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Outline

• Methods based on randomized projections Main topic.
• Low rank approximation: The randomized SVD.
• Streaming and single-pass methods.
• A posteriori error estimation.
• Structured random maps (“fast Johnson-Lindenstrauss transforms”).
• Linear solvers: Sketch-to-solve vs. Sketch-to-precondition.
• Las Vegas style methods: Extremely robust and reliable.

• Methods based on randomized sampling Time permitting . . .
• Monte Carlo style methods→ less reliable, less accurate, less robust.
• Enable the solution of stupendously large problems that would otherwise be intractable.

• Approximation of rank-structured matrices Very brief!
• Approximation of global operators of mathematical physics (solution operators, DtNs, . . . ).
• Tools for matrices that are not of global low rank, but have structure that can be exploited.
• Conceptually related to Fast Multipole Methods, Fast Direct Solvers, Calderón-Zygmund theory . . .



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k�min(m,n).
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k�min(m,n).
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Why?

• Fitting a hyperplane to a given set of points. Or fitting a multivariate normal
distribution to measurements (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, fast direct solvers, etc.

• Many, many, many more.

Note: We seek only to control the residual error ‖A− EF∗‖.



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k�min(m,n).
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Why?

• Fitting a hyperplane to a given set of points. Or fitting a multivariate normal
distribution to measurements (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, fast direct solvers, etc.

• Many, many, many more.

Note: We seek only to control the residual error ‖A− EF∗‖.

Precise problem formulation: Given A (and possibly k), find an approximate
orthonormal basis {qj}kj=1 for the range of A, so that A ≈ QQ∗A, where Q = [q1, . . . ,qk].



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

If you have Q, many “low-rank approximation” tasks become easy.

Example: Suppose A is symmetric, and you seek an approximate eigenvalue
decomposition (EVD). Form the matrix B = Q∗AQ, and compute the EVD of B:

B = VDV∗.

Observe that B is of size k × k. Small!
Then

A ≈ QQ∗AQQ∗ = QBQ∗ = QVDV∗Q∗ = {Set U := QV} = UDU∗

is an approximate EVD of A.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Excellent algorithms for computing Q already exist:
• Compute the full SVD and truncate
• Eckart-Young theorem tells us this is optimal.
• Algorithms are stable, accurate, and reliable. Routinely yield double precision accuracy.
• Algorithms must be iterative, but converge extremely fast in practice.
• Cost scales poorly with matrix size, O(n3) for n× n matrix. Hard to parallelize.

• Krylov methods For instance, ran(Q) = ran
([
b, Ab, A2b, . . . , Ak−1b

])
.

• Particularly efficient when fast matrix-vector multiplication is available. (E.g. A is sparse.)
• If the metric is number of matvecs, then Krylov methods are often “optimal”.
• Well understood – precise theory is available in many (but far from all!) cases.

• Gram-Schmidt (with “column pivoting”)
• Very simple!
• When column pivoting is used, it is robust and typically works well.
• Can be stopped after k steps if required tolerance is met.
• Communication intensive, so somewhat slow in practice. Does not preserve sparsity.
• Output is quite far from optimal when singular values decay slowly.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Let us consider Gram-Schmidt in some detail, applied to A =
[
a1 a2 · · · an

]
.

In the “generic” case, Gram-Schmidt proceeds as follows:

a′1 = a1 q1 =
1
‖a′1‖

a′1 P1 = q1q∗1

a′2 =
(
I− P1

)
a2 q2 =

1
‖a′2‖

a′2 P2 = P1 + q2q∗2

a′3 =
(
I− P2

)
a3 q3 =

1
‖a′3‖

a′3 P3 = P2 + q3q∗3
... ... ...

The algorithm can fail outright, since any vector a′j may be zero.
It can also fail numerically, if a′j is small. (Fixable, by swapping to unitary transforms.)

Classical fix: Column pivoting – apply projections to all columns, and pick the largest
remaining one. Greatly increases cost! And ruins sparsity.

Randomization fix: If you randomly mix the columns first, you can forgo pivoting!



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Gram-Schmidt with randomized mixing:
Draw an n× n matrix ΩΩΩ from a Gaussian distribution, and form

Y =
[
y1 y2 · · · yn

]
= AΩΩΩ.

Then perform Gram-Schmidt on the vectors {yj}kj=1 to form the ON set {qj}kj=1.

Claim: The matrix Q =
[
q1 q2 · · ·qk

]
is often a good answer to our “task”.

A basic analysis of the scheme is easy. Let A = UDV∗ be the exact SVD of A. Then

Y = AΩΩΩ = UDV∗ΩΩΩ = {Set ΨΨΨ := V∗ΩΩΩ} = UDΨΨΨ.

Observe that ΨΨΨ also has a Gaussian distribution. We find that

yi = Y(:, i) = UDΨΨΨ(:, i) =
n∑

j=1
ψj,i σj uj.

Cost of scheme: O(mk2) flops + the cost of forming AΩΩΩ. (So O(mnk) in general.)



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Algorithm: (Assuming k is given in advance.)
1. Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

2. Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

Recall that

yi =
n∑

j=1

(
σjψji

)
uj, where ψji ∼ N (0,1).

Quick facts:

• When A has exact rank k, the algorithm succeeds (i.e. A = QQ∗A) with probability 1.
• When the singular values decay rapidly, we expect close to optimal results.
• When the singular values decay slowly, the basis will likely not be good.
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Algorithm: (Assuming k is given in advance.)
1. Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

2. Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

Recall that

yi =
n∑

j=1

(
σjψji

)
uj, where ψji ∼ N (0,1).

Quick facts:

• When A has exact rank k, the algorithm succeeds (i.e. A = QQ∗A) with probability 1.
• When the singular values decay rapidly, we expect close to optimal results.
• When the singular values decay slowly, the basis will likely not be good.
This can be fixed via powering, to boost the separation between large/small svds.
For instance, replace Y = AΩΩΩ by Y = AA∗AΩΩΩ. Then yi =

∑n
j=1
(
σ3j ψji

)
uj.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.
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RSVD with one step of power iteration (q=1)

RSVD with two steps of power iteration (q=2)

The plot shows the errors ek = ‖A− PkA‖, where Pk is the orthogonal projection onto
the first k columns of Y =

(
AA∗

)qAΩΩΩ, and where ΩΩΩ is a Gaussian random matrix. (For
clarity, no oversampling is done.)
(The matrix A is an approximation to a scattering operator for a Helmholtz problem.)
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The plot shows the errors ek = ‖A− PkA‖, where Pk is the orthogonal projection onto
the first k columns of Y =

(
AA∗

)qAΩΩΩ, and where ΩΩΩ is a Gaussian random matrix. (For
clarity, no oversampling is done.)
(The matrix A now has singular values that decay slowly.)



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
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]
. The rank k may or may not be known.

The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

The same plot as before, but now showing 100 instantiations.

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

S
p
e
c
tr

a
l 
n
o
rm

 e
rr

o
r

Exact SVD (optimal)

Basic RSVD (average of all runs)

RSVD with one step of power iteration (average of all runs)

RSVD with two steps of power iteration (average of all runs)

The darker lines show the mean errors across the 100 experiments.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

The probabilistic behavior of the error has been studied extensively, and reasonably tight
theoretical bounds have been established.

A small sample of references addressing this and related problems:
• Frieze, Kannan & Vempala, 2004.
• Martinsson, Rokhlin & Tygert,YALEU/DCS/RR-1361, 2006.
• Liberty, Woolfe, Martinsson, Rokhlin & Tygert, PNAS, 2008.
• Halko, Martinsson & Tropp, SIAM Review, 2011.
• Witten & Candès, Algorithmica, 2015.
• Gu, SISC, 2015. Analysis of randomized subspace iteration.
• Musco & Musco, NIPS, 2015. Analysis of block Krylov methods.
• Saibaba, SIMAX, 2019. Accuracy of singular vectors.
• Martinsson & Tropp, Acta Numerica, 2020.



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

To illustrate, suppose that we seek to match the optimal error in a rank-k approximation.
We apply the basic randomized procedure involving ` ≥ k samples.
1. Draw an n× ` Gaussian random matrix ΩΩΩ. Omega = randn(n,l)

2. Form the m× ` sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× ` orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

The resulting error then satisfies

‖A−QQ∗A‖2 ≤ ‖D2‖
2 + ‖D2ΨΨΨ(n−k),`ΨΨΨ

†
k,`‖

2

where “ΨΨΨi,j” denotes an i × j matrix drawn from a Gaussian distribution, and where
D2 = diag(σk+1, σk+2, . . . , σmin(m,n)) holds the “tail” singular values of A.

Note: The term ‖D2‖2 is the minimal error, according to Eckart-Young.

The suboptimality term depends on σmin(ΨΨΨk,`), where ΨΨΨk,` is a k × ` Gaussian matrix.
• With no oversampling, k = `, we get terrible results!
• With lots of oversampling, k � `, things look good. (“Marchenko–Pastur” case)

What about the case where ` is only slightly larger than k?



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

To illustrate, suppose that we seek to match the optimal error in a rank-k approximation.
We apply the basic randomized procedure involving ` ≥ k samples.
1. Draw an n× ` Gaussian random matrix ΩΩΩ. Omega = randn(n,l)

2. Form the m× ` sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× ` orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

The resulting error then satisfies

‖A−QQ∗A‖2 ≤ ‖D2‖
2 + ‖D2ΨΨΨ(n−k),`ΨΨΨ

†
k,`‖

2

where “ΨΨΨi,j” denotes an i × j matrix drawn from a Gaussian distribution, and where
D2 = diag(σk+1, σk+2, . . . , σmin(m,n)) holds the “tail” singular values of A.

Note: The term ‖D2‖2 is the minimal error, according to Eckart-Young.
Proposition: (Chen & Dongarra 2005) Let ΨΨΨ be a Gaussian matrix of size k × k + p
where p ≥ 2. Then

(
E
[
‖ΨΨΨ†‖2F

])1/2 ≤√ k
p−1 and E

[
‖ΨΨΨ†‖

]
≤ e
√
k+p
p .



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices.
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Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Using the bound ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2ΨΨΨ(n−k),`ΨΨΨ
†
k,`‖

2, along with the bounds on
σmin(Ψk,`), we can bound the expectation of the error:
Theorem: (Halko, Martinsson, Tropp 2011) Let A be an m× n matrix with singular
values {σj}

min(m,n)
j=1 . Let k be a target rank, and let p be an over-sampling parameter

such that p ≥ 2 and k + p ≤ min(m,n). Let ΩΩΩ be a Gaussian random matrix of size
n× (k + p) and set Q = orth(AΩΩΩ). Then the average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

There are also bounds on the likelihood of a large deviation from the expectation.
(It turns out to decay super-exponentially fast as p increases!)



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Let us now incorporate over-sampling by p vectors (say p = 5 or p = 10):
1. Draw an n× (k + p) Gaussian random matrix ΩΩΩ. Omega = randn(n,k+p)

2. Form the m× (k + p) sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× (k + p) orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)



Task: Let A be an m× n matrix of approximately low rank. We seek to build an
approximate ON basis {qj}kj=1 for its range. The objective is to make ‖A−QQ∗A‖ small
where Q =

[
q1 · · · qk

]
. The rank k may or may not be known.

Let us now incorporate over-sampling by p vectors (say p = 5 or p = 10):
1. Draw an n× (k + p) Gaussian random matrix ΩΩΩ. Omega = randn(n,k+p)

2. Form the m× (k + p) sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× (k + p) orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

Important: It turns out to be easy to “filter out” any excess information gathered as a
result of over-sampling:

4. Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

5. Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

We refer to this full algorithm as the randomized SVD (RSVD).

(Optionally, the factorization can be truncated to drop the last p singular modes.)

Key point: Over-sampling is entirely safe in this context!



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Observation: Step (4) contributes an additional step of power iteration.

As a consequence, the leading singular values are computed more accurately than the
previous theorem might indicate.

Additionally, you get extra accuracy in the right singular vectors:
Theorem: (Y. Dong, P.G. Martinsson, Y. Nakatsukasa 2023) For a rank-l randomized SVD with the Gaussian embedding and
q ≥ 0 power iterations, when the oversampled rank l satisfies l = Ω(k) (where k is the target rank, k < l < r = rank(A)) and q is

reasonably small such that η =

(∑r
j=k+1 σ

4q+2
j

)2
∑r

j=k+1 σ
2(4q+2)
j

satisfies η = Ω(l), with high probability (at least 1− e−Θ(k) − e−Θ(l)), there exist

distortion factors 0 < ε1, ε2 < 1 such that

sin∠i

(
Uk, Ûl

)
≤

(
1 +

1− ε1
1 + ε2

· l∑r
j=k+1 σ

4q+2
j

· σ4q+2
i

)−1
2

(1)

sin∠i

(
Vk, V̂l

)
≤

(
1 +

1− ε1
1 + ε2

· l∑r
j=k+1 σ

4q+4
j

· σ4q+4
i

)−1
2

(2)

for all i ∈ [k], where ε1 = Θ

(√
k
l

)
and ε2 = Θ

(√
l
η

)
.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Practical note: The algorithm described is very communication efficient, as the
interaction with A is through the matrix-matrix multiplication only.

• High practical speed: matrix-matrix multiplication is very parallelizeable, and has
been highly optimized for many architectures.
• Order of magnitude acceleration for data stored out-of-core.
• Highly efficient for GPU computing, or mobile computing (phones, etc).

Note: Krylov methods share the advantage that the interaction with A is only via the
action of the matrix on vectors. The difference is that in the RSVD, the matrix-vector
multiplies happen in batches, which is much more efficient.
Block Krylov methods are more similar in this regard.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What if you do not know k in advance?

A theoretician’s solution: Try k = 1 first, then k = 2, k = 4, k = 8, . . .

The simplest solution: Execute the “randomized Gram-Schmidt” process
incrementally, one vector at a time. It turns out to be remarkably simple to obtain an
estimate for the residual via randomized norm estimation (it is basically free!). In fact,

E
[
‖y′j+1‖

2] = ‖A−QjQ∗j A‖
2
F.

This follows from the basic fact that if g is a Gaussian vector, then E
[
‖Xg‖2

]
= ‖X‖2F.

Doing it one block at a time is even more efficient, and brings Bernstein to bear.
“randQB” method [SISC 38(5), pp. S485–S507, 2016]



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What if you do not know k in advance?

A practical solution: Fix a block size b (say b = 50), then incrementally build a
factorization of rank k = b, k = 2b, k = 3b, . . . , reusing previously computed information.

The matrix A is driven to upper triangular form through a sequence of unitary maps.
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Question: What if you do not know k in advance?

A practical solution: Fix a block size b (say b = 50), then incrementally build a
factorization of rank k = b, k = 2b, k = 3b, . . . , reusing previously computed information.

The matrix A is driven to upper triangular form through a sequence of unitary maps.

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors determined using the
randomized range finder. Oversampling is a must, powering is possible.
“Update-free” version has been developed for sparse matrices.

The end result of the “randUTV” algorithm is a factorization
A = U T V∗

m× n m×m m× n n× n
where U and V are unitary, and where T is upper triangular, with almost all its mass
concentrated to its diagonal entries.

randUTV is very fast in practice, and outperforms CPQR in almost every regard.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Numerical results: Exact singular values of A vs. diagonal values of T (in A = UTV∗).
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Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

References:
• C. Chen, N. Heavner, A. Gopal, P.G. Martinsson, “Efficient algorithms for computing rank-revealing

factorizations on a GPU”. Numerical Linear Algebra with Applications, accepted for publication.
• N. Heavner, P.-G. Martinsson, G. Quintana-Orti, “Computing rank-revealing factorizations of matrices

stored out-of-core”, Concurrency and Computation: Practice and Experience, in press.
• N. Heavner, F. Igual, G. Quintana-Orti, P.G. Martinsson, “Algorithm 1022: Efficient Algorithms for

Computing a Rank-Revealing UTV Factorization on Parallel Computing Architectures”. ACM TOMS,
48(2), pp. 1–42, 2022.

• P.G. Martinsson, G. Quintana-Orti, N. Heavner, “randUTV: A blocked randomized algorithm for
computing a rank-revealing UTV factorization.” ACM TOMS, 45(1), pp. 1–26, 2019.



Randomized SVD: Double-sided approximation

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Recall that the output of the RSVD is the matrix

Aapprox = UDV∗ = QQ∗A,

where Q holds the basis for ran(A) from the randomized range finder in steps (1)–(3).

Since QQ∗ is the orthogonal projector onto ran(AΩΩΩ), we can rewrite Aapprox as:

Aapprox = QQ∗A = (AΩΩΩ) (AΩΩΩ)†A.

Question: Can we sketch A from both sides?

Answer: Yes; simply draw a sketch ΨΨΨA of the row space as well. Then

Anewapprox = (AΩΩΩ)
(
AΩΩΩ
)†A (ΨΨΨA)†

(
ΨΨΨA
)

= · · · = (AΩΩΩ)
(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA).

(Formula goes back at least to Wedderburn 1934.)
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Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 1:
The matrix Aapprox can be built in a single pass over A.
In other words, we need to view each matrix entry of A only once.
This cannot be done using deterministic methods (as far as I know).
“Streaming” or “single-view” algorithm.

Note: Using different over-sampling parameters p and p′ for the column and row spaces is often better.

References: Alon, Gibbons, Matias and Szegedy (2002); Woolfe, Liberty, Rokhlin, and Tygert (2008);
Clarkson and Woodruff (2009); Li, Nguyen and Woodruff (2014); Boutsidi, Woodruff and Zhong (2016),
Tropp, Yurtsever, Udell and Cevher (2017); Pourkamali-Anaraki and Becker (2019); Wang, Gittens and
Mahoney (2019); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021;
. . .many more . . .



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.

O(mnk) matches the flop count of Gram-Schmidt, or a Krylov method applied to a dense
matrix.



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
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Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops.
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Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!

A ΩΩΩ AΩΩΩ

The matrix ΩΩΩ is a sparse random matrix. Two nonzero entries are placed randomly in
each row. In consequence, each column of A contributes to precisely two columns of the
sample matrix Y = AΩΩΩ. This structured random map has O(mn) complexity, is easy to
work with practically, and often provides good accuracy.



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!

When a structured random matrix is used, overall cost can be reduced to O(mn + k3).
Despite the pseudo-inverse, this can be done in a numerically stable way.



Randomized SVD: Double-sided approximation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p′)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!

Theory is very weak, and typically requires ` = k + p ∼ k log(k).
In practice, ` ≈ 2k is almost always more than enough.
References: Ailon & Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006); Halko, Martinsson,

Tropp (2011); Clarkson & Woodruff (2013); Meng & Mahoney (2013); Nelson & Nguyen (2013); Urano

(2013); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021. Much

subsequent work — “Fast Johnson-Lindenstrauss transform.”



Randomized SVD: A posteriori error estimation With Yuji Nakatsukasa, 2024

Question: How estimate the error in a specific instantiation of a randomized algorithm?

Our framing is that we are given an m× n matrix A, and use the randomized range
finder to build an approximation:
• Draw an n× ` random matrix ΩΩΩ, for say ` = k + 10 or ` = 2k.
Note: We may use a very fast, but possibly less reliable, class of random matrices.
• Form Y = AΩΩΩ, and perform QR factorization [Q,∼] = qr(Y,0).
• Use Aapprox = Q

(
Q∗A

)
as the approximation.

Our objective is to estimate the error

e = ‖A− Aapprox‖

using only the information at hand!

Why care?
• Enable the use of “risky” random dimension reducing maps.
Cf. the “responsibly reckless” mode of computing, in Dongarra’s terminology.
• The numerical rank of A may not be known in advance.
• Need bounds and estimates that involve only quantities actually at hand.



Randomized SVD: A posteriori error estimation With Yuji Nakatsukasa, 2024

Question: How estimate the error in a specific instantiation of a randomized algorithm?
Answer: You can very inexpensively compute a certificate of accuracy. To illustrate,
consider the RSVD: We draw a random matrix ΩΩΩ, set Y = AΩΩΩ, and approximate A via

Aapprox = QQ∗A,

where [Q,∼] = qr(A,0). We seek to estimate the error

e = ‖A− Aapprox‖F.

The idea is to draw a thin slice of a Gaussian, G ∈ Rn×q, for q = 10 say, that is
quarantined from the construction of Aapprox and is used purely to estimate the error.
Evaluate B = AG. Then use that for any matrix H, we have

E
[
‖HG‖2F

]
= q‖H‖2F.

Setting H = A− Aapprox, we use the estimate

‖A− Aapprox‖2F ≈
1
q‖(A− Aapprox)G‖2F =

1
q‖(I−QQ∗)AG‖2F =

1
q‖(I−QQ∗)B‖2F.

Very reliable. Inexpensive. Martinsson, Tropp, Acta Numerica 2020, Sec. 12.2.

But we can do better still! New!



Randomized SVD: A posteriori error estimation With Yuji Nakatsukasa, 2024

Question: How estimate the error in a specific instantiation of a randomized algorithm?
Recall from previous slide: Draw a random matrix ΩΩΩ, set Y = AΩΩΩ, approximate A via
Aapprox = QQ∗A, where [Q,∼] = qr(Y,0). We seek to estimate e = ‖A− Aapprox‖F. To
get a certificate of accuracy, we draw G, set B = AG, and use e2 ≈ 1

q‖(I−QQ∗)B‖2F.



Randomized SVD: A posteriori error estimation With Yuji Nakatsukasa, 2024

Question: How estimate the error in a specific instantiation of a randomized algorithm?
Recall from previous slide: Draw a random matrix ΩΩΩ, set Y = AΩΩΩ, approximate A via
Aapprox = QQ∗A, where [Q,∼] = qr(Y,0). We seek to estimate e = ‖A− Aapprox‖F. To
get a certificate of accuracy, we draw G, set B = AG, and use e2 ≈ 1

q‖(I−QQ∗)B‖2F.
Acceleration via fast sketching: Observe that ‖(I−QQ∗)B‖2F is the minimal error
when seeking to fit B in ran(Q) = ran(AΩΩΩ) = ran(Y). So

‖A− Aapprox‖2F ≈
1
q‖(I−QQ∗)B‖2F =

1
q inf
M∈R`×q

‖YM− B‖2F.

Next, we sketch the least squares problem. Draw FJLT ΨΨΨ ∈ Rm×s, with s = O(k), then

‖A− Aapprox‖2F ≈
1
q
m
s inf

M∈R`×q
‖ΨΨΨ∗

(
YM− B)‖2F.

So in the end, all we need to do is to approximately solve the least squares problem(
ΨΨΨ∗Y

)
M =

(
ΨΨΨ∗B

)
s× ` `× q s× q

The total extra cost (beyond the cost of RSVD):
• q extra matvecs. (Think q = 10.) Can be done as a block.
• Sketching step – evaluate ΨΨΨ∗Y and ΨΨΨ∗B. Cost O(m`).
• Solve small least squares problem. Cost O(s `2) = O(k3).



Randomized SVD: A posteriori error estimation With Yuji Nakatsukasa, 2024

Question: How estimate the error in a specific instantiation of a randomized algorithm?
Recall from previous slide: Draw a random matrix ΩΩΩ, set Y = AΩΩΩ, approximate A via
Aapprox = QQ∗A, where [Q,∼] = qr(Y,0). We seek to estimate e = ‖A− Aapprox‖F. To
get a certificate of accuracy, we draw G, set B = AG, and use e2 ≈ 1

q‖(I−QQ∗)B‖2F.
Acceleration via fast sketching: Observe that ‖(I−QQ∗)B‖2F is the minimal error
when seeking to fit B in ran(Q) = ran(AΩΩΩ) = ran(Y). So

‖A− Aapprox‖2F ≈
1
q‖(I−QQ∗)B‖2F =

1
q inf
M∈R`×q

‖YM− B‖2F.

Next, we sketch the least squares problem. Draw FJLT ΨΨΨ ∈ Rm×s, with s = O(k), then

‖A− Aapprox‖2F ≈
1
q
m
s inf

M∈R`×q
‖ΨΨΨ∗

(
YM− B)‖2F.

So in the end, all we need to do is to approximately solve the least squares problem(
ΨΨΨ∗Y

)
M =

(
ΨΨΨ∗B

)
s× ` `× q s× q

In conclusion:
• Very cheap error estimation. Gives accurate estimates.
• Involves only available data.
• No need to even form Q! Can be done as soon as AΩΩΩ is available.



Numerical experiments

Question: Which type of random matrix should I use for the sketching?

We will compare:

• Optimality: How good of a basis for the row space do you get?

• Computational cost: What is the practical speed?

(Dong & Martinsson, to appear in Adv. Comp. Math. Also arXiv:2104.05877)



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

100 200 300 400 500 600 700
10-1

100
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103
Spectral norm errors

100 200 300 400 500 600 700

100

101

102

103
Frobenius norm errors

The “MNIST” test matrix is dense and of size 784× 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.

NOTE TO SELF: Check whether it should be TRANSPOSE for MINST???



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)
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Frobenius norm errors

The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282× 8 617,

with 20 635 nonzero entries.



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

50 100 150 200 250 300
10-5

10-4

10-3

10-2

10-1
Spectral norm errors
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The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000× 1 000.

CHECK INFO ON DETAILS ON SNN!



Comparison of different random matrices — execution time

The runtime of applying different subspace embeddings ΩΩΩ ∈ R`×m to an arbitrary dense
matrix of size m× n, scaled with respect to the ambient dimension m, at different
embedding dimensions ` and a fixed number of columns n = 100.
(Note: This n is artificially small, but the scaling with n is linear.)

Note: Observe that the dimension of the sketch is quite high in these examples.



Random mixing for solving linear systems & least squares problems
Having access to unitary random maps opens the door other linear algebraic problems:
Computing full rank-revealing factorizations: Let A be an n× n matrix. To build a full
rank-revealing factorization of A, draw ΩΩΩ from a Haar distribution, and form

Y = AΩΩΩ.

Then perform a QR factorization of Y, so that

Y = QR.

One can prove that then a “rank-revealing” factorization is obtained through

A = QRΩΩΩ∗.

The point here is communication efficiency. (Demmel, Dumitriu, Holtz 2007)
Setting Y = AA∗AΩΩΩ is even better! (Heavner, Chen, Gopal, Martinsson 2023)
Solving linear systems without pivoting: Consider

Ax = b.

Randomized preconditioning results in a system that can be solved without pivoting(
ΨΨΨ∗AΩΩΩ

) (
ΩΩΩ∗x

)
= ΨΨΨ∗b.

Again, the point is communication efficiency. (Parker 1995)



Random mixing for solving linear systems & least squares problems
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.

Draw a random embedding ΩΩΩ ∈ Rm×d and construct a smaller sketched system.

A bold approach — “sketch-to-solve”:
Find the vector x that solves the sketched system.
A safe approach — “sketch-to-precondition”:
Build a preconditioner M ∈ Rn×n by factorizing ΩΩΩ∗A so that ΩΩΩ∗A = QM.
Iterate on the preconditioned linear system (AM−1) (Mx) = b.
Ideal use of randomization. Guaranteed accuracy if you evaluate the residual.

Rokhlin/Tygert (2008), Avron/Maymounkov/Toledo (2010), many more



Random mixing for solving linear systems & least squares problems
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.

Draw a random embedding ΩΩΩ ∈ Rm×d and construct a smaller sketched system.

Question: Can the sketch be down-sampling? Simply pick d equations randomly?



Random mixing for solving linear systems & least squares problems
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.

Draw a random embedding ΩΩΩ ∈ Rm×d and construct a smaller sketched system.

Question: Can the sketch be down-sampling? Simply pick d equations randomly?
No, in general. Can fail catastrophically.
Yes, if you first randomly mix the equations.

Note: There are situations where randomized sampling is an essential tool – primarily when the whole
matrix cannot be assembled. Examples include kernel ridge regression and certain gigantic linear systems
arising in electronic structure calculations. “Down-sample and solve” is unavoidable in such cases.

It can also be very helpful when A has structure, as in tensor approximation.



Outline

• Methods based on randomized embeddings
• Low rank approximation: The randomized SVD.
• Streaming and single-pass methods.
• A posteriori error estimation.
• Structured random maps (“fast Johnson-Lindenstrauss transforms”).
• Linear solvers: Sketch-to-solve vs. Sketch-to-precondition.
• Las Vegas style methods: Extremely robust and reliable.

• Methods based on randomized sampling
• Monte Carlo style methods→ less reliable, less accurate, less robust.
• Enable the solution of stupendously large problems that would otherwise be intractable.

• Approximation of rank-structured matrices
• Approximation of global operators of mathematical physics (solution operators, DtNs, . . . ).
• Tools for matrices that are not of global low rank, but have structure that can be exploited.
• Conceptually related to Fast Multipole Methods, Fast Direct Solvers, Calderón-Zygmund theory . . .



Matrix approximation by sampling

Two paradigms for how to use randomization to in linear algebra:

Randomized embeddings Randomized sampling
(What we have discussed so far.) (What we will discuss next.)

Often faster than classical deterministic
methods.

Sometimes far faster than classical
deterministic methods. Faster than
matrix-vector multiplication, even.

Highly reliable and robust. Can fail in the “general” case.

High accuracy is attainable. Typically low accuracy.

Best for scientific computing. Enables solution of large scale prob-
lems in “big data” where no other meth-
ods work.

Powerful tool in situations where you
only have access to “oversampled” data
that artificially inflates the dimensional-
ity of the problem.
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Suppose that A =
T∑
t=1

At where each At is “simple” in some sense.



Matrix approximation by sampling

Suppose that A =
T∑
t=1

At where each At is “simple” in some sense.

Example: Sparse matrix written as a sum over its nonzero entries
5 −2 0
0 0 −3
1 0 0


︸ ︷︷ ︸

=A

=


5 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A2

+


0 0 0
0 0 −3
0 0 0


︸ ︷︷ ︸

=A3

+


0 0 0
0 0 0
1 0 0


︸ ︷︷ ︸

=A4

Example: Each Ai could be a column of the matrix
5 −2 7
1 3 −3
1 −1 1


︸ ︷︷ ︸

=A

=


5 0 0
1 0 0
1 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 3 0
0 −1 0


︸ ︷︷ ︸

=A2

+


0 0 7
0 0 −3
0 0 1


︸ ︷︷ ︸

=A3

.

Example: Matrix-matrix multiplication broken up as a sum of rank-1 matrices:

A = BC =
∑
t

B( : , t)C(t, : ).



Matrix approximation by sampling

Suppose that A =
T∑
t=1

At where each At is “simple” in some sense.

Let {pt}Tt=1 be a probability distribution on the index vector {1,2, . . . ,T}.
Draw an index t ∈ {1,2, . . . ,T} according to the probability distribution given, and set

X =
1
pt
At.

Then from the definition of the expectation, we have

E
[
X
]

=
T∑
t=1

pt ×
1
pt
At =

T∑
t=1

At = A,

so X is an unbiased estimate of A.
Clearly, a single draw is not a good approximation — unrepresentative, large variance.
Instead, draw several samples and average:

X̄ =
1
k

k∑
t=1

Xt,

where Xt are independent samples from the same distribution.
As k grows, the variance will decrease, as usual. Various Bernstein inequalities apply.



Matrix approximation by sampling

As an illustration of the theory, we cite a matrix-Bernstein result from J. Tropp (2015):

Theorem: Let A ∈ Rm×n. Construct a probability distribution for X ∈ Rm×n that satisfies

E
[
X
]

= A and ‖X‖ ≤ R.

Define the per-sample second-moment: v(X) := max{‖E[XX∗]‖, ‖E[X∗X]‖}.
Form the matrix sampling estimator: X̄k =

1
k
∑k

t=1Xi where Xt ∼ X are iid.

Then E‖X̄k − A‖ ≤
√

2v(X) log(m + n)

k +
2R log(m + n)

3k .

Furthermore, for all s ≥ 0: P
[
‖X̄k − A‖ ≥ s

]
≤ (m + n) exp

(
−ks2/2

v(X) + 2Rs/3

)
.

Suppose that we want E‖A− X̄‖ ≤ 2ε. The theorem says to pick

k ≥ max

{
2v(X) log(m + n)

ε2
,
2R log(m + n)

3ε

}
In other words, the number k of samples should be proportional to both v(X) and to the
upper bound R.

The scaling k ∼ 1
ε2

is discouraging, and unavoidable (since error ε ∼ 1/
√
k).



Matrix approximation by sampling: Matrix matrix multiplication

Given two matrices B and C, consider the task of evaluating

A = B C =
∑T

t=1B(:, t)C(t, :).

m× n m× T T × n

Sampling approach:
1. Fix a probability distribution {pt}Tt=1 on the index vector {1,2, . . . ,T}.
2. Draw a subset of k indices J = {t1, t2, . . . , tk} ⊆ {1,2, . . . ,T}.
3. Use Ā = 1

k
∑k

i=1
1
pti
B( : , ti)C(ti, : ) to approximate A.

You get an unbiased estimator regardless of the probability distribution. But the
computational profile depends critically how which one you choose. Common choices:

Uniform distribution: Very fast. Not very reliable or accurate.

Sample according to column/row norms: Cost is O(mnk), which is much better than
O(mnT ) when k � T . Better outcomes than uniform, but not great in general case.

In either case, you need k ∼ 1
ε2

to attain precision ε.



Matrix approximation by sampling: Low rank approximation.

Given an m× n matrix A, we seek a rank-k matrix Ā such that ‖A− Ā‖ is small.

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use as your approximation
Ā = C U R,

m× n m× k k × k k × n
where U is computed from information in A(I, J). (It should be an approximation to
the optimal choice U = C†AR†. For instance, U = A(I, J)−1.)

The computational profile depends crucially on the probability distribution that is used.

Uniform probabilities: Can be very cheap. But in general not reliable.

Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Then quite strong theorems
can be proven on the quality of the approximation. Problem: Computing the probability
distribution is as expensive as computing a partial SVD.



Matrix approximation by sampling: Connections to randomized embedding.

Task: Find a rank k approximation to a given m× n matrix A.

Sampling approach: Draw a subset of k columns Y = A(:, J) where J is drawn at
random. Let our approximation to the matrix be

Ak = YY†A.

As we have seen, this in general does not work very well. But it does work well for the
class of matrices for which uniform sampling is optimal.

We can turn A into such a
matrix! Let ΩΩΩ be a matrix drawn from a uniform distribution on the set of n× n unitary
matrices (the “Haar distribution”). Then form

Ã = AΩΩΩ.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a great sample through

Y = Ã(:, J) = AΩΩΩ(:, J).

The n× k “slice” ΩΩΩ(:, J) is in a sense an optimal random embedding.

Fact: Using a Gaussian matrix is mathematically equivalent to using ΩΩΩ(:, J).

Question: What other choices of random projection might mimic the action of ΩΩΩ(:, J)?
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Matrix approximation by sampling: Structured random embeddings

Task: Find a rank k approximation to a given m× n matrix A.

Approach: Draw an n× k random embedding ΩΩΩ, set Y = AΩΩΩ, and then form Ak = YY†A.

Choices of random embeddings:

• Gaussian (or slice of Haar matrix): Optimal. Leads to O(mnk) overall cost.

• Subsampled randomized Fourier transform (SRFT): Indistinguishable from
Gaussian in practice. Leads to O(mnlog(k)) overall cost. Adversarial counter
examples can be built, so supporting theory is weak.

• Chains of Givens rotations: Similar profile to an SRFT.

• Sparse random projections: Need at least two nonzero entries per row. Works
surprisingly well.

• Additive random projections: You can use a map with only ±1 entries.



Matrix approximation by sampling: Key points

• These techniques provide a path forwards for problems where traditional techniques
are not viable. Examples of applications:

• Kernel matrices in data analysis. Matrices are dense, and you cannot afford to form the entire
matrix. “Kernel ridge regression”.

• Kronecker product matrices that arise in tensor approximations.

• Vast linear systems arising in quantum chemistry.

In all these examples, there is reason to expect the data to be amenable to sampling.

• Popular topic for theory papers.

• When they are viable, techniques based on randomized embeddings are preferable;
they yield higher accuracy, and less variability in the outcome.



Outline

• Methods based on randomized embeddings
• Low rank approximation: The randomized SVD.
• Streaming and single-pass methods.
• A posteriori error estimation.
• Structured random maps (“fast Johnson-Lindenstrauss transforms”).
• Linear solvers: Sketch-to-solve vs. Sketch-to-precondition.
• Las Vegas style methods: Extremely robust and reliable.

• Methods based on randomized sampling
• Monte Carlo style methods→ less reliable, less accurate, less robust.
• Enable the solution of stupendously large problems that would otherwise be intractable.

• Approximation of rank-structured matrices
• Approximation of global operators of mathematical physics (solution operators, DtNs, . . . ).
• Tools for matrices that are not of global low rank, but have structure that can be exploited.
• Conceptually related to Fast Multipole Methods, Fast Direct Solvers, Calderón-Zygmund theory . . .



Rank-structured matrices

We use the term rank-structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank-structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.

More recently, have been shown to arise in data science as well — kernel matrices,
covariance matrices, Hessians, etc.



Rank-structured matrices

We use the term rank-structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank-structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .



In real life, tessellation patterns of rank-structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Approximation of rank-structured matrices

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Sample the column space of the matrix:

If A 6= A∗, then sample the row space too:



Approximation of rank-structured matrices

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

The low rank case: In the particularly simple case where A has global rank k, we revert
to the case we considered in the first part of the talk.

In the current framework, the randomized SVD takes the form:

• Set s = k and draw a “test matrix” ΩΩΩ ∈ RN×s from a Gaussian distribution.
• Form the “sample matrix” Y = AΩΩΩ.
• Build ΨΨΨ to hold an ON basis for ran(Y), e.g., [ΨΨΨ,∼] = qr(Y,0).
• Form Z = A∗ΨΨΨ.

Then A = ΨΨΨ
(
ΨΨΨ∗A

)
= ΨΨΨZ∗ with probability 1.

In the more typical case where A is only approximately of rank k, some oversampling is
required to get a reliable scheme. (Say s = k + 10, or s = 2k, or some such.)

Rank structured case: Extract all the low-rank matrices, and all the dense blocks, from
a very limited set of global “probes”. How do you disentangle the mixed samples?



Approximation of rank-structured matrices

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Why generalize from “global low rank” to “rank-structured”:
• Integral operators from classical physics. If you have a legacy method for the
matrix-vector multiple (e.g. the Fast Multipole Method), then we could enable a
range of operations – LU factorization, matrix inversion, etc.
• Multiplication of operators. Useful for forming Dirichlet-to-Neumann operators, for
combining solvers of multi-physics problems, etc.
• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices. This overcomes the key computational bottleneck, and for instance
admits the acceleration of the LU factorization of a “finite element” matrix from
O(N2) to near linear complexity.



Approximation of rank-structured matrices

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

For the most general structured matrix formats (e.g. H-matrices), the problem has been
solved in principle, and close to linear complexity algorithms exist:
• L. Lin, J. Lu, L. Ying, JCP, 230(10), pp. 4071–4087, 2011.
• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.

However, existing methods require ∼ k log(N) matvecs, and do not have great practical
speed. For instance, as dimension d increases, the bound on flops has an 8d factor . . .

Recently proposed algorithms have reduced the pre-factors by constructing bespoke
random matrices that are designed to be optimal for any given tessellation pattern. The
key technical idea is to formulate admissibility criteria that form a graph, and then exploit
powerful graph coloring algorithms. This technique also enables compression of kernel
matrices that arise in ML. [J. Levitt & P.G. Martinsson, JCAM 451(1), 2024.]



Approximation of rank-structured matrices

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

The good news is that in the context of numerical PDEs, more specialized rank
structured formats are often sufficient — hierarchically semi-separable matrices,
hierarchically block-separable matrices, “H-matrices with weak admissibility”, etc.

For these matrices, algorithms with true linear complexity and high practical speed exist.

First generation algorithms were not fully black box, as they required the ability to
evaluate a small number of matrix entries explicitly.
• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, and others. Widely used.

Recent: Fully black box algorithm with true linear complexity and high practical speed:
• J. Levitt & P.G. Martinsson, SISC, 46(3), 2024.

Even more recent: Do inversion and compression simultaneously→ order of magnitude
reduction in memory requirements. [Anna Yesypenko PhD thesis, UT-Austin, Nov. 2023]



Approximation of rank-structured matrices – A naive approach
Consider the task of finding a basis matrix U4 for node 4 using randomized sampling.
We seek a sample of A(I4, Ic4), the HBS row block of node 4.

The naive approach is to sample with a random matrix ΩΩΩ ∈ RN×r , r = k + 10, that has a
block of zeros in rows indexed by I4. Then Y(I4, :) will contain a sample of A(I4, Ic4).

Y = A ΩΩΩ

This scheme requires taking a separate set of r samples for each leaf node, for a total of
∼ rN/m samples. There is a lot of wasted information in Y.
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Approximation of rank-structured matrices – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)



Approximation of rank-structured matrices – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)
In this case, we can explicitly form the diagonal blocks, and subtract their contributions:

Y′ = Y − D ΩΩΩ =
(
A− D

)
ΩΩΩ

Processing Z analogously, we obtain basis matrices Yj and Zj for j ∈ {4,5,6,7} such that

Ai,j ≈ Yi Bi,j Z∗j , i 6= j,

for some small matrices Bi,j. How do you find them?



Approximation of rank-structured matrices – fully black box
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×(r+m), where m is the leaf
node size. (Think m ≈ 2k and r = k + 10.)

Y = A ΩΩΩ

Let us consider the problem of finding a basis matrix U4 for the block A(I4, Ic4).

Since ΩΩΩ(I4, : ) is of size m× (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).Then

YQ4 = A ΩΩΩQ4.

Orthonormalizing the sample gives basis matrix U4,

U4 = qr(Y(I4, :)Q4).
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Approximation of rank-structured matrices – fully black box
• For each leaf node τ , we compute

Qτ = nullspace(ΩΩΩ(Iτ , :), r)

Uτ = qr(Y(Iτ , :)Qτ ).

• Uτ only depends on ΩΩΩ(Iτ , :) and Y(Iτ , :).
• We only need r + m samples to find Uτ for every leaf node τ .
• ΩΩΩQτ is a Gaussian random matrix, except for the block intentionally zeroed out.



Approximation of rank-structured matrices – fully black box
Recall the telescoping factorization A = U(L)Ã(L)

(V(L))∗ + D(L).
Steps:
1. Find U(L),V(L).
2. Find D(L).
3. Compress Ã(L)

recursively.

Compute randomized samples of A and A∗.
1: Form Gaussian random random matrices ΩΩΩ and ΨΨΨ of size N × s.
2: Multiply Y = AΩΩΩ and Z = A∗ΨΨΨ.

Compress level by level from finest to coarsest.
3: for level ` = L,L− 1, . . . ,0 do
4: for node τ in level ` do
5: if τ is a leaf node then

6:
ΩΩΩτ = ΩΩΩ(Iτ , :), ΨΨΨτ = ΨΨΨ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
7: else
8: Let α and β denote the children of τ .

9:

ΩΩΩτ =

[
V∗αΩΩΩα

V∗βΩΩΩβ

]
, ΨΨΨτ =

[
U∗αΨΨΨα

U∗βΨΨΨβ

]

Yτ =

[
U∗α(Yα − DαΩΩΩα)

U∗β(Yβ − DβΩΩΩβ)

]
, Zτ =

[
V∗α(Zα − D∗αΨΨΨα)

V∗β(Zβ − D∗βΨΨΨβ)

]

10: if level ` > 0 then

11:
Qτ = nullspace(ΩΩΩτ , r), Pτ = nullspace(ΨΨΨτ , r)

Uτ = qr(YτQτ , r), Vτ = qr(ZτPτ , r)

12: Dτ = (I− UτU∗τ)YτΩΩΩ
†
τ + UτU∗τ

(
(I− VτV∗τ)ZτΨΨΨ

†
τ

)∗
13: else
14: Dτ = YτΩΩΩ

†
τ



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)

Ã(L)︷ ︸︸ ︷
(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A− U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗τAτ,τVτV∗τ
= . . .

= (I− UτU∗τ )YτΩΩΩ
†
τ + UτU∗τ

(
(I− VτV∗τ )ZτΨΨΨ

†
τ

)∗
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Approximation of rank-structured matrices – Compressing Ã(L)

To compute randomized samples of Ã(L), we multiply the telescoping factorization with ΩΩΩ

to obtain
Y = AΩΩΩ = (U(L)Ã(L)

(V(L))∗ + D(L))ΩΩΩ,

and rearrange to obtain

(U(L))∗(Y− D(L)ΩΩΩ)︸ ︷︷ ︸
sample matrix

= Ã(L)
(V(L))∗ΩΩΩ︸ ︷︷ ︸
test matrix

.



Key points

• Randomized algorithms for low rank approximation are highly efficient.
• Interaction with target matrix only through matrix-matrix multiplication→ very high practical speed.
• Particularly efficient for GPUs, out-of-core computing, distributed memory, etc.
• Structured random maps (“sparse J-L transform”):

Rank-k approximation in complexityO(mnlog k) or even less (vs. O(mnk) for deterministic).
• Single pass algorithms have been developed for streaming environments.

Not possible with deterministic methods!

• Randomized algorithms for solving linear systems
• Overdetermined least squares is particularly successful.
• The talk only scratched the surface – randomized Kaczmarz, acceleration of Krylov, . . .

• Randomized algorithms based on sampling make (some) huge problems tractable.
• Success stories: kernel ridge regression, computational chemistry, tensor approximation, . . .

• Randomized compression of rank-structured matrices.
• Black box randomized algorithms for compressing rank-structured matrices have been established.
• The combination of “fully black box” and “true linear complexity” was realized only recently.
• Powerful tools in the construction of fast direct solvers for elliptic PDEs.



Surveys:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. (Arxiv report 2002.01387)

Long survey summarizing major findings in the field in the past decade.
• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,

IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv

DOE report on randomized algorithms: https://arxiv.org/abs/2104.11079 (2021)


