MATH 393C: Fast Methods in Scientific Computing

Supplementary material on adaptive FMM – new material on page 25 onwards.

P.G. Martinsson

The University of Texas at Austin
The outgoing expansion

Let τ be a box (green).
Let c_τ be the center of τ (black).
Let y_j be source locations in τ (red).
Let q_j be the strength of source j.
Let x_i be targets well separated from τ (blue).
Let u denote the potential

$$ u(x_i) = \sum_j q_j \log(x_i - y_j). $$

The **outgoing expansion** of τ is a vector $\hat{q} = [\hat{q}_p]_{p=0}^P$ of complex numbers such that

(1)

$$ u(x) \approx \hat{q}_0 \log |x - c_\tau| + \sum_{p=1}^P \hat{q}_p \frac{1}{(x - c_\tau)^p}, \quad x \in \Omega^{\text{far}}_{\tau}. $$

The outgoing expansion is a compact representation of the sources inside τ
(it encodes both the source locations and the magnitudes).
The incoming expansion

Let τ be a box (green).
Let c_τ be the center of τ (black).
Let y_j be sources well-separated from τ (red).
Let q_j be strength of source j.
Let x_i be targets inside τ (blue).
Let u denote the potential
\[
u(x_i) = \sum_j q_j \log(x_i - y_j).
\]

The incoming expansion of τ is a vector $\hat{u} = [\hat{u}_p]_{p=0}^P$ of complex numbers such that
\[
\nu(x) \approx \sum_{p=0}^P \hat{u}_p(x - c_\tau)^p, \quad x \in \Omega_\tau.
\]

The incoming expansion is a compact representation of the sources well-separated from τ (it encodes both the source locations and the magnitudes).
The *outgoing-from-sources* translation operator $T_{\tau}^{(ofs)}$

Let τ be a box (green).

Let c_τ be the center of τ (black).

Let $\{y_j\}_{j}^{N_\tau}$ be source locations in τ (red).

Let q_j be strength of source j.

The operator $T_{\tau}^{(ofs)}$ constructs the outgoing expansion directly from the vector of charges.

\[
\hat{q}_\tau = T_{\tau}^{(ofs)} q \quad (P + 1) \times 1 \quad (P + 1) \times N_\tau \quad N_\tau \times 1
\]

\[
T_{\tau,0,j}^{(ofs)} = 1 \quad 1 \leq j \leq N_\tau
\]

\[
T_{\tau,p,j}^{(ofs)} = -\frac{1}{p} (y_j - c_\tau)^p \quad 1 \leq p \leq P \quad 1 \leq j \leq N_\tau.
\]
The **outgoing-from-outgoing** translation operator $T_{\tau,\sigma}^{(ofo)}$

Let τ be a box (green).
Let c_{τ} be the center of c_{τ} (black).
Let σ denote a box contained in τ.
Let c_{σ} denote the center of σ (red).
Let \hat{q}_{σ} be outgoing expansion of σ.

$T_{\tau,\sigma}^{(ofo)}$ constructs the outgoing expansion of τ from the outgoing expansion of σ

$$
\hat{q}_{\tau} = T_{\tau,\sigma}^{(ofo)} \hat{q}_{\sigma}
$$

$$(P + 1) \times 1 \quad (P + 1) \times (P + 1) \quad (P + 1) \times 1
$$

With $d = c_{\sigma} - c_{\tau}$, $T_{\tau,\sigma}^{(ofo)}$ is a lower tridiagonal matrix with entries

$$
T_{\tau,\sigma,0,0}^{(ofo)} = 1
$$

$$
T_{\tau,\sigma,p,0}^{(ofo)} = -\frac{1}{p} d \quad 1 \leq p \leq P
$$

$$
T_{\tau,\sigma,p,q}^{(ofo)} = \binom{p}{q} d^{p-q} \quad 1 \leq q \leq p \leq P.
$$
The \textit{incoming-from-outgoing} translation operator $T_{\tau,\sigma}^{(ifo)}$

Let σ be a source box (red) with center c_σ.
Let τ be a target box (blue) with center c_τ.
Let \hat{q}_σ be the outgoing expansion of σ.
Let \hat{u}_τ represent the potential in τ caused by sources in σ.

$T_{\tau,\sigma}^{(ifo)}$ constructs the incoming expansion of τ from the outgoing expansions of σ:

$$\hat{u}_\tau = T_{\tau,\sigma}^{(ifo)} \hat{q}_\sigma$$

$(P + 1) \times 1$ $(P + 1) \times (P + 1)$ $(P + 1) \times 1$

With $d = c_\sigma - c_\tau$, $T_{\tau,\sigma}^{(ifo)}$ is a matrix with entries

$$T_{\tau,\sigma,p,q}^{(ifo)} = ?$$
The incoming-from-incoming translation operator $T^{(ifi)}_{\tau,\sigma}$

Let τ be a box (green) with center c_τ (black).
Let σ be a box (blue) containing τ with center c_σ.
Let \hat{u}_σ be an incoming expansion for σ.

$T^{(ifi)}_{\tau,\sigma}$ constructs the incoming expansion of τ from the incoming expansion of σ

$$
\hat{u}_\tau = T^{(ifi)}_{\tau,\sigma} \hat{u}_\sigma \\
(P + 1) \times 1 \quad (P + 1) \times (P + 1) \quad (P + 1) \times 1
$$

With $d = c_\sigma - c_\tau$, $T^{(ifi)}_{\tau,\sigma}$ is a matrix with entries

$$
T^{(ifi)}_{\tau,\sigma,p,q} = ?
$$
The *targets-from-incoming* translation operator $T^{(t,fi)}_{\tau}$

Let τ be a box (green).

Let c_τ be the center of τ (black).

Let $\{x_i\}_{i}^{N_\tau}$ be target locations in τ (blue).

Let \hat{u}_τ be the incoming expansion of τ.

$T^{(t,fi)}_{\tau}$ constructs the potentials in τ from the incoming expansion

$$
\begin{align*}
 u_\tau &= T^{(t,fi)}_{\tau} \hat{u}_\tau \\
 &\quad \text{in} \ N_\tau \times 1 \quad N_\tau \times (P + 1) \quad (P + 1) \times 1
\end{align*}
$$

$$
T^{(t,fi)}_{\tau, i, p} = (x_i - c_\tau)^p \\
1 \leq i \leq N_\tau \quad 0 \leq p \leq P.
$$
How do you compute the expansions of a box?
Computing the outgoing expansion of a leaf

Let τ be a box (green).

Let c_τ be the center of τ (black).

Let $\{y_j\}_{j=1}^{N_\tau}$ be source locations in τ (red).

Let q_j be strength of source j.

There is an analytic formula:

$$\hat{q}_0 = \sum_{j=1}^{N_\tau} q_j$$
$$\hat{q}_p = -\frac{1}{p} \sum_{j=1}^{N_\tau} q_j (y_j - c_\tau)^p, \quad p = 1, 2, \ldots, P.$$

We write the formula compactly as

$$\hat{q}_\tau = T_\tau^{(ofs)} q_\tau.$$
Computing the outgoing expansion of a parent

Let τ be a box (green).
Let c_τ be the center of τ (black).
Let $\mathcal{L}_\tau^{(\text{child})}$ denote the children of τ.
Let c_σ be the center of child σ.
Let \hat{q}_σ be the outgoing expansion of child σ.

The outgoing expansion of τ can be computed from the outgoing expansions of its children:

$$\hat{q}_\tau = \sum_{\sigma \in \mathcal{L}_\tau^{(\text{child})}} T_{\tau,\sigma}^{(\text{ofo})} \hat{q}_\sigma.$$
Computing the incoming expansions on level 2

Let τ be a box on level 2 (green).
Let c_{τ} be the center of τ (black).
The well-separated boxes on level 2 are red.

The incoming expansion of τ is computed from the outgoing expansions of boxes in its interaction list

$$\hat{u}_\tau = \sum_{\sigma \in \mathcal{L}^{(\text{int})}_\tau} T^{(ifo)}_{\tau,\sigma} \hat{q}_\sigma.$$
Computing the incoming expansions on level \(\ell \) when \(\ell > 2 \)

Let \(\tau \) be a box on level \(\ell = 3 \) (green).

Let \(\nu \) be the parent of \(\tau \) (blue).

Let \(u_{\text{in}}^\tau \) denote the potential caused by charges that are well-separated from \(\tau \) — these are charges in the boxes marked with red dots and crosses. We have

\[
u_{\text{in}}^\tau = u_{\text{in}}^\nu + v,
\]

where \(u_{\text{in}}^\nu \) is the incoming field for \(\tau \)'s parent (caused by the boxes with red crosses), and \(v \) is the field caused by boxes in the interaction list of \(\tau \) (boxes with a red dot).

The field \(u_{\text{in}}^\nu \) was computed on the previous level and is represented by \(\hat{u}_\nu \).

The field \(v \) is computed by transferring the outgoing expansions \(\hat{q}_\sigma \) for \(\sigma \in L_\tau^{(\text{int})} \).

\[
\hat{u}_\tau = T_{\tau,\nu}^{(\text{ifi})} \hat{u}_\nu + \sum_{\sigma \in L_\tau^{(\text{int})}} T_{\tau,\sigma}^{(\text{ifo})} \hat{q}_\sigma
\]

\[
\sim u_{\text{in}}^\tau \quad \sim u_{\text{in}}^\nu \quad \sim v
\]
The classical Fast Multipole Method in \(\mathbb{R}^2 \)

1. Construct the tree and all “interaction lists.”

2. For each leaf node, compute its outgoing expansion directly from the charges in the box via the \textit{outgoing-from-sources operator}.

3. For each parent node, compute its outgoing expansion by merging the expansions of its children via the \textit{outgoing-from-outgoing operator}.

4. For each node, compute its incoming expansion by transferring the incoming expansion of its parent (via the \textit{incoming-from-incoming operator}), and then add the contributions from all charges in its interaction list (via the \textit{incoming-from-outgoing operator}).

5. For each leaf node, evaluate the incoming expansion at the targets (via the \textit{targets-from-incoming operator}), and compute near-field interactions directly.
Construct the tree and all interaction lists.

Let L denote the number of levels in the tree.
Set all potentials to zero:

For all boxes τ

$\hat{u}_\tau = 0$

$\hat{q}_\tau = 0$.

Set the potential to zero:

$u = 0$.
Compute the outgoing expansion on each leaf via application of the **outgoing-from-source operators**:

loop over all leaf nodes \(\tau \)

\[
\hat{q}_\tau = T^{(ofs)}_\tau q(J_\tau)
\]

end loop
Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators*:

loop over levels \(\ell = L - 1, L - 2, \ldots, 2 \)

loop over all nodes \(\tau \) on level \(\ell \)

\[
\hat{q}_\tau = \sum_{\sigma \in \mathcal{L}_\tau}^{(child)} T_{\tau,\sigma}^{(ofo)} \hat{q}_\sigma
\]

end loop

end loop

![Diagram of a grid with a selected node](image-url)
Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators*:

loop over all nodes τ

$$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}^{(\text{int})}_\tau} T^{(\text{ifo})}_{\tau,\sigma} \hat{q}_\sigma.$$

end loop
Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators*:

loop over all nodes τ

$$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}^{(int)}_{\tau}} T^{(ifo)}_{\tau,\sigma} \hat{q}_\sigma.$$

end loop
Add contributions from the parent of each box via via the *incoming-from-incoming operators*:

loop over levels $\ell = 2, 3, 4, \ldots, L - 1$

 loop over all nodes τ on level ℓ

 loop over all children σ of τ

 $\hat{u}_\sigma = \hat{u}_\sigma + T^{(ifi)}_{\sigma, \tau} \hat{u}_\tau$.

 end loop

end loop

end loop
Compute the potential on every leaf by expanding its incoming potential via the \textit{targets-from-incoming} operators:

\textbf{loop} over all leaf nodes \(\tau \)

\[u(J_\tau) = u(J_\tau) + T_{\tau}^{(t\!f\!i)} \hat{u}_\tau \]

\textbf{end loop}
Add to the leaf potentials the interactions from direct neighbors:

\[\text{loop over all leaf nodes } \tau \]

\[u(J_\tau) = u(J_\tau) + A(J_\tau, J_\tau) q(J_\tau) + \sum_{\sigma \in L_\tau^{(\text{nei})}} A(J_\tau, J_\sigma) q(J_\sigma) \]

end loop
Set $\hat{u}_\tau = 0$ and $\hat{q}_\tau = 0$ for all τ.

loop over all leaf nodes τ

$\hat{q}_\tau = T^{(ofs)}_\tau q(J_{\tau})$

end loop

loop over levels $\ell = L, L - 1, \ldots, 2$

loop over all nodes τ on level ℓ

$\hat{q}_\tau = \sum_{\sigma \in \mathcal{L}_\tau^{(child)}} T^{(ofo)}_{\tau,\sigma} \hat{q}_\sigma$

end loop

end loop

loop over all nodes τ

$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}_\tau^{(int)}} T^{(ifo)}_{\tau,\sigma} \hat{q}_\sigma$

end loop

loop over levels $\ell = 2, 3, 4, \ldots, L - 1$

loop over all nodes τ on level ℓ

loop over all children σ of τ

$\hat{u}_\sigma = \hat{u}_\sigma + T^{(ifi)}_{\sigma,\tau} \hat{u}_\tau$

end loop

end loop

end loop

loop over all leaf nodes τ

$u(J_{\tau}) = T^{(tfi)}_\tau \hat{u}_\tau$

end loop

loop over all leaf nodes τ

$u(J_{\tau}) = u(J_{\tau}) + A(J_{\tau}, J_{\tau}) q(J_{\tau})$

$+ \sum_{\sigma \in \mathcal{L}_\tau^{(nei)}} A(J_{\tau}, J_{\sigma}) q(J_{\sigma})$

end loop
Now let us consider a non-uniform tree.
Construct the tree and all interaction lists.

Let L denote the number of levels in the tree.
Set all potentials to zero:

For all boxes τ

\[
\hat{u}_\tau = 0
\]

\[
\hat{q}_\tau = 0.
\]

Set the potential to zero:

\[
u = 0.
\]
Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators*:

loop over all leaf nodes τ

\[\hat{q}_\tau = T_{\tau}^{(ofs)} q(J_{\tau}) \]

end loop
Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators*:

loop over all leaf nodes \(\tau \)

\[
\hat{q}_\tau = T^{(ofs)}_\tau q(J_\tau)
\]

end loop
Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators*:

loop over levels $\ell = L - 1, L - 2, \ldots, 2$

loop over all nodes τ on level ℓ

$$\hat{q}_\tau = \sum_{\sigma \in \mathcal{L}_\tau^{(\text{child})}} T_{\tau,\sigma}^{(\text{ofo})} \hat{q}_\sigma$$

end loop

end loop

![Diagram of a tree structure with nodes and edges indicating the flow of information.]
Add contributions from the parent of each box via via the *incoming-from-incoming operators*:

loop over levels $\ell = 2, 3, 4, \ldots, L - 1$

loop over all nodes τ on level ℓ

loop over all children σ of τ

$\hat{u}_\sigma = \hat{u}_\sigma + T_{\sigma,\tau}^{(ifi)} \hat{u}_\tau$.

end loop

end loop

end loop
New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the \textit{targets-from-outgoing operator}:

\begin{align*}
\text{loop} \text{ over all nodes leaf } \tau \\
\quad u(J_\tau) &= u(J_\tau) + \sum_{\sigma \in \mathcal{L}_\tau^{(3)}} T^{(t\text{f}o)}_{\tau,\sigma} \hat{q}_\sigma \\
\text{end loop}
\end{align*}
New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the \textit{targets-from-outgoing operator}:

\begin{equation*}
\textbf{loop} \text{ over all nodes leaf } \tau \\
u(J_\tau) = u(J_\tau) + \sum_{\sigma \in \mathcal{L}_\tau^{(3)}} T_{\tau,\sigma}^{(tfo)} \hat{q}_\sigma.
\end{equation*}

\textbf{end loop}
New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the \textit{incoming-from-sources operator}:

\textbf{loop} over all nodes τ

$$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}_\tau^{(4)}} \mathcal{T}_{\tau,\sigma}^{\text{ifs}} q(J_\sigma).$$

\textbf{end loop}
New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the *incoming-from-sources operator*:

Loop over all nodes τ

$$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}_\tau^{(4)}} T^{(ifs)}_{\tau,\sigma} q(J_\sigma).$$

End loop
Add contributions from the parent of each box via the *incoming-from-incoming operators*:

\[
\textbf{loop} \text{ over levels } \ell = 2, 3, 4, \ldots, L - 1 \\
\quad \textbf{loop} \text{ over all nodes } \tau \text{ on level } \ell \\
\quad \quad \textbf{loop} \text{ over all children } \sigma \text{ of } \tau \\
\quad \quad \quad \hat{u}_\sigma = \hat{u}_\sigma + T_{\sigma,\tau}^{(ifi)} \hat{u}_\tau. \\
\quad \textbf{end loop} \\
\quad \textbf{end loop} \\
\textbf{end loop}
\]
Compute the potential on every leaf by expanding its incoming potential via the *targets-from-incoming operators*:

loop over all leaf nodes \(\tau \)

\[
u(J_\tau) = u(J_\tau) + (T^{(t_{fi})}_{\tau}) \hat{u}_{\tau}
\]

end loop
Add to the leaf potentials the interactions from direct neighbors:

\[\text{loop over all leaf nodes } \tau \]
\[u(J_\tau) = u(J_\tau) + A(J_\tau, J_\tau) q(J_\tau) + \sum_{\sigma \in L_\tau^{\text{nei}}} A(J_\tau, J_\sigma) q(J_\sigma) \]

end loop
Add to the leaf potentials the interactions from direct neighbors:

Loop over all leaf nodes τ

$$u(J_\tau) = u(J_\tau) + A(J_\tau, J_\tau) q(J_\tau) + \sum_{\sigma \in L^{\text{(nei)}}_\tau} A(J_\tau, J_\sigma) q(J_\sigma)$$

end loop
Set $\hat{u}_\tau = 0$ and $\hat{q}_\tau = 0$ for all τ.

loop over all leaf nodes τ

$\hat{q}_\tau = T_{\tau}^{(ofs)} q(J_\tau)$

end loop

loop over levels $\ell = L, L - 1, \ldots, 2$

loop over all nodes τ on level ℓ

$\hat{q}_\tau = \sum_{\sigma \in \mathcal{L}_\tau^{(child)}} T_{\tau,\sigma}^{(ofs)} \hat{q}_\sigma$

end loop

end loop

loop over all nodes τ

$\hat{u}_\tau = \hat{u}_\tau + \sum_{\sigma \in \mathcal{L}_\tau^{(int)}} T_{\tau,\sigma}^{(ifo)} \hat{q}_\sigma$

end loop

loop over all nodes τ

$u(J_\tau) = T_{\tau}^{(tifi)} \hat{u}_\tau$

end loop

loop over all nodes τ

$u(J_\tau) = u(J_\tau) + \sum_{\sigma \in \mathcal{L}_\tau^{(3)}} T_{\tau,\sigma}^{(ifo)} \hat{q}_\sigma$

end loop

loop over all leaf nodes τ

$u(J_\tau) = u(J_\tau) + \sum_{\sigma \in \mathcal{L}_\tau^{(4)}} T_{\tau,\sigma}^{(ifs)} q(J_\sigma)$

end loop

loop over levels $\ell = 2, 3, 4, \ldots, L - 1$

loop over all nodes τ on level ℓ

loop over all children σ of τ

$\hat{u}_\sigma = \hat{u}_\sigma + T_{\sigma,\tau}^{(ifi)} \hat{u}_\tau$

end loop

end loop

end loop

loop over all leaf nodes τ

$u(J_\tau) = A(J_\tau, J_\tau) q(J_\tau)$

$+ \sum_{\sigma \in \mathcal{L}_\tau^{(nee)}} A(J_\tau, J_\sigma) q(J_\sigma)$

end loop
A summary of the lists needed:

$\mathcal{L}_\tau^{(\text{child})}$ The children of τ.

$\mathcal{L}_\tau^{(\text{parent})}$ The parent of τ.

$\mathcal{L}_\tau^{(\text{nei})}$ For a leaf box τ, this is a list of the leaf boxes that directly border τ.
For a non-leaf box, $\mathcal{L}_\tau^{(\text{nei})}$ is empty.

$\mathcal{L}_\tau^{(\text{int})}$ A box $\sigma \in \mathcal{L}_\tau^{(\text{int})}$ iff σ and τ are on the same level,
σ and τ are well-separated,
but the parents of σ and τ are not well-separated.

$\mathcal{L}_\tau^{(3)}$ For a leaf box τ, a box $\sigma \in \mathcal{L}_\tau^{(3)}$ iff σ lives on a finer level than τ,
τ is well-separated from σ, but τ is not well-separated from the parent of σ.
For a non-leaf box τ, $\mathcal{L}_\tau^{(3)}$ is empty.

$\mathcal{L}_\tau^{(4)}$ The dual of $\mathcal{L}_\tau^{(3)}$. In other words, $\sigma \in \mathcal{L}_\tau^{(4)}$ if and only if $\tau \in \mathcal{L}_\sigma^{(3)}$.
A summary of the translation operators: