Hand in solutions on separate sheets. Motivate all answers (except Question 1). Write your name!

Question 1: (25p) For this question, please provide only the answer, no motivation.

(a) Consider the matrix A =

[
A11 A12

A21 A22

]
, where A11 is a square and non-singular. Then A

admits the factorization A =

[
I 0
X I

] [
A11 A12

0 Y

]
. Specify the matrices X and Y.

X = A21A−111 Y = A22 − A21A−111 A12

(b) Let A be a real square matrix for which ‖Ax‖ = ‖x‖ for every vector x. What can you say
about the singular values of A? What about the eigenvalues?

Every singular value is 1. Every eigenvalue has modulus 1.

(c) Let A be a 5 × 5 square matrix with the characteristic polynomial p(x) = det(xI − A).
Suppose that A3 = 0. What does this tell you about p?

p(x) = x5.

(Observe that if Av = λv, then A3v = λ3v. Since A3 = 0, the only possible eigenvalue is 0.)

(d) Let A ∈ C5×5 and b ∈ C5×1. Suppose that the Krylov spaces Kp = span(b,Ab, . . . ,Ap−1b)
have dimension precisely p for p = 1, 2, . . . , 5. Let {qj}5j=1 be a sequence of vectors such

that {qj}
p
j=1 forms an orthonormal basis for Kp for p = 1, 2, . . . , 5. Which of the following

statements are true:

(i) If i < j, then q∗i Aqj = 0. FALSE

(ii) If i > j + 1, then q∗i Aqj = 0. TRUE

(iii) If A is symmetric and i < j − 1, then q∗i Aqj = 0. TRUE

(iv) The set {A2b,A3b,A4b} is linearly independent. TRUE

(e) Let A be a 3 × 3 matrix of rank 2. Let b = [1, 2, 1]∗, and let x? denote the least squares
solution to Ax = b. You know that u1 · b = 1 and u2 · b =

√
2, where u1 and u2 are the two

left singular vectors of A associated with non-zero singular values. Evaluate ‖Ax? − b‖.

‖Ax? − b‖ =
√

3.

To see why, recall that Ax? = Pb where P is the orthogonal projection onto the range of
A. Moreover, ‖b‖2 = ‖Ax? − b‖2 + ‖Pb‖2 by orthogonality. We have ‖Pb‖2 = ‖u1(u1 · b) +
u2(u2 ·b)‖2 = |u1 ·b|2+ |u2 ·b|2 = 1+2 = 3. Finally, ‖Ax?−b‖2 = ‖b‖2−‖Pb‖2 = 6−3 = 3.



Question 2: (15p) Consider the two vectors u =

 1
−2

2

 and v =

 0
1
−2

.

(a) (5p) Apply the Gram-Schmidt process to the vectors u and v, in that order, to produce two
orthogonal vectors x and y. Specify x and y.

(b) (5p) Set A =
[
u v
]

=

 1 0
−2 1

2 −2

. Compute the QR factorization of A.

(c) (5p) Set B =

 3 0
−6 −1

6 2

. Compute the QR factorization of B.

Solution:

(a) Set r11 = ‖u‖ = 3. Then x = 1
r11

u = 1
3

 1
−2

2

 =

 1/3
−2/3

2/3

.

Set r12 = x · v =

 1/3
−2/3

2/3

 ·
 0

1
−2

 = 1
3(−6) = −2.

Set w = v − r12x =

 0
1
−2

− (−2)

 1/3
−2/3

2/3

 =

 2/3
−1/3
−2/3

 .
Set r22 = ‖w‖ = 1

3

√
4 + 1 + 4 = 1.

Finally, y = 1
r22

w =

 2/3
−1/3
−2/3

.

(b) Simply observe that Q =
[
x y

]
=

 1/3 2/3
−2/3 −1/3

2/3 −2/3

 and that R =

[
r11 r12

0 r22

]
=

[
3 −2
0 1

]
.

(c) The columns of B are the same as the columns of A, but scaled: B = A

[
3 0
0 −1

]
.

It follows that the QR factorization of B is given as

B = A

[
3 0
0 −1

]
= QR

[
3 0
0 −1

]
=

 1/3 2/3
−2/3 −1/3

2/3 −2/3

[ 9 2
0 −1

]
.

Note: In the solution to (a), I normalized x and y to have length 1. This was not required, so you
got full points if your answer consists of some scaled versions. But in (b), you do need to rescale
when you form the QR factorization since the columns of Q must have unit length.



Question 3: (15p) Consider the matrices A =

 1 0 1
0 2 3
1 3 7

 and B =

 1 4 3
4 2 1
3 1 1

.

(a) (7p) Find a unitary matrix Q and a tridiagonal matrix H such that A = QHQ∗.

(b) (8p) Find a unitary matrix Q and a tridiagonal matrix H such that B = QHQ∗.

Solution:

(a) All we need to do is to swap the second and the third rows, and then apply the analogous

operations to the columns. The permutation matrix is Q =

 1 0 0
0 0 1
0 1 0

, and we find that

H = Q∗AQ =

 1 1 0
1 7 3
0 3 2

 .
(b) Solution based on Householder reflectors: We seek a matrix Q of the form

Q =

[
0 0
0 H

]
where L is the 2× 2 Householder reflector for which L

[
4
3

]
=

[ √
42 + 32

0

]
=

[
5
0

]
.

Set z =

[
4
3

]
. Then the Householder vector is v = ‖z‖e1 − z =

[
5
0

]
−
[

4
3

]
=

[
1
−3

]
.

This results in the Householder reflector

L = I− 2

‖v‖2
vv∗ =

[
1 0
0 1

]
−
[

1/5 −3/5
−3/5 9/5

]
=

[
4/5 3/5
3/5 −4/5

]
.

Multiplying the matrices together, we get H = Q∗BQ =

 1 5 0
5 49/25 −7/25
0 −7/25 1/25

 .
Note: You could of course also use the vector v = −‖z‖e1 − z = −

[
5
0

]
−
[

4
3

]
=

[
−9
−3

]
.

Then Q =

 1 0 0
0 −4/5 −3/5
0 −3/5 4/5

 and H =

 1 −5 0
−5 49/25 −7/25

0 −7/25 1/25

 .
(b) Solution based on Givens rotations. We seek a Givens rotation G =

[
cos θ sin θ
− sin θ cos θ

]
such that

G∗
[

4
3

]
=

[ √
42 + 32

0

]
=

[
5
0

]
.

One easily finds that G =

[
4/5 −3/5
3/5 4/5

]
. Setting

Q =

[
0 0
0 G

]
we get

H = Q∗BQ =

 1 5 0
5 49/25 7/25
0 7/25 1/25

 .



Question 4: (15p) Let A ∈ Rm×m. Recall that we say that A is symmetric positive definite (spd)
if A is symmmetric, and for every nonzero vector v ∈ Rm×1 it is the case that v∗Av > 0.

(a) (5p) Suppose that A = X∗X for some nonsingular square matrix X. Prove that A is spd.

(b) (4p) Suppose that A = R∗R where R is an upper triangular matrix. What is R(1, 1)?

(c) (6p) Compute the Cholesky factorization of the matrix A =

 1 0 1
0 4 2
1 2 3

.

Solution: (a) First we verify that A is symmetric: A∗ = (X∗X)∗ = X∗X∗∗ = X∗X = A.

Fix v 6= 0. Then
v∗Av = v∗X∗Xv = (Xv)∗Xv = ‖Xv‖2.

Since X is nonsingular, we know that Xv 6= 0, so ‖Xv‖2 > 0.

(b) Since R is upper-triangular, we immediately see that A = R∗R implies that A(1, 1) = R(1, 1)R(1, 1).

It follows that R(1, 1) =
√

A(1, 1).

(c) Set R1 =

 1 0 1
0 1 0
0 0 1

. Then

A2 := R−∗1 AR−11 =

 1 0 0
0 4 2
0 2 2

 .
In the next step, we have R2 =

 1 0 1
0 2 1
0 0 1

 which leads to

A3 := R−∗2 A2R−12 =

 1 0 0
0 1 0
0 0 1

 .
It follows that

R = R1R2 =

 1 0 1
0 2 1
0 0 1





Question 5: (15p) Let A ∈ Cm×m be a non-singular matrix, and let b ∈ Cm be a fixed vector.
Suppose that you have an algorithm for solving Ax = b that produces an answer x̃ that satisfies
(A + δA)x̃ = b for some matrix δA such that

‖δA‖
‖A‖

≤ ε. (1)

(a) (10p) Prove that
‖x̃− x?‖
‖x̃‖

≤ κ(A) ε, (2)

where x? is the exact solution to Ax? = b, and where κ(A) is the condition number of A.
Observe that (2) looks slightly different from the bounds we saw in class, since it has ‖x̃‖
in the denominator instead of ‖x?‖. This change permits us to get a bound that holds for
every positive ε, not just asymptotically as ε→ 0.

(b) (5p) Suppose that (1) holds asymptotically as the rounding precision ε→ 0. Prove that

‖x̃− x?‖
‖x?‖

≤ κ(A) ε+O(ε2), as ε→ 0. (3)

Solution:

(a) We find that

x̃− x? = A−1
(
Ax̃− Ax?

) (A)
= A−1

(
b− (δA)x̃− Ax?

) (B)
= −A−1(δA)x̃.

In step (A), we use that (A + δA)x̃ = b. In step (B), we use that Ax? = b. Take norms to get

‖x̃− x?‖ ≤ ‖A−1‖ ‖δA‖ ‖x̃‖
(C)

≤ ‖A−1‖ ‖A‖ ε ‖x̃‖.
In step (C), we used (1). Divide by ‖x̃‖ and use the definition κ(A) = ‖A‖ ‖A−1‖ to get (2).

(b) Set δx = x̃− x?. Then we know that(
A + δA

)(
x? + δx

)
= b.

Multiplying things out, we get

Ax? + (δA)x? + A(δx) + (δA)(δx) = b.

The term (δA)(δx) is quadratic in ε, so using that Ax? = b, we find that

A(δx) = −(δA)x? +O(ε2).

Then
δx = −A−1(δA)x? +O(ε2),

and the estimate follows immediately by taking norms and dividing by ‖x?‖.

Note: The solution given above follows the book and the lectures. To be absolutely strict, one
should actually prove that (δA)(δx) is a quadratic term in ε. This is not necessary to get full
marks, but a stickler for mathematical logic may prefer the following proof:

x̃− x? =
(
A + δA

)−1
b− x? =

(
I + A−1(δA)

)−1
A−1b− x? =

(
I + A−1(δA)

)−1
x? − x?.

You can prove that if T is a small matrix, then(
I + T

)−1
= I− T +O(‖T‖2).

(Use for instance that (I + T)−1 =
∑∞

n=0(−T)n.) You then get

x̃− x? = −A−1(δA)x? +O(‖δA‖2)
and you take norms, etc.



Question 6: (15p) Let A ∈ Rm×m and b ∈ Rm×1. After two steps of the Arnoldi process, starting
with q1 = b/‖b‖, as usual, we find that the following factorization holds exactly :

A
[
q1 q2

]
=
[
q1 q2

] [ 2 1
1 2

]
.

In other words, we ended up with the nontypical (but lucky!) case where h32 = 0.

(a) (5p) Prove that the linear space V = span(q1,q2) is an invariant subspace of A. (Recall
that a linear space W is an invariant subspace of a matrix A if Ax ∈W whenever x ∈W .)

(b) (5p) Prove that the two distinct eigenvalues of H2 =

[
2 1
1 2

]
are also eigenvalues of A.

(c) (5p) Specify the eigenvectors of A associated with the two eigenvalues of H2. These will be
expressed as linear combinations of q1 and q2.

Solution: Observe that the given relation simply means that

Aq1 = 2q1 + q2 and Aq2 = q1 + 2q1.

(a) Suppose that x ∈ V . Then x = c1q1 + c2q2. We find that

Ax = c1Aq1 + c2Aq2 = c1(2q1 + q2) + c2(q1 + 2q2) = (2c1 + c2)q1 + (c1 + 2c2)q2 ∈ V.

Alt. solution: Say x ∈ V . Then x = Q1y where Q1 = [q1,q2]. Then Ax = AQ1y = Q1Hy ∈ V .

(b,c) One easily finds that the matrix H2 has the eigenvalues λ1 = 3 and λ2 = 1, and that these are
associated with the eigenvectors v1 = [1, 1]∗ and v2 = [1,−1]∗, respectively. To build an eigenvector
for A with eigenvalue 3, we use the entries of v1 to form a linear combination of q1 and q2 to set

w1 = q1 + q2.

Then
Aw1 = Aq1 + Aq2 = 2q1 + q2 + q1 + 2q2 = 3q1 + 3q2 = 3w1.

So w1 is an eigenvector of A with eigenvalue λ1 = 3. Setting w2 = q1−q2, an analogous computation
shows that Aw2 = w2.

Alt. solution: Say H2v = λv. Then AQ1v = Q1H2v = λQ1v so Q1v is an evec of A.

Note: One can approach things as a matrix factorization problem, but this is harder since you
then have to extend {q1,q2} to a full basis. To be precise, it would go something like this: Set
Q1 = [q1,q2] and then extend Q1 to a full unitary matrix Q = [Q1 Q2]. Then A admits the
factorization

A =
[
Q1 Q2

] [ H2 ×
0 ×

] [
Q∗1
Q∗2

]
.

Computing the eigenvalue decomposition of H2, we get

H2 = VΛV∗, where Λ =

[
3 0
0 1

]
and V =

1√
2

[
1 1
1 −1

]
.

Now

A =
[
Q1 Q2

] [ VΛV∗ ×
0 ×

] [
Q∗1
Q∗2

]
=
[
Q1V Q2

] [ Λ ×
0 ×

] [
(Q1V)∗

Q∗2

]
.

It is now obvious the A has λ1 and λ2 as eigenvalues, and that the corresponding eigenvectors are
the two columns of Q1V.

Note that the extension of the basis is necessary. Many students attempted a solution where one
would introduce an orthonormal matrix Q = [q1,q2], so that the given relation can be written
AQ = QH2. But in this case, Q is not square, it is not unitary, Q−1 does not exist, so it does not
follow that A = QH2Q∗. (In fact, the relation A = QH2Q∗ would imply that A has rank 2.)


