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Problem addressed: The tutorial describes numerical methods for solving boundary
value problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.



Problem addressed: The tutorial describes numerical methods for solving boundary
value problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Standard numerical recipe for (BVP): (1) Discretize via FD/FEM. (2) Iterative solver.
Focal point of this tutorial: The solution operator for (BVP). → Direct solvers.



Problem addressed: The tutorial describes numerical methods for solving boundary
value problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: As a warmup, let us consider the Poisson equation

−∆u(x) = g(x) x ∈ R2

(with suitable decay conditions at infinity to ensure uniqueness). The solution is given by

(SLN) u(x) =
∫
R2

ϕ(x − y)g(y)dy , x ∈ R2.

where the “fundamental solution” of the Laplace operator −∆ on R2 is defined by

ϕ(x) = − 1
2π log |x|.

In principle very simple. Numerically non-trivial, however: The operator is global, so
discretizing it leads to a dense matrix. (There is also the singular kernel to worry about!)



Problem addressed: The tutorial describes numerical methods for solving boundary
value problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: A general solution operator for (BVP) takes the form

(SLN) u(x) =
∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are two kernel functions that depend on A, B, and Ω.

Good: The operators in (SLN) are friendly and nice.
Bounded, smoothing, often fairly stable, etc.

Bad: The kernels G and F in (SLN) are generally unknown.
(Other than in trivial cases — constant coefficients and very simple domains.)

Bad: The operators in (SLN) are global.
Dense matrices upon discretization. O(N2) cost? O(N3) cost?



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =
∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Recurring idea: Upon discretization,
(SLN) leads to a matrix with off-diagonal
blocks of low numerical rank.

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc.

All gray blocks have low rank.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .
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In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,
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Explicit solution formula: u(x) =
∫
Ω

G(x,y)g(y)dy +

∫
Γ
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Partial Differential Equation (PDE) vs. Integral Equation (IE) formulations

In the first tutorial, the focus is on the classical PDE framework:
Discretize using, say, finite elements; obtain a linear system Au = b for some sparse
matrix A, then build an invertible factorization of A.

In the second tutorial, the focus shifts in part to an IE framework:
Reformulate the PDE as an integral equation using analysis, then discretize the IE
using, say, Nyström; obtain a linear system Au = b for some dense matrix A, then build
an invertible factorization of A.

In the context of direct solvers, dense matrices are unavoidable, and must be handled.
This makes IE formulations compelling, as they lead to better conditioned linear systems.



Recall that we are interested in solving the PDE
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Explicit solution formula: u(x) =
∫
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The tutorial will describe recent work on algorithms that numerically construct an
approximation to (SLN).

When using these algorithms, the process of solving (BVP) splits into two stages:
(1) “Factorization” or “build” stage: Build a representation of the inverse operator.
(2) “Solve” stage: Apply the computed inverse to given data f or (and) g.

Typical characteristics of methods of this type:
• Memory usage tends to be high.
• Stage 1 tends to be slower than an iterative solve, when convergence is fast.
• Stage 2 is almost always VERY fast.



Advantages of direct solvers

1. They enable the solution of problems intractable to iterative methods:
• Scattering problems near resonant frequencies.
• Ill-conditioning due to geometry (elongated domains, percolation, etc).
• Multi-physics simulations.
• Mixed discretizations, say combining finite elements and boundary element methods.

Scattering problems intractable to existing methods can (sometimes) be solved.

2. They accelerate computations in applications that require a very large number of
solves for a fixed operator:
• Scattering problems.
• Time stepping of parabolic PDEs.
• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is sometimes possible.

3. They open the door to operator algebra. Next few slides.
• Composition of operators.
• Exponentiation (and other functions).
• Full and partial spectral decompositions.



Operator algebra: Composition of operators
The algorithms for computing an approximation to an inverse A−1 of a differential or
integral operator A also allow us to compute compositions of operators such as

F = AB, F = A−1B F = D − BA−1C, . . .

Example: Consider a simple problem involving two interacting domains, e.g., a wave
propagation problem involving both a fluid and a solid medium:

The geometry: The linear system:

Think of A11 and A33 as representing equilibrium operators for the subdomains Ω1 and
Ω3. We seek to solve the full system that incorporates the interface conditions along Γ2.
In principle, we can reduce the problem to one that lives on the joint interface alone

(3)
(
A22 − A21A−1

11 A12 − A23A−1
33 A32

)
x2 = b2 − A21A−1

11 b1 − A23A−1
33 b3.

Existing methods rely on the ability to apply A−1
11 and A−1

33 efficiently via, e.g., multigrid,
and then solve (3) iteratively. Using direct solvers, we can explicitly form and invert the
dense operator A22 − A21A−1

11 A12 − A23A−1
33 A32.



Operator algebra: Composition of operators
The algorithms for computing an approximation to an inverse A−1 of a differential or
integral operator A also allow us to compute compositions of operators such as

F = AB, F = A−1B F = D − BA−1C, . . .

The ability to explicitly form Schur complements and other compositions of operators
arise in a range of different applications:

• Multi-physics simulations.
• Solving PDEs with constraints.
• Multi-discretizations. For instance, coupling FEM and BEM discretizations.
• Domain decomposition.

In these applications, the operators we seek to approximate are often discrete
equivalences of Dirichlet-to-Neumann operators, Impedance-to-Impedance operators,
or other Poincaré-Steklov operators.



Operator algebra: Exponentiation (and other functions)
It is often valuable to be able to explicitly compute a function f (A) of a given elliptic
operator A.

• Time evolution operators for elliptic PDEs: Evaluating f (A) = e−tA allows for either
taking long time-steps, or for very rapid time-stepping for short time steps.

• Time evolution operators for hyperbolic PDEs: Evaluating f (A) = eit
√

A allows for
parallel-in-time time stepping.

• Solving fractional pdes: Evaluating f (A) = A−α for α ∈ (0,1) allows for direct
solution of elliptic PDEs such as (−∆)αu = f . Similarly, f (A) = e−Aαt is the time
evolution operator for a fractional parabolic PDE.

Idea: A common technique is to build a rational approximation

f (t) ≈
P∑

p=1

ap
1 − bpt

that is valid to high accuracy on the “relevant” part of the spectrum of A. Then

f (A) ≈
P∑

p=1
ap

(
I − bpA

)−1

can be evaluated by solving a sequence of shifted elliptic PDEs.



Operator algebra: Spectral decompositions
In many applications, we seek to compute eigenvalues and eigenvectors of a given
elliptic operator A:

• Compute resonance frequencies for vibrating systems.
• Computational chemistry and physics.
• Finding buckling modes of elasto-static structures.

When a small number of eigenmodes are sought, shifted inverse iteration is often a
powerful tool. Given an approximate normalized eigenvector ui, we proceed as follows:

µi =
(
ui, Aui

)
, u′i+1 =

(
A − µiI

)−1ui, ui+1 =
1

∥u′i+1∥
u′i+1.

Cauchy integrals are another useful tool. For instance, spectral projections can be
computed via formulas such as

Pu =

(
1

2πi

∫
Γ

(
z I − A

)−1 dz
)

u ≈
P∑

p=1
wp

1
2πi

(
zp I − A

)−1u.

In some case, one can even construct full unitary diagonalizations of structured matrices.



Introduction to rank structured matrices
How is it that you can invert a dense matrix of size n × n in less than O(n3) flops?



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n × n matrix A is invertible, and that for some
k ≪ n, it admits the representation

A = I + U V∗.

n × n n × n n × k k × n



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n × n matrix A is invertible, and that for some
k ≪ n, it admits the representation

A = I + U V∗.

n × n n × n n × k k × n
While A is dense, it has rank structure that allows us to:

• Store it using O(nk) floats. O(n2) in general case.
• Execute the matrix vector multiplication in O(nk) flops. O(n2) in general case.



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n × n matrix A is invertible, and that for some
k ≪ n, it admits the representation

A = I + U V∗.

n × n n × n n × k k × n
Then the inverse of A takes the form

(W) A−1 = I − U
(
I + V∗U

)−1 V∗.

n × n n × n n × k k × k k × n

Using (W), we can form A−1 (implicitly) in O(nk2) work, instead of O(n3).
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There are many versions of the Woodbury formula:



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n × n matrix A is invertible, and that for some
k ≪ n, it admits the representation

A = I + U V∗.

n × n n × n n × k k × n
Then the inverse of A takes the form

(W) A−1 = I − U
(
I + V∗U

)−1 V∗.

n × n n × n n × k k × k k × n

Using (W), we can form A−1 (implicitly) in O(nk2) work, instead of O(n3).
There are many versions of the Woodbury formula: For instance, consider a matrix of
the form “easy to invert” + low rank. To be precise, suppose that A is invertible, that

A = D + U V∗,

n × n n × n n × k k × n

and that you can easily compute D−1. Then A−1 can be constructed via

A−1 = D−1 − D−1U
(
I + V∗D−1U

)−1 V∗D−1.

n × n n × n n × k k × k k × n



Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− d2u

dx2 + p(x) du(x)
dx + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n × n. Then A−1 is dense.

Sparsity pattern of A. Sparsity pattern of A−1.

A is tridiagonal. A−1 is semi-separable.

rank=1

rank=1

A is sparse. A−1 is data-sparse.
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Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− d2u

dx2 + p(x) du(x)
dx + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n × n. Then A−1 is dense.

Fun facts:
• If A is invertible and tridiagonal, then A−1 is semi-separable (meaning that the upper

triangular and the lower triangular parts are restrictions of rank 1 matrices).
• If A is invertible and semi-separable, then A−1 is tridiagonal.
• Cost of storage is 3n − 2 floats in either case.
• Cost of inversion is O(n) in either case.

(Note: LU factorization is more common: Factors L and U are each bidiagonal.)



Inversion of structured matrices: Semi-separable plus diagonal
Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data. Recall that when m = 0, we can solve (BVP) analytically:

u(x) =
∫ 1

0
G(x, y)g(y)dy,

where the Green’s function G (which is semi-separable!) takes the form

G(x, y) =


(b − x)(y − a)

b − a , when x ≥ y (on or below the diagonal),
(x − a)(b − y)

b − a , when x ≤ y (on or above the diagonal).

Multiply (BVP) by G(x, y) and integrate in y over [0,1] to get

u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where
h(x) =

∫ 1

0
G(x, y)g(y)dy.

Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],
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(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data.
Fact 1: The equation (BVP) is equivalent to
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Inversion of structured matrices: Semi-separable plus diagonal
Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data.
Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where the Green’s function (which is semi-separable!) takes the form

G(x, y) =


(b − x)(y − a)

b − a , when x ≥ y (on or below the diagonal),
(x − a)(b − y)

b − a , when x ≤ y (on or above the diagonal).

Fact 2: Discretizing (IE) using a Nyström method with a uniform grid {xi}n+1
i=0 ⊂ [0,1]

and the basic Trapezoidal rule results in the linear system(
I + GM

)
u = Gg.

The n × n matrix G is semi-separable since it has entries

G(i, j) = h G(xi, xj).

The matrix M is the diagonal matrix whose diagonal entries are {m(xi)}n
i=1.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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3
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IE (non-osc)

FD (osc)
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2
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4
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5
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6

Condition numbers

FD (non-osc)

IE (non-osc)

FD (osc)

IE (osc)

We considered a non-oscillatory problem “(non-osc)” where m(x) = 100(1 + x) cos(x)
and g(x) = 1 + cos(1 + x). We then swapped the sign of m (but kept everything else the
same) to get a problem with an oscillatory solution “(osc)”. The left plot shows the errors
incurred (in max norm), while the right one shows the condition numbers of the
coefficient matrices. The key point here is that the condition numbers of the integral
equation formulation does not grow with n. A secondary point is to show that elliptic
problems with oscillatory solutions are far more challenging.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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Note: For the IE, the condition number is small and constant!
(Fun fact: The two methods are mathematically equivalent – errors are identical!)



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:
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The conversion to an IE is an example of “analytic preconditioning”.
You do the preconditioning mathematically, before you discretize.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?

What about computational costs?
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Cost of computing an inverse is O(n) in either case!



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?

What about computational costs?

Cost of computing an inverse is O(n) in either case!

We skip details for the “semi-separable plus diagonal” case, and instead go straight to a
more general class: HODLR.



Inversion of structured matrices: HODLR
Now let us consider a slightly more complex structure:

All gray blocks have low rank.

Let us start with a simple recursive inversion procedure.
The first step is to observe that if we tessellate A as follows

A =

[
A11 A12
A21 A22

]
then

• A12 and A21 each have low numerical rank,
• A11 and A22 each are HODLR themselves.

Note: “Semi-separable + diagonal” is a special case of HODLR.
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A =

[
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]
then

• A12 and A21 each have low numerical rank,
• A11 and A22 each are HODLR themselves.

Note: “Semi-separable + diagonal” is a special case of HODLR.



Inversion of structured matrices: HODLR
We seek to invert a matrix A as shown. Each block is of size
n × n, and A12 and A21 have rank k < n.

A =

[
A11 A12
A21 A22

]

We first form low-rank factorizations of A12 and A21 so that

A12 = U1 B12 V∗
2 and A21 = U2 B21 V∗

1

Then we can write A in the form

A =

[
A11 0

0 A22

]
+

[
U1 0
0 U2

] [
0 B12

B21 0

] [
V∗

1 0
0 V∗

2

]
.

Applying the Woodbury formula, we get

A−1 =

[
A−1

11 0
0 A−1

22

]
+

[
A−1

11 U1 0
0 A−1

22 U2

] [
D̂1 B12
B21 D̂2

]−1 [
V∗

1A−1
11 0

0 V∗
2A−1

22

]
,

where D̂1 =
(
V∗

1A−1
11 U1

)−1 and D̂2 =
(
V∗

2A−1
22 U2

)−1.
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2n × 2n 2n × 2n 2n × 2k 2k × 2k 2k × 2n

where D̂1 =
(
V∗

1A−1
11 U1

)−1 and D̂2 =
(
V∗

2A−1
22 U2

)−1.

So to get A−1, we need to:
• Compute A−1

11 and A−1
22 . Two inverses of half the size.

• Form D̂1 and D̂2, and then invert
[

D̂1 B12
B21 D̂2

]
. This is a small (2k × 2k) matrix.

• Form various matrix-matrix products involving at least one “thin” matrix.
Obvious recursion!
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Inversion of structured matrices: HODLR

The recursive inversion formula for a HODLR matrix is conceptually simple.
But it is hard to code efficiently, and leads to growth of the numerical ranks.

Luckily, there are better options, including non-recursive exact formulas.
Let us consider a specific example:

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

For every sibling pair {α, β} set

Aα,β = A(Iα, Iβ).

Fix a bound k on the rank, and a tol-
erance ε. We then require that each
off-diagonal block (in blue in the figure)
have ε-rank at most k. Define factors

Aα,β = Uα V∗
β.

nα × nβ nα × k k × nβ
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Inversion of structured matrices: HODLR
To more formally define the HODLR format, we need to introduce a tree structure on the
index set I = [1, 2, 3, . . . , N].

Let A be an N × N matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1
Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

For nodes σ and τ on the same level, set Aσ,τ = A(Iσ, Iτ ).



Inversion of structured matrices: HODLR



Inversion of structured matrices: HODLR
For our 3-level model problem, we will build A−1 in the form

A−1 = B0 B1 B2 B3,

where each Bℓ is block diagonal, with diagonal blocks that are rank-k perturbations of
the identity matrix. Consequently, each Bℓ can be applied to a vector in O(Nk) flops.

In the first step, we form a block diagonal matrix B3 whose diagonal blocks are the
inverses of the diagonal blocks of A. We then apply B3 to A, to form a matrix A3 = B3A
whose diagonal blocks are the identity matrix:

Observe that all the off-diagonal blocks in A3 still have rank at most k.
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Inversion of structured matrices: HODLR
In the second step, let D4, D5, D6, D7 denote the diagonal blocks of A3, as marked in
the figure below. Since each of these matrices are of the form “identity plus low rank”,
they can inexpensively be inverted. We put the inverses D−1

4 , D−1
5 , D−1

6 , D−1
7 into the

diagonal blocks of B2 and apply it to A3 to obtain

Observe again that the off-diagonal blocks of A2 all have rank at most k.



Inversion of structured matrices: HODLR
The third step:

The fourth and final step:



Inversion of structured matrices: HODLR
Once the process completes, we have obtained the factorization

I = B0A0 = B0B1A1 = B0B1B2A2 = B0B1B2B3A.

In other words,

where
“L” means “low rank”
“D” means “dense”

All updates are multiplicative.



Inversion of structured matrices: HODLR
For purposes of practical execution speed, it is convenient to aggregate all the factors in
a HODLR representation into three large arrays.
For a 3-level HODLR matrix, we do (assuming all ranks on a single level are identical):

The factorization procedure we described acts directly on the matrix [Dbig Ubig],
overwriting the original factors. All operations can be executed in batched form.



Inversion of structured matrices: HODLR



Inversion of structured matrices: Key points

• Dense matrices that contain low-rank structure often admit smart methods for
storage, for matrix-vector multiplication, for inversion and LU factorization, etc.

• Linear, or close to linear, complexity is often attainable.

• There are many different “formats” for such matrices.
For each format, there are many different algorithms for doing the same task!

Will discuss different formats in more depth in second session.



Sparse solvers



Linear complexity sparse direct solvers

Consider the problem of solving
Au = b

where A is a sparse matrix resulting from discretization (FEM/FD/...) of a PDE.

Rank structured matrix algebra could in principle be used directly to build A−1.

However, it is more efficient to exploit the sparsity that is present.

Key idea: Do a sparse LU factorization based on a “nested dissection” ordering of the
grid as an outer solver. Then use rank structured matrix algebra to deal with the dense
matrices that arise.



Linear complexity sparse direct solvers

Consider the problem of solving
Au = b

where A is a sparse matrix resulting from discretization (FEM/FD/...) of a PDE.

Rank structured matrix algebra could in principle be used directly to build A−1.

However, it is more efficient to exploit the sparsity that is present.

Key idea: Do a sparse LU factorization based on a “nested dissection” ordering of the
grid as an outer solver. Then use rank structured matrix algebra to deal with the dense
matrices that arise.



Linear complexity sparse direct solvers
Let Ω = [0,1]2 and Γ = ∂Ω. We seek to solve

(8)

−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We introduce an n × n grid on Ω with nodes {xj}N
j=1 where N = n2, see Figure A. Letting

u = [u(j)]Nj=1 denote a vector of approximate solution values, u(j) ≈ u(xj), and using the
standard five-point stencil to discretize −∆, we end up with a sparse linear system

Au = b,

where [Au](k) = 1
h2
(
4 u(k)− u(ks)− u(ke)− u(kn)− u(kw)

)
, see Figure B.

Figure A: The grid

k kekw

ks

kn

h = 1
n+1

Figure B: The 5-point stencil



Linear complexity sparse direct solvers
Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−1
11 and A−1

22 . Then

A =


I 0 0
0 I 0

A31A−1
11 A32A−1

22 I




A11 0 0
0 A22 0
0 0 S33




I 0 A−1
11 A13

0 I A−1
22 A23

0 0 I


where S33 = A33 − A31A−1

11 A13 − A32A−1
22 A23 is a Schur complement.

In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−1

11 . size ∼ N/2 × N/2
• Invert A22 to form A−1

22 . size ∼ N/2 × N/2
• Invert S33 = A33 − A31A−1

11 A13 − A32A−1
22 A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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Linear complexity sparse direct solvers
Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow factor A11 = L11U11 and A22 = L22U22. Then

A =


L11U11 0 A13

0 L22U22 A23
A31 A32 A33

 =


L11 0
0 L22

A31U−1
11 A32U−1

22 I




I 0 0
0 I 0
0 0 S33




U11 0 L−1
11 A13

0 U22 L−1
22 A23

0 0 I

 .

where S33 = A33 − A31U−1
11 L−1

11 A13 − A32U−1
22 L−1

22 A23 is a Schur complement.
In other words, in order to invert A, we need to execute three steps:

• Factor A11 to form A11 = L11U11. size ∼ N/2 × N/2
• Factor A22 to form A22 = L22U22. size ∼ N/2 × N/2
• Factor S33 = A33 − A31U−1

11 L−1
11 A13 − A32U−1

22 L−1
22 A23. size ∼

√
N ×

√
N



Linear complexity sparse direct solvers: Summary of process

Our model problem remains the Poisson equation discretized on a regular grid:



Linear complexity sparse direct solvers: Summary of process

The first thing to do is to create a hierarchical tree based on a nested dissection ordering:



Linear complexity sparse direct solvers: Summary of process

Sweep through the hierarchical tree, going from smaller to larger boxes.
At each level, eliminate the “active” nodes (red) via Gaussian elimination (local!):

Nested dissection - level 4
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Linear complexity sparse direct solvers: Summary of process

Sweep through the hierarchical tree, going from smaller to larger boxes.
At each level, eliminate the “active” nodes (red) via Gaussian elimination (local!):

Nested dissection - level 0



Linear complexity sparse direct solvers: Summary of process

Sweep through the hierarchical tree, going from smaller to larger boxes.
At each level, eliminate the “active” nodes (red) via Gaussian elimination (local!):

Nested dissection - level 0



Linear complexity sparse direct solvers
Typically, nested dissection orderings are more complicated:

Image credit: Jianlin Xia, “Robust and Efficient Multifrontal Solver for Large Discretized PDEs”, 2012

Observe that while the computational domain is 2D in this example, the rank structured
matrices all live on the colored 1D domains.



Linear complexity sparse direct solvers
Well-established idea: Classical multifrontal / nested dissection method (1973).

Alan George Iain Duff Tim Davis



Linear complexity sparse direct solvers
The direct solver described works very well for moderate problem sizes.
But problems arise as the number of discretization points increases . . .

Consider a regular grid in 2D with N = n × n total nodes. The top level merge
requires inversion of a matrix representing interactions between the red nodes:

n

n
N = n × n
n = N1/2

Since this dense matrix is of size n × n, the cost for the merge is

COST ∼ n3 ∼ (N1/2)3 ∼ N3/2.

Good news: The N3/2 term does not “kick in” until N is huge! Say N ∼ 108.
Bad news: 3D is much worse!
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Assertion: The dense matrix very often be-
haves like a discretizated integral operator.
(E.g. Dirichlet-to-Neumann.)

It is rank-structured, and is amenable to
“fast” matrix algebra.

We can reduce the complexity of the top
level solve from O(N2) down to O(N), and
sometimes even O(N2/3).
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Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).

Nested dissection solvers with O(N) complexity — Le Borne, Grasedyck, & Kriemann
(2007), Martinsson (2009), J. Xia, Chandrasekaran, Gu, & Li (2009), Gillman &
Martinsson (2011), Schmitz & L. Ying (2012), Darve & Ambikasaran (2013), Ho & Ying
(2015), Amestoy, Ashcraft, et al (2015), Oseledets & Suchnikova (2015), etc.
O(N) direct solvers for integral equations were developed by Martinsson & Rokhlin
(2005), Greengard, Gueyffier, Martinsson, & Rokhlin (2009), Gillman, Young, &
Martinsson (2012), Ho & Greengard (2012), Ho & Ying (2015). Work in 1990’s Y. Chen,
P. Starr, V. Rokhlin, L. Greengard, E. Michielssen. Related to work on H and H2 matrix
methods (1998 and forwards) by Börm, Bebendorf, Hackbusch, Khoromskij, Sauter, etc.



Linear complexity sparse direct solvers
Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).

Note: Complexity is not O(N) if the nr. of “points-per-wavelength” is fixed as N → ∞.
This limits direct solvers to problems of size a couple hundreds of wave-lengths or so.



Linear complexity sparse direct solvers
Key selling point: Better parallelism

Let us consider the flop counts of various parts of the computation:

Classical Nested Dissection Accelerated Nested Dissection
Cost to process leaves: ∼ N ∼ N
Cost to process the root: ∼ N2 ∼ N2/3

Observations:

• While the dominant cost of the old scheme is processing dense matrices of size
O(N2/3)× O(N2/3), the dominant cost of the new scheme is processing the leaves.

• The leaf computations are very easy to parallelize!

• Parallel implementations of structured matrix algebra requires hard work
(J. Poulson’s dissertation; S. Li at LBNL; G. Biros; R. Kriemann; P. Amestoy,
A. Buttari & T. Mary; G. Turkiyyah & D. Keyes; J. Xia; etc).

• For intermediate size problems, the structured matrices of size O(N2/3)× O(N2/3)

often fit on one machine.

• The methodology need not be all-or-nothing. Direct solvers can be used locally to
handle areas with mesh refinement etc.
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Interaction ranks

• Why are they small?
• How small are they, exactly?



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =
∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Question: Why do the dense matrices resulting upon discretization of (SLN) typically
have off-diagonal blocks of low numerical rank?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:
• Rapid convergence of multipole expansions when the region of sources is far away

from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +
∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +
∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The kernels are derived from the corresponding fundamental solutions:

s(x,y) =ϕ(x − y),
d(x,y) =∂n(y)ϕ(x − y),

sκ(x,y) =ϕκ(x − y),
dκ(x,y) =∂n(y)ϕκ(x − y),

where, as before,

ϕ(x) =− 1
2π log |x|,

ϕκ(x) =
i
4H(1)

0 (κ|x|).



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +
∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +
∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

Let A denote the matrix resulting from discretization of either BIE.

On the next slide, we show the singular values of the off-diagonal block A23.



Interaction ranks: Boundary integral equations
The ranks of an off-diagonal block of A:
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This is all as expected. Somewhat accessible by analysis.

Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)
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Interaction ranks: Stiffness matrix from finite difference discretization
Recall our example of Laplace’s equation discretized using the 5-point stencil.

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

We build the Schur complement S = A33 − A31A−1
11 A13 − A32A−1

22 A23.
Then split the Schur complement into four parts:

Iα

Iβ

S =
Sαα Sαβ

SββSβα

We explore the svds of Sαβ — encoding interactions between Iα and Iβ.
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Singular values of Sαβ for an 80 × 80 grid.
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Interaction ranks: Stiffness matrix from finite difference discretization

Let us try a few different PDEs, and different problem sizes:

Note: The rank decay property is remarkably stable!
Note: The decay continues to ϵmach — regardless of the discretization errors!



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

Fast decay once oscillations are resolved.
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Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The geometry.
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Finally, let us consider the analogous 3D problem.

The singular values.


