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Problem addressed: How do you efficiently compute approximate solutions to linear
boundary value problems (BVPs) of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential
operator (constant coefficient, or not). Examples include:
• The Laplace equation.
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

In this lecture, focus will be on integral equation formulations:

c q(x) +

∫
Γ
k(x,y)q(y)dy = f (x), x ∈ Γ.
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boundary value problems (BVPs) of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential
operator (constant coefficient, or not). Examples include:
• The Laplace equation.
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Connection to Prof. Pan lecture: The solution operator to (BVP) takes the form

(SLN) u(x) =

∫
Ω
G(x,y)g(y)dy +

∫
Γ
F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are the Green’s functions. Our objective is in a sense to numerically
build an approximation to the solution operator (SLN). Observe that (SLN) is
mathematically benign: smoothing operator, bounded, sometimes compact, . . .



Review: Integral equation formulation of BVPs

Most integral equation formulations rely on the concept of a fundamental solution.

To illustrate, suppose first that we seek to solve a free space Helmholtz equation

−∆u(x)− κ2u(x) = f (x), x ∈ R3

where f is some given source function (typically with compact support), and κ is the
wave-number. The PDE is coupled with a radiation condition at infinity

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0

to ensure well-posedness.

In this case, we can write down the solution explicitly as

u(x) = [φκ ∗ f ](x) =

∫
R3
φκ(x − y) f (y)dy

where φκ is the free space fundamental solution to the Helmholtz equation

φκ(x) =
eiκ|x−y |
4π|x − y |.

This function satisfies the radiation condition at infinity, as well as

∆xφκ(x − y) = δ(x − y).



Review: Integral equation formulation of BVPs

Most integral equation formulations rely on the concept of a fundamental solution.

To illustrate, suppose first that we seek to solve a free space Helmholtz equation

−∆u(x)− κ2u(x) = f (x), x ∈ R3

where f is some given source function (typically with compact support), and κ is the
wave-number. The PDE is coupled with a radiation condition at infinity

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0

to ensure well-posedness.

In this case, we can write down the solution explicitly as

u(x) = [φκ ∗ f ](x) =

∫
R3
φκ(x − y) f (y)dy

where φκ is the free space fundamental solution to the Helmholtz equation

φκ(x) =
eiκ|x−y |
4π|x − y |.

This function satisfies the radiation condition at infinity, as well as

∆xφκ(x − y) = δ(x − y).



Review: Integral equation formulation of BVPs

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(3)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (3) has an alternative mathematical formulation in the BIE

(4) − πiσ(x) +

∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |
|x − y |

)
σ(y)dy = f (x), x ∈ ∂Ω.

The integral equation (4) has several advantages over the PDE (3), including:
• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
• Equation (4) is inherently well-conditioned (as a “2nd kind Fredholm equation”).

A challenge of integral equations is that they lead to dense coefficient matrices.



Review: Integral equation formulation of BVPs

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(3)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (3) has an alternative mathematical formulation in the BIE

(4) − πiσ(x) +

∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |
|x − y |

)
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• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
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For constant coefficient problems, we can often reformulate a 3D sparse problem as a
2D dense one.



Review: Nyström discretization of BIE: Consider an integral equation of the form

(BIE) 1
2q(x) +

∫
Γ
k(x,y)q(y)dy = v(x), x ∈ Γ.

We discretize (BIE) using the Nyström method based on a quadrature rule∫
Γϕ(y)dy ≈

∑N
i=1wi ϕ(xi)

designed for smooth functions ϕ.

x
i

Example: For a smooth contour Γ, you can use the Trapezoidal rule to build a quadrature rule. If the
contour is parameterized via

G : [0,L]→ R2 : t 7→ G(t),

then you can use
xi = G(ih), wi = h|G′(ih)|

where h = L/N is the grid spacing in parameter space.
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(BIE) 1
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∫
Γ
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We discretize (BIE) using the Nyström method based on a quadrature rule∫
Γϕ(y)dy ≈
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i=1wi ϕ(xi)

designed for smooth functions ϕ. Now collocate (BIE) at the quadrature nodes:
1
2q(xi) +

∫
Γ
k(xi,y)q(y)dy = v(x), i = 1,2,3, . . . ,N.

Then construct an N × N matrix A such that

(Q)
N∑
j=1

A(i, j)q(xj) ≈
∫

Γ
k(xi,y)q(y)dy , i = 1,2,3, . . . ,N.

This can often be done so that the vast majority of elements of A take the form

A(i, j) = k(xi,xj)wj.

The discretized version of (BIE) is then

Aq = v,

which relates the given vector v with entries v(i) = v(xi) to the sought vector q whose
elements should (hopefully!) satisfy qi ≈ q(xi).
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Note: Constructing matrix elements that ensure that (Q) holds is delicate, since
k(x,y) is almost always singular at the diagonal. Many papers written on this subject!
Luckily, this complication is localized to a small number of entries of the matrix.



Review: Nyström discretization of BIE: Consider an integral equation of the form

(BIE) 1
2q(x) +

∫
Γ
k(x,y)q(y)dy = v(x), x ∈ Γ.

We discretize (BIE) using the Nyström method based on a quadrature rule∫
Γϕ(y)dy ≈

∑N
i=1wi ϕ(xi)

designed for smooth functions ϕ. Now collocate (BIE) at the quadrature nodes:
1
2q(xi) +

∫
Γ
k(xi,y)q(y)dy = v(x), i = 1,2,3, . . . ,N.

Then construct an N × N matrix A such that

(Q)
N∑
j=1

A(i, j)q(xj) ≈
∫

Γ
k(xi,y)q(y)dy , i = 1,2,3, . . . ,N.

This can often be done so that the vast majority of elements of A take the form

A(i, j) = k(xi,xj)wj.
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that most elements of A takes the form A(i, j) = vi k(xi,xj)wj, which holds in both cases.



Discretization of linear Boundary Value Problems

↙

Direct discretization of the differential operator
via Finite Elements, Finite Differences, spectral
composite methods, . . .

↓

N × N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Solver methodologies:
• Iterative (e.g. multigrid). Often O(N).
• Direct (e.g. nested dissection) . Typically

between O(N1.5) and O(N2).
• Fast direct solvers. Often O(N).

↘

Conversion of the BVP to a Boundary Integral
Equation (BIE).

↓

Discretization of (BIE) using Nyström, colloca-
tion, BEM, . . . .

↓

N × N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Solver methodologies:
• Iterative solver accelerated by fast

matrix-vector multiplier. Often O(N).
• Direct solvers. O(N3)

• Fast direct solvers. Often O(N).
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What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(7) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs an
operator S such that

‖A−1 − S‖ ≤ ε.

Then an approximate solution to (7) is obtained by simply evaluating

uapprox = Sb.

The matrix S is typically constructed in a data-sparse format (e.g. H-matrix, HSS, etc)
that allows the matrix-vector product Sb to be evaluated rapidly.

Variation: Find factors B and C such that ‖A− BC‖ ≤ ε, and linear solves involving the
matrices B and C are fast. (LU-decomposition, Cholesky, etc.)



What does a “direct” solver mean in this context?

When using these algorithms, the process of solving (BVP) splits into two stages:
1. “Factorization” or “build” stage: Build a representation of the inverse operator.
2. “Solve” stage: Apply the computed inverse to given data f or (and) g.

Typical characteristics of methods of this type:
• Memory usage tends to be high. (Linear, but a large “pre-factor”.)
• Stage 1 tends to be slower than an iterative solve, when convergence is fast.
• Stage 2 is almost always VERY fast.

Fast Direct Solvers (FDS) are most competitive when:
• Getting iterative methods to converge rapidly is hard.
• When the cost of Stage 1 can be amortized over many solves.

→ scattering problems, time-stepping, optimization, . . .



Advantages of direct solvers over iterative solvers:

1. Solving problems intractable to iterative methods (singular values do not “cluster”):
• Scattering problems near resonant frequencies.
• Ill-conditioning due to geometry (elongated domains, percolation, etc).
• Ill-conditioning due to lazy handling of corners, cusps, etc.
• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can (sometimes) be solved.

2. Applications that require a very large number of solves for a fixed operator:
• Molecular dynamics.
• Scattering problems.
• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is often possible.

3. Direct solvers can be adapted to construct spectral decompositions:
• Analysis of vibrating structures. Acoustics.
• Buckling of mechanical structures.
• Wave guides, bandgap materials, etc.

Work in progress . . .



Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers aims to help in the development of general purpose
software packages solving the basic linear boundary value problems of mathematical
physics.



Numerical model reduction.
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Fast inversion of discretized integral equations – why it works
How is it that you can invert a dense matrix of size n× n in less than O(n3) flops?

• The core idea: Exploit rank deficiencies in the coefficient matrix.
• Inversion of matrices with rank structure.
• Connection between integral equation formulations and sparse direct solvers.



Consider the problem of solving an integral equations such as, e.g.,
c q(x) +

∫
Ψ k(x,y)q(y)dS(y) = f (x), x ∈ Ψ. (IE)

Core idea: Upon discretization, (IE) leads
to a matrix with off-diagonal blocks of
low numerical rank. (Simplistic example
shown to the right.)

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc. All gray blocks have low rank.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .



Consider the problem of solving an integral equations such as, e.g.,
c q(x) +

∫
Ψ k(x,y)q(y)dS(y) = f (x), x ∈ Ψ. (IE)

In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n× n matrix A is invertible, and that for some
k � n, it admits the representation

A = I + U V∗.
n× n n× n n× k k × n



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n× n matrix A is invertible, and that for some
k � n, it admits the representation

A = I + U V∗.
n× n n× n n× k k × n

While A is dense, it has rank structure that allows us to:
• Store it using O(nk) floats. O(n2) in general case.
• Execute the matrix vector multiplication in O(nk) flops. O(n2) in general case.
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As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n× n matrix A is invertible, and that for some
k � n, it admits the representation

A = I + U V∗.
n× n n× n n× k k × n

Then the inverse of A takes the form

(W) A−1 = I − U
(
I + V∗U

)−1 V∗.
n× n n× n n× k k × k k × n

Using (W), we can form A−1 (implicitly) in O(nk2) work, instead of O(n3).



Inversion of structured matrices: Identity plus low rank
As a warm-up, let us consider a matrix of the form identity + low rank.
To be precise, suppose that a dense n× n matrix A is invertible, and that for some
k � n, it admits the representation

A = I + U V∗.
n× n n× n n× k k × n

Then the inverse of A takes the form

(W) A−1 = I − U
(
I + V∗U

)−1 V∗.
n× n n× n n× k k × k k × n

Using (W), we can form A−1 (implicitly) in O(nk2) work, instead of O(n3).
There are many versions of Woodbury!
For instance, consider a matrix of the form “easy to invert” + low rank.
To be precise, suppose that A is invertible, that

A = D + U V∗,
n× n n× n n× k k × n

and that you can easily compute D−1. Then A−1 can be constructed via
A−1 = D−1 − D−1U

(
I + V∗D−1U

)−1 V∗D−1.
n× n n× n n× k k × k k × n



Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− d2u

dx2
+ p(x)

du(x)

dx + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n× n. Then A−1 is dense.

Sparsity pattern of A. Sparsity pattern of A−1.

A is tridiagonal. A−1 is semi-separable.

rank=1

rank=1

A is sparse. A−1 is data-sparse.
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Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− d2u

dx2
+ p(x)

du(x)

dx + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n× n. Then A−1 is dense.

Fun facts:
• If A is invertible and tridiagonal, then A−1 is semi-separable (meaning that the upper
triangular and the lower triangular parts are restrictions of rank 1 matrices).
• If A is invertible and semi-separable, then A−1 is tridiagonal.
• Cost of storage is 3n− 2 floats in either case.
• Cost of inversion is O(n) in either case.

(Note: LU factorization is more common: Factors L and U are each bidiagonal.)



Inversion of structured matrices: Semi-separable plus diagonal
Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data. Recall that when m = 0, we can solve (BVP) analytically:

u(x) =

∫ 1

0
G(x, y)g(y)dy,

where the Green’s function G (which is semi-separable!) takes the form

G(x, y) =


(b− x)(y − a)

b− a , when x ≥ y (on or below the diagonal),
(x − a)(b− y)

b− a , when x ≤ y (on or above the diagonal).

Multiply (BVP) by G(x, y) and integrate in y over [0,1] to get

u(x) +

∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where
h(x) =

∫ 1

0
G(x, y)g(y)dy.

Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +

∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],
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Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data.
Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +

∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where the Green’s function (which is semi-separable!) takes the form

G(x, y) =


(b− x)(y − a)

b− a , when x ≥ y (on or below the diagonal),
(x − a)(b− y)

b− a , when x ≤ y (on or above the diagonal).

Fact 2: Discretizing (IE) using a Nyström method with a uniform grid {xi}n+1
i=0 ⊂ [0,1]

and the basic Trapezoidal rule results in the linear system(
I + GM

)
u = Gg.

The n× n matrix G is semi-separable since it has entries

G(i, j) = hG(xi, xj).

The matrix M is the diagonal matrix whose diagonal entries are {m(xi)}ni=1.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:
• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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We considered a non-oscillatory problem “(non-osc)” where m(x) = 100(1 + x) cos(x)

and g(x) = 1 + cos(1 + x). We then swapped the sign of m (but kept everything else the
same) to get a problem with an oscillatory solution “(osc)”. The left plot shows the errors
incurred (in max norm), while the right one shows the condition numbers of the
coefficient matrices. The key point here is that the condition numbers of the integral
equation formulation does not grow with n. A secondary point is to show that elliptic
problems with oscillatory solutions are far more challenging.
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Observe that we introduced two different approaches for solving 2 point BVPs:
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Note: For the IE, the condition number is small and constant!
(Fun fact: The two methods are mathematically equivalent – errors are identical!)
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The conversion to an IE is an example of “analytic preconditioning”.
You do the preconditioning mathematically, before you discretize.
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Observe that we introduced two different approaches for solving 2 point BVPs:
• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?

What about computational costs?

Cost of computing an inverse is O(n) in either case!

We skip details for the “semi-separable plus diagonal” case, and instead go straight to a
more general class: HODLR.



Inversion of structured matrices: HODLR
Now let us consider a slightly more complex structure:

All gray blocks have low rank.

We will today show a very simple recursive inversion procedure.
(A much better algorithm will be described on Wednesday.)
The first step is to observe that if we tessellate A as follows

A =

[
A11 A12
A21 A22

]
then
• A12 and A21 each have low numerical rank,
• A11 and A22 each are HODLR themselves.

Note: “Semi-separable + diagonal” is a special case of HODLR.
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Inversion of structured matrices: HODLR
We seek to invert a matrix A as shown. Each block is of size
n× n, and A12 and A21 have rank k < n.

A =

[
A11 A12
A21 A22

]

We first form low-rank factorizations of A12 and A21 so that

A12 = U1 B12 V∗2 and A21 = U2 B21 V∗1

Then we can write A in the form

A =

[
A11 0
0 A22

]
+

[
U1 0
0 U2

] [
0 B12

B21 0

] [
V∗1 0
0 V∗2

]
.

Applying the Woodbury formula, we get

A−1 =

[
A−111 0
0 A−122

]
+

[
A−111U1 0

0 A−122U2

] [
D̂1 B12
B21 D̂2

]−1 [
V∗1A

−1
11 0

0 V∗2A
−1
22

]
,

where D̂1 =
(
V∗1A

−1
11U1

)−1 and D̂2 =
(
V∗2A

−1
22U2

)−1.
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Inversion of structured matrices: HODLR
We seek to invert a matrix A as shown. Each block is of size
n× n, and A12 and A21 have rank k < n.
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We first form low-rank factorizations of A12 and A21 so that
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2n× 2n 2n× 2n 2n× 2k 2k × 2k 2k × 2n

where D̂1 =
(
V∗1A

−1
11U1

)−1 and D̂2 =
(
V∗2A

−1
22U2

)−1.

So to get A−1, we need to:
• Compute A−111 and A−122 . Two inverses of half the size.

• Form D̂1 and D̂2, and then invert
[

D̂1 B12
B21 D̂2

]
. This is a small (2k × 2k) matrix.

• Form various matrix-matrix products involving at least one “thin” matrix.
Obvious recursion!
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Connection between BIE and sparse direct solvers

Surprise!

Fast direct solver methodology developed for BIEs has proven useful for accelerating
sparse direct solvers to linear complexity!

To illustrate, let us consider what happens if we directly discretize the PDE (using, say,
finite elements or finite differences) to obtain a linear system

Au = b

involving a sparse coefficient matrix A.

Key idea: Do a sparse LU factorization based on a “nested dissection” ordering of the
grid as an outer solver. Then use rank structured matrix algebra to deal with the dense
matrices that arise.
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Connection between BIE and sparse direct solvers
Let Ω = [0,1]2 and Γ = ∂Ω. We seek to solve

(13)

−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We introduce an n× n grid on Ω with nodes {xj}Nj=1 where N = n2, see Figure A. Letting
u = [u(j)]Nj=1 denote a vector of approximate solution values, u(j) ≈ u(xj), and using the
standard five-point stencil to discretize −∆, we end up with a sparse linear system

Au = b,

where [Au](k) = 1
h2
(
4u(k)− u(ks)− u(ke)− u(kn)− u(kw)

)
, see Figure B.

Figure A: The grid

k kekw

ks

kn

h = 1
n+1

Figure B: The 5-point stencil



Connection between BIE and sparse direct solvers
Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−111 and A−122 . Then

A =


I 0 0
0 I 0

A31A−111 A32A−122 I



A11 0 0
0 A22 0
0 0 S33




I 0 A−111A13
0 I A−122A23
0 0 I


where S33 = A33 − A31A−111A13 − A32A−122A23 is a Schur complement.
In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−111 . size ∼ N/2× N/2
• Invert A22 to form A−122 . size ∼ N/2× N/2
• Invert S33 = A33 − A31A−111A13 − A32A−122A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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Connection between BIE and sparse direct solvers
Typically, nested dissection orderings are more complicated:

Image credit: Jianlin Xia, “Robust and Efficient Multifrontal Solver for Large Discretized PDEs”, 2012

Observe that while the computational domain is 2D in this example, the rank structured
matrices all live on the colored 1D domains.



Connection between BIE and sparse direct solvers
All direct solvers to be described are based on hierarchical domain decomposition.
Consider a PDE Au = f defined on a square Ω = [0,1]. Put a grid on the square.
Split the domain into “small” patches we call “leaves” (they will be organized in a tree).
On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator).
This eliminates “internal” grid points from the computation. (“Static condensation.”)
Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.
Continue merging by pairs, organizing the domain in a tree of patches.
When you reach the top level, perform a solve on the reduced problem by brute force.
Then reconstruct the solution at all internal points via a downwards pass.

The original grid.
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Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.
Continue merging by pairs, organizing the domain in a tree of patches.
When you reach the top level, perform a solve on the reduced problem by brute force.
Then reconstruct the solution at all internal points via a downwards pass.

The original grid.

(1)
→

Leaves reduced.

(2)
→

After merge.

(3)
→

After merge.
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Connection between BIE and sparse direct solvers
Upwards pass — build all solution operators:

(1)
→

(2)
→

(3)
→

The original grid. Leaves reduced. After merge. After merge.

Downwards pass — solve for a particular data function (very fast!):

(6)
←

(5)
←

(4)
←

Full solution. Solve. Solve. Top level solve.

Well-established idea: Classical multifrontal / nested dissection method (1973).

Alan George Iain Duff Tim Davis

More recent idea: Extend this algorithmic template to discretized integral equations.
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Connection between BIE and sparse direct solvers
The direct solver described works very well for moderate problem sizes.
But problems arise as the number of discretization points increases . . .

Consider a regular grid in 2D with N = n× n total nodes. The top level merge
requires inversion of a matrix representing interactions between the red nodes:

n

n
N = n× n
n = N1/2

Since this dense matrix is of size n× n, the cost for the merge is

COST ∼ n3 ∼ (N1/2)3 ∼ N3/2.

Good news: The N3/2 term does not “kick in” until N is huge! Say N ∼ 108.
Bad news: 3D is much worse!
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Connection between BIE and sparse direct solvers
The direct solver described works very well for moderate problem sizes.
But problems arise as the number of discretization points increases . . .

Consider a regular grid in 3D with N = n× n× n total nodes. The top level merge
requires inversion of a matrix representing interactions between the red nodes:

The merge requires factorization of a dense
matrix of size n2 × n2. Consequently:

COST ∼ (N1/3)6 ∼ N2.

Assertion: The dense matrix very often be-
haves like a discretizated integral operator.
(E.g. Dirichlet-to-Neumann.)

It is rank-structured, and is amenable to
“fast” matrix algebra.

We can reduce the complexity of the top
level solve from O(N2) down to O(N), and
sometimes even O(N2/3).



Connection between BIE and sparse direct solvers
The direct solver described works very well for moderate problem sizes.
But problems arise as the number of discretization points increases . . .

Consider a regular grid in 3D with N = n× n× n total nodes. The top level merge
requires inversion of a matrix representing interactions between the red nodes:

The merge requires factorization of a dense
matrix of size n2 × n2. Consequently:

COST ∼ (N1/3)6 ∼ N2.

Assertion: The dense matrix very often be-
haves like a discretizated integral operator.
(E.g. Dirichlet-to-Neumann.)

It is rank-structured, and is amenable to
“fast” matrix algebra.

We can reduce the complexity of the top
level solve from O(N2) down to O(N), and
sometimes even O(N2/3).



Connection between BIE and sparse direct solvers
Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N



Connection between BIE and sparse direct solvers
Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).
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Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).

Nested dissection solvers with O(N) complexity — Le Borne, Grasedyck, & Kriemann
(2007), Martinsson (2009), J. Xia, Chandrasekaran, Gu, & Li (2009), Gillman &
Martinsson (2011), Schmitz & L. Ying (2012), Darve & Ambikasaran (2013), Ho & Ying
(2015), Amestoy, Ashcraft, et al (2015), Oseledets & Suchnikova (2015), etc.
O(N) direct solvers for integral equations were developed by Martinsson & Rokhlin
(2005), Greengard, Gueyffier, Martinsson, & Rokhlin (2009), Gillman, Young, &
Martinsson (2012), Ho & Greengard (2012), Ho & Ying (2015). Work in 1990’s Y. Chen,
P. Starr, V. Rokhlin, L. Greengard, E. Michielssen. Related to work on H and H2 matrix
methods (1998 and forwards) by Börm, Bebendorf, Hackbusch, Khoromskij, Sauter, etc.



Connection between BIE and sparse direct solvers
Through exploiting the assertion on the previous page, the complexity of direct solvers
for elliptic PDEs has in the past 10 – 20 years been decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).

Note: Complexity is not O(N) if the nr. of “points-per-wavelength” is fixed as N →∞.
This limits direct solvers to problems of size a couple hundreds of wave-lengths or so.



Connection between BIE and sparse direct solvers
Key selling point: Better parallelism

Let us consider the flop counts of various parts of the computation:

Classical Nested Dissection Accelerated Nested Dissection
Cost to process leaves: ∼ N ∼ N
Cost to process the root: ∼ N2 ∼ N2/3

Observations:

• While the dominant cost of the old scheme is processing dense matrices of size
O(N2/3)×O(N2/3), the dominant cost of the new scheme is processing the leaves.

• The leaf computations are very easy to parallelize!

• Parallel implementations of structured matrix algebra requires hard work
(J. Poulson’s dissertation; S. Li at LBNL; G. Biros; R. Kriemann; P. Amestoy,
A. Buttari & T. Mary; G. Turkiyyah & D. Keyes; J. Xia; etc).

• For intermediate size problems, the structured matrices of size O(N2/3)×O(N2/3)

often fit on one machine.

• The methodology need not be all-or-nothing. Direct solvers can be used locally to
handle areas with mesh refinement etc.
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Connection between BIE and sparse direct solvers
Summary: The unifying theme between fast direct solvers for BIEs and fast direct
solvers for PDEs is that in both cases, you reduce the dimension of the domain where
the dense matrices “live” from 3D to 2D!

1. Constant coefficient problems: Reformulate as integral equation on 2D boundary.

2. Variable coefficient problems: Use a sparse direct solver as an outer solver.
This reduces the problem to dense matrices on 2D “mesh separators”.

The reduction in dimension is critically important!
Rank structured matrix algebra scales poorly with dimension!



Interaction ranks

• Why are they small?
• How small are they, exactly?



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Question: Why do the dense matrices resulting upon discretization of (SLN) typically
have off-diagonal blocks of low numerical rank?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:

• Rapid convergence of multipole expansions when the region of sources is far away
from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The kernels are derived from the corresponding fundamental solutions:

s(x,y) =φ(x − y),

d(x,y) =∂n(y)φ(x − y),

sκ(x,y) =φκ(x − y),

dκ(x,y) =∂n(y)φκ(x − y),

where, as before,

φ(x) =− 1
2π log |x|,

φκ(x) =
i
4H

(1)
0 (κ|x|).



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

Let A denote the matrix resulting from discretization of either BIE.

On the next slide, we show the singular values of the off-diagonal block A23.



Interaction ranks: Boundary integral equations
The ranks of an off-diagonal block of A:
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This is all as expected. Somewhat accessible by analysis.

Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)
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Interaction ranks: Stiffness matrix from finite difference discretization
Recall our example of Laplace’s equation discretized using the 5-point stencil.

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

We build the Schur complement S = A33 − A31A−111A13 − A32A−122A23.
Then split the Schur complement into four parts:

Iα

Iβ

S =
Sαα Sαβ

SββSβα

We explore the svds of Sαβ — encoding interactions between Iα and Iβ.
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Interaction ranks: Stiffness matrix from finite difference discretization

Let us try a few different PDEs, and different problem sizes:

Note: The rank decay property is remarkably stable!
Note: The decay continues to εmach — regardless of the discretization errors!



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

Fast decay once oscillations are resolved.



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

Fast decay once oscillations are resolved.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The geometry.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The singular values.



Variations of fast direct solvers

• Strong vs. weak admissibility.
• Nested basis matrices.
• Flat vs. hierarchical representations.



Versions of fast direct solvers: “strong” versus “weak” admissibility
Weak admissibility: Compress directly adjacent patches.

The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=13.9 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. Many low
rank blocks, but high ranks.

Strong admissibility: Compress only “far-field” interactions.
The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=7.7 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. More dense
blocks, but lower ranks.
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Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.



Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.
The resulting matrix: The resulting matrix:

Easy to work with. More complicated to code and analyze.
Sometimes “good enough”. Better asympt. complexity (can be linear).



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:

Question: How much storage is required?



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:
Observe that you can view the matrix as a sum over different “levels”:

Let k denote the rank of the off-diagonal blocks.

At each level, the cost to store the factors is ∼ Nk.

There are ∼ log(N) levels, so total storage ∼ kN log(N).



Versions of fast direct solvers: “nested” versus “general” bases
Nested bases: These were introduced to eliminate log-factors, and improve efficiency.

The idea is to define the low rank factors for the off-diagonal blocks recursively
— the bases on one level are defined in terms of the bases on the next finer level.

Formally, this leads to a multiplicative representation, rather than an additive one.
For instance, it could take the form

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3),

where pictorially, the shapes of the factors are as follows:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The cost to store level ` is now 2−`Nk → geometric sum and O(kN) total storage.
Note: The classical Fast Multipole Method relies on nested bases.
This is in contrast to Barnes-Hut which (implicitly) uses general bases.



Versions of fast direct solvers:

We can now loosely organize some common rank-structured matrix “formats”:

Flat Hierarchical
General bases Nested bases

Weak
admissi-
bility

Block Separable Hierarchically off-diagonal
low rank (HODLR)

Hierarchically Block Sep-
arable (HBS/HSS); recur-
sive skeletonization

Strong
admissi-
bility

Block Low Rank H-matrices; Barnes-Hut H2-matrices; Fast Multi-
pole Method; strong recur-
sive skeletonization

Complexity of implementation increases as you go down and to the right in the table.
Asymptotic flop count decreases as you go down and to the right in the table.
The higher the dimension, the more complex scheme you need to use.

Recommendation: Use the simplest format that gives acceptable computational cost.

Note: In principle, the term “H-matrix” is extremely broad — every other format is a special case.

However, the table reflects the standard usage of the term.



Versions of fast direct solvers: selection of references

• H- and H2-matrices: Hackbusch (1999); Khoromskij, Hackbusch (2000); Börm,
Grasedyck, Hackbusch (2003); . . .
• Recursive skeletonization: Lee, Greengard, (1992); Starr, Rokhlin (1994);
Michielssen, Boag, Chew (1996); Martinsson, Rokhlin (2005); Greengard, Gueyffier,
Martinsson, Rokhlin (2009); Ho, Greengard (2012); Ho, Ying (2016); . . .
• HSS matrices: Xia, Chandrasekaran, Gu, and Li (2009); Xia (2012); Wang, Li, Xia,
Situ, De Hoop (2013); Xi, Xia (2016); . . .
• Hierarchically off-diagonal low rank (HODLR) matrices: Aminfara, Ambikasaran,
Darve (2016); Massei, Robol, Kressner (2020); . . .
• Block low rank (BLR) matrices: Amestoy, Ashcraft, Boiteau, Buttari, l’Excellent,
Weisbecker (2015); Amestoy, Buttari, l’Excellent, Mary (2017); . . .

Survey: Ballani & Kressner (2016). Forthcoming: Martinsson & O’Neil (2025)

Monographs: Bebendorf (2008). Börm (2010). Martinsson (2019).



Inversion of matrices with “weak admissibility”

• Quick facts about weak admissibility.
• Optimal asymptotic complexity vs. practical speed.
• HSS matrices.



Quick facts about “weak admissibility”

All off-diagonal blocks are compressed into low rank form.

Ranks are higher than in strong admissibility.

Better inversion algorithms than what exists for strong admissibility. Often exact.

For problems in 1D and 2D, weak admissibility often works great.

For 3D problems, weak admissibility often works fine for surface BIEs.
In more general geometries, ranks can get quite large, and you may want to swap to
strong admissibility.

Formats based on weak admissibility include: HODLR, HSS, hierarchically block
separable, etc.



Inversion of 2× 2 block matrix with low-rank off-diagonal blocks Review!
Consider a 2× 2 blocked matrix of size 2n× 2n

A =

[
A11 A12
A21 A22

]
.

Suppose the off-diagonal blocks are rank-deficient

A12 = U1 Ã12 V∗2
n× n n× k k × k k × n

and
A21 = U2 Ã21 V∗1,
n× n n× k k × k k × n

where k � n. We can then write A as follows

A =

[
A11 0
0 A22

]
︸ ︷︷ ︸

“easy” to invert

+

[
U1 0
0 U2

] [
0 Ã12

Ã21 0

] [
V∗1 0
0 V∗2

]
︸ ︷︷ ︸

low rank

.

Recall the Woodbury formula(
D + UÃV∗

)−1
= D−1 − D−1U

(
Ã + V∗D−1U

)−1V∗D−1.
Applying the Woodbury formula, we find, with D̂11 = V∗1A

−1
11U1 and D̂2 = V∗2A

−1
22U2,

A−1 =

[
A−111 0
0 A−122

]
+

[
A−111U1 0

0 A−122U2

] [
D̂1 Ã12
Ã21 D̂2

]−1 [
V∗1A

−1
11 0

0 V∗2A
−1
22

]
.

2n× 2n 2n× 2n 2n× 2k 2k × 2k 2k × 2n



Let us generalize from a matrix with 2× 2 blocks to p× p :

Suppose A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =


D1 A12 A13 A14
A21 D2 A23 A24
A31 A32 D3 A34
A41 A42 A43 D4

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n.

The critical part of the assumption is that all off-diagonal blocks in the i ’th row use the
same basis matrices Ui for their column spaces (and analogously all blocks in the j ’th
column use the same basis matrices Vj for their row spaces).



Recall A =


D1 U1 Ã12V∗2 U1 Ã13V∗3 U1 Ã14V∗4

U2 Ã21V∗1 D2 U2 Ã23V∗3 U2 Ã24V∗4
U3 Ã31V∗1 U3 Ã32V∗2 D3 U3 Ã34V∗4
U4 Ã41V∗1 U4 Ã42V∗2 U4 Ã43V∗3 D4

 .

Then A admits the factorization:

A =


U1

U2
U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24
Ã31 Ã32 0 Ã34
Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V∗1

V∗2
V∗3

V∗4


︸ ︷︷ ︸

=V∗

+


D1

D2
D3

D4


︸ ︷︷ ︸

=D
or

A = U Ã V∗ + D,
p n× p n p n× p k p k × p k p k × p n p n× p n



Lemma: [Variation of Woodbury] If an N × N matrix A admits the factorization
A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

then
A−1 = E (Ã + D̂)−1 F∗ + G,

p n× p n p n× p k p k × p k p k × p n p n× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1U D̂, F = (D̂ V∗D−1)∗, G = D−1 − D−1U D̂V∗D−1.

Note: All matrices set in blue are block diagonal.



Before compression, we have a pn× pn linear system
p∑

j=1
Aijqj = fi, i = 1,2, . . . ,p.

After compression, we have a pk × pk linear system

Diiq̃i +
∑
i 6=j

Ãijq̃j = f̃i, i = 1,2, . . . ,p.

Recall that k is the ε-rank of Ai,j for i 6= j.
The point is that k < n.

The original 4n× 4n matrix.

The reduced 4k × 4k matrix.

The compression algorithm needs to execute the following steps:
• Compute Ui, Vi, Ãij so that Aij = Ui Ãij V∗j .

• Compute the new diagonal matrices D̂ii =
(
V∗i A

−1
ii Ui

)−1.
• Compute the new loads q̃i = D̂ii V∗i A

−1
ii qi.

For the algorithm to be efficient, it has to be able to carry out these steps locally.
To achieve this, we use interpolative decompositions, then Ãi,j = A(̃Ii, Ĩj).



The Interpolative Decomposition (ID):
Let B be an m× n matrix of (precise) rank k. Then B admits a factorization

B = U B(skel) V∗,
m× n m× k k × k k × n

where
1. B(skel) = B(Irow, Icol) is a submatrix of B
2. U and V both contain a k × k identity matrix.
3. No entry of U or V has magnitude greater than 1 (so U and V are well-conditioned).
How do you construct an ID in practice?
• Computing an ID that satisfies (3) is (in general) very hard.
• If we relax condition (3) slightly, and require only that, say, max

ij
|V(i, j)| ≤ 1.1, then it

can be done efficiently [1996, Gu & Eisenstat].
• In practice, simply performing Gram-Schmidt on the columns works great.
• When B has approximate rank k, the accuracy is excellent as long as the singular
values of B decay rapidly. (They do in our applications.)



We have built a scheme for reducing a system of size pn× pn to one of size pk × pk.

→

Important: The black blocks are submatrices. No need to compute them!

The computational gain is (k/n)3. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster



Formally, one can view this as a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3).

Expressed pictorially, the factorization takes the form
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The inverse of A then takes the form

A−1 = E(3)(E(2)(E(1) D̂(0)
(F(1))∗ + D̂(1))

(F(2))∗ + D̂(2))
(V(3))∗ + D̂(3)

.

All matrices are block diagonal except D̂(0), which is small.

Important: The inversion is exact up to floating point arithmetic!
(When we move to strong admissibility, no such formulas exist.)



Note:

The formulas we use in this talk were chosen because they are particularly clean and
simple.

There is a slight reformulation of the scheme that is both more computationally efficient,
and more numerically stable. The key is to never form the diagonal blocks explicitly.
Recall:

D̂τ =
(
V∗A−1τ Uτ

)−1
You can instead assemble just the “scattering matrix”

Sτ = V∗A−1τ Uτ .

Chapter 18, “Fast Direct Solvers for Elliptic PDEs”, P.G. Martinsson, 2019



Example: Multibody scattering

Consider scattering from some multibody domain involving cavities.



Example: Multibody scattering

There are lots of discretization nodes involved. Very computationally intense!



Example: Multibody scattering

After local compression of each scatter, the problem is much more tractable.



Example: Multibody scattering

Acoustic scattering on the exterior domain.

Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix is computed
for each body).

On an office desktop, we achieved an accuracy of 10−5, in about 6h (all the time is
spent in applying the inter-body interactions via the Fast Multipole Method). Accuracy
10−7 took 27h.



Example: Multibody scattering

N Nbody Tfmm
IGMRES Ttotal Erel

∞(precond /no precond ) (precond /no precond)
10000 50× 25 1.23e+00 21 /358 2.70e+01 /4.49e+02 4.414e-04
20000 100×25 3.90e+00 21 /331 8.57e+01 /1.25e+03 4.917e-04
40000 200×25 6.81e+00 21 /197 1.62e+02 /1.18e+03 4.885e-04
80000 400×25 1.36e+01 21 / 78 3.51e+02 /1.06e+03 4.943e-04
20400 50×51 4.08e+00 21 /473 8.67e+01 /1.99e+03 1.033e-04
40800 100×51 7.20e+00 21 /442 1.56e+02 /3.17e+03 3.212e-05
81600 200×51 1.35e+01 21 /198 2.99e+02 /2.59e+03 9.460e-06

163200 400×51 2.50e+01 21 /102 5.85e+02 /2.62e+03 1.011e-05
40400 50×101 7.21e+00 21 /483 1.53e+02 /3.52e+03 1.100e-04
80800 100×101 1.34e+01 22 /452 2.99e+02 /6.31e+03 3.972e-05

161600 200×101 2.55e+01 22 /199 5.80e+02 /5.12e+03 2.330e-06
323200 400×101 5.36e+01 22 /112 1.25e+03 /5.84e+03 3.035e-06

Exterior Laplace problem solved on the multibody bowl domain with and without
preconditioner.



Example: Multibody scattering

N Nbody Tprecompute IGMRES Tsolve Erel
∞

80800 100× 101 6.54e-01 62 5.17e+03 1.555e-03
161600 200× 101 1.82e+00 63 9.88e+03 1.518e-04
323200 400× 101 6.46e+00 64 2.19e+04 3.813e-04
160800 100× 201 1.09e+00 63 9.95e+03 1.861e-03
321600 200× 201 3.00e+00 64 2.19e+04 2.235e-05
643200 400× 201 1.09e+01 64 4.11e+04 8.145e-06
641600 200× 401 5.02e+00 64 4.07e+04 2.485e-05
1283200 400× 401 1.98e+01 65 9.75e+04 6.884e-07

Exterior Helmholtz problem solved on multibody bowl domain.
Each bowl is 5 wavelength in diameter.

We do not give timings for standard iterative methods since in this example, they
typically did not converge at all (even though the BIE is a 2nd kind Fredholm equation).



Example: A hierarchical direct solver

Original set of points

Consider a boundary integral equation that is defined on the collection of red contours
shown in the picture above. Think of a computational model of a composite material, or
the simulation of colloidal fluid.



Example: A hierarchical direct solver

Skeleton points on level 4, acc =  1.000e−09

Standard expansions (multipole, Bessel functions, etc do not work!
Numerical compression is necessary.



Example: A hierarchical direct solver

Skeleton points on level 3, acc =  1.000e−09



Example: A hierarchical direct solver

Skeleton points on level 2, acc =  1.000e−09



Example: A hierarchical direct solver

Skeleton points on level 1, acc =  1.000e−09



Example: Surface BIE
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Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ

1
|x − y | q(y)dA(y), x ∈ Γ,

where Γ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).



Example: Surface BIE
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Example: Surface BIE
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Example: Surface BIE
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Example: Surface BIE
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Example: Surface BIE
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Example: Surface BIE
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Constructing a data-sparse representation of an integral operator

The talk has described a number of different ways that rank structured matrices can be
inverted or factorized.

But how do you obtain the low rank representation in the first place?

Several methods have been proposed over the years:
• Taylor / Chebyshev expansions. Does not work for weak admissibility.
• Multipole expansions. Does not work for weak admissibility.
• Adaptive Cross Approximation. Perform completely pivoted Gaussian elimination on
a cleverly selected subset of rows and columns of the matrix. Very efficient. Can
yield O(1) failure without it being detected. Ok for pre-conditioning.
• Randomized compression. There exist randomized algorithms that can construct a
data sparse representation of a rank structured matrix A by observing only its action
on vectors x 7→ Ax and x 7→ A∗x. Works very well for weak admissibility! [Wed!]
• Proxy surfaces. Replace all far field interactions with interactions through a set of
“proxy points”. Exploits potential theory.
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Constructing a data-sparse representation of an integral operator

Γτ

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Constructing a data-sparse representation of an integral operator

Γτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Constructing a data-sparse representation of an integral operator

Γτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Constructing a data-sparse representation of an integral operator
Illustration of the proxy point compression technique:
When compressing a subdomain Iτ (shown in red), we replace all “far-field” points (gray)
by a set of artificial “proxy points” (green).

Ωτ

• Points in Iτ .
• Points in Inear

τ .
• Points in Iproxy

τ .



Constructing a data-sparse representation of an integral operator
Illustration of the proxy point compression technique:
When compressing a subdomain Iτ (shown in red), we replace all “far-field” points (gray)
by a set of artificial “proxy points” (green).

Ωτ

• Points in Iskel
τ .

• Points in Inear
τ .

• Points in Iproxy
τ .



Consider a domain Γ discretized with Nyström based on a panel-based method using
10-point Gaussian quadrature. Suppose further that Γ has a corner, causing
singularities in the layer potentials.

Γτ

Γc
τ

Γτ

Γc
τ

Γτ

Γc
τ

(a) (b) (c)

(a) Ignoring the singularity at the corner gives a small system but poor accuracy.

(b) Refining the grid near the corner gives great accuracy, but N gets very large.

(c) After local “compression” in which we compute a compressed scattering matrix for
Γτ , we get the same accuracy as the discretization in (b), using as many nodes as in (a)!



A surface Γ with corners and edges.

The grid has been refined to attain high accuracy.

Computing scattering matrices for the corners is conceptually easy (but laborious).

Compressing the edges takes effort!



Numerical example — BIE on “edgy” surface

Ntris N E T Nout × Nin

192 21504 2.60× 10−08 6.11× 10+02 617× 712
432 48384 2.13× 10−09 1.65× 10+03 620× 694
768 86016 3.13× 10−10 3.58× 10+03 612× 685

Results from a Helmholtz problem (acoustic scattering) on the domain exterior to the “edgy” cube. The
domain is about 3.5 wave-lengths in diameter.
Mesh refinement near edges & corners. The direct solver eliminates “extra” DOFs.



Fast direct solvers and high order methods: “FEM-BEM coupling”
Consider the free space acoustic scattering problem

−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Joint work with A. Barnett and A. Gillman.

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Use HPS. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

• Merge using fast operator algebra!
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Fast direct solvers and high order methods: “FEM-BEM coupling”
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The scattering potential b
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= 0

The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(κ x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)
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Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−6 (estimated)



Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).



Fast direct solvers and high order methods: rough surface scattering
Consider acoustic scattering from an infinite half-plane with 8× 8 bumps:

Each bump is 0.5λ tall and 2λ wide. Total domain is 44λ× 44λ.
The problem is formulated as a BIE, and is discretized using a “Zeta-corrected”
quadrature rule. A direct solver with weak admissibility and O(N1.5) scaling is used.
26M points total, Tbuild = 1200s, Tsolve = 184s
About three digits of accuracy in the computed solution. (Tentative!)

Work in progress - with Abi Gopal and Bowei Wu.



Inversion of rank structured matrices with strong admissibility. Wednesday!



Inversion of rank structured matrices with strong admissibility. Wednesday!
Recall:
• Only “well-separated” blocks are compressed. This keeps ranks bounded.
• Strong adm. is used in the FMM & in Barnes-Hut. It is “default” for H-matrices.

Example: Red blocks are represented as full rank.

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572
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Inversion of rank structured matrices with strong admissibility. Wednesday!
Recall:
• Only “well-separated” blocks are compressed. This keeps ranks bounded.
• Strong adm. is used in the FMM & in Barnes-Hut. It is “default” for H-matrices.

Question: How do you invert a structure like this?

• LU factorization of H-matrices. Key motivation for H-matrix arithmetic. Hard to do
efficiently. Ranks grow, so recompression is essential (inversion formulas are not
exact). Some success as pre-conditioner.
• LU factorization of H2-matrices. Even harder! Recent progress by Steffen Börm.
• Inverse FMM by Eric Darve. Simpler data structures. Memory hog!!
• Strong recursive skeletonization by Minden, Ho, Damle, and Ying. Multiscale
Modeling & Simulation, 15(2), 2017.
Very promising, but remains a memory hog.
Subject of current work in my group (see Wednesday talk):
• Development of HPC code that exploits GPU acceleration, and allows for distributed memory

implementations. With Chao Chen of North Carolina State University.
• [New!] “Randomized strong recursive skeletonization”. Uses a black box randomized method to

simultaneously compress and factorize an H2-matrix. With Anna Yesypenko.



Coda: High order discretizations

Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for medium frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

When a direct solvers scores a clear win against iterative method, the use of high order
discretizations often plays a central role.
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• Numerical compression is essential.
•Wave problems with small λ remain challenging.



Key Ideas:

The solution operator of a linear elliptic PDE is “friendly.”
• Smoothing.
• Stable.

Long range interactions are low rank.
• Cf. St Venant principle, multipole expansions, etc.
• Smoothness is not necessary.
• Numerical compression is essential.
•Wave problems with small λ remain challenging.

High-order discretizations + FDS.
• Maximize the work done by each DOF to save memory.
• Perfect for ill-conditioned problems with oscillatory solutions.
• Requires care in choosing discretization scheme.

New randomized methods for matrix algebra→ acceleration & simplification. Wednesday



Where we are now:
• We have developed direct solvers with O(N) complexity for elliptic PDEs with
non-oscillatory (or “mildly oscillatory”) solutions for most standard environments:
• Sparse matrices from FEM/FD/composite spectral/... in both 2D and 3D.
• Boundary integral equations in 2D and 3D. (Work in progress . . . )

• Advantages of direct solvers:
• Often instantaneous solves once a solution operator has been built.
• Can eliminate problems with slow convergence of iterative solvers.
• Enables “operator algebra”. (FEM-BEM coupling example.)
• Communication efficient.

• Disadvantages of direct solvers:
• Memory hogs. (But distributed memory is OK.)
• The build stage is still slow for many 3D problems. (We are in the process of fixing this!)

Where to go next: New powerful tool available→ lots of opportunities!
• Explore happy couplings:
• Direct solver + high order discretization. (Helps with memory. Wave problems.)
• Direct solver + integral equation formulations. (Need dense matrices anyway.)
• Direct solver + parallelization. (Root of tree is cheap!)
• Direct solver + numerical coarse graining. (Another talk. . . )

• Parabolic and hyperbolic problems. Parallel-in-time methods?



More details in a 2019 monograph:



Quick introduction to randomized algorithms for
low rank approximation



Randomized algorithms for low rank approximation:

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.



Randomized algorithms for low rank approximation:

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Applications:
• Principal component analysis (fitting a hyperplane to data).
• Model reduction in analyzing physical systems.
• PageRank and other spectral methods in data analysis.
• Compression of off-diagonal blocks in rank-structured matrices.
• Diffusion geometry and manifold learning.
• Many, many more . . .

Classical deterministic methods: Gram-Schmidt (column pivoted QR),
power/subspace iteration, Krylov techniques, . . .



Randomized algorithms for low rank approximation:

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Solution:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Form an m× k orthonormal matrix Q s. t. col(Y) = col(Q). [Q, ∼] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of B (small!): B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

Why does it work? When A has exact rank k, the algorithm succeeds with probability 1.



Randomized algorithms for low rank approximation:

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Solution:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Form an m× k orthonormal matrix Q s. t. col(Y) = col(Q). [Q, ∼] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of B (small!): B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

Why does it work? When A has exact rank k, the algorithm succeeds with probability 1.
In the general case, it fails only if the columns of G manage to all be close to orthogonal
to a dominant right singular vector. Very unlikely.



Randomized algorithms for low rank approximation:

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Solution:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Form an m× k orthonormal matrix Q s. t. col(Y) = col(Q). [Q, ∼] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of B (small!): B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

Power iteration: When the singular values of A decay slowly, precision can be improved
by replacing the formula Y = AG on line 2 by Y = A(A∗G), or Y = A(A∗(AG)), or . . .



Randomized low rank approximation:
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The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix.
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomized low rank approximation:
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The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix.
The matrix A now has singular values that decay slowly.



Randomized low rank approximation: The same plot, but showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Randomized low rank approximation: The same plot, but showing 100 instantiations.
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Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Oversampling: By drawing a small number p of extra samples, we can prove that the
error is close to theoretically minimal. Think p = 5 or p = 10.

For instance, we have:

Theorem: [Halko, Martinsson, Tropp, 2009 & 2011] Let A denote an m× n matrix with singular values
{σj}min(m,n)

j=1 . Let k denote a target rank and let p denote an over-sampling parameter. Let G denote an
n× (k + p) Gaussian matrix. Let Q denote the m× (k + p) matrix Q = orth(AG). If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

There are also bounds on the error when power iteration is used, the likelihood of large deviations from
the expected value, and so on.

Focus of current work is construction of à posteriori error bounds, and estimates on the accuracy of

computed singular vectors. (With Yijun Dong and Yuji Nakatsukasa.)
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(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Key results on randomized SVD:

• High practical speed — interacts with A only through matrix-matrix multiplication.
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(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
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• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).



Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Key results on randomized SVD:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).
The key is to use a Fast Johnson-Lindenstrauss transform.
Practical acceleration is achieved at ordinary matrix sizes.
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dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

• Single pass algorithms have been developed for streaming environments.
The idea is that you are allowed to observe each matrix element only once.
You cannot store the matrix.
Not possible with deterministic methods!



Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Key results on randomized SVD:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

• Single pass algorithms have been developed for streaming environments.
The idea is that you are allowed to observe each matrix element only once.
You cannot store the matrix.
Not possible with deterministic methods!

• The randomization idea can be used to overcome a classical problem in numerical
linear algebra: How to efficiently implement column-pivoted QR factorizations.
(How to cast the computation as BLAS3 operations instead of BLAS2.)



A very fast randomized implementation of column pivoted QR
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Speedup attained by a randomized algorithm for computing a full column pivoted QR factoriza-
tion of an n × n matrix. The speed-up is measured versus LAPACK’s faster routine dgeqp3 as
implemented in Netlib (left) and Intel’s MKL (right). Our implementation was done in C, and was
executed on an Intel Xeon E5-2695. Joint work with G. Quintana-Ortí, N. Heavner, and R. van
de Geijn (SISC 2017). Closely related work by Duersch and Gu, SISC 2017 / SIREV 2020.



Rank structured matrices

We use the term rank structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.

More recently, have been shown to arise in data science as well — kernel matrices,
covariance matrices, Hessians, etc.



Rank structured matrices

We use the term rank structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Sample the column space of the matrix:

If A 6= A∗, then sample the row space too:



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

The low rank case: In the particularly simple case where A has global rank k, we revert
to the case we considered in the first part of the talk.

In the current framework, the randomized SVD takes the form:

• Set s = k and draw a “test matrix” ΩΩΩ ∈ RN×s from a Gaussian distribution.
• Form the “sample matrix” Y = AΩΩΩ.
• Build ΨΨΨ to hold an ON basis for ran(Y), e.g., [ΨΨΨ,∼] = qr(Y,0).
• Form Z = A∗ΨΨΨ.

Then A = ΨΨΨ
(
ΨΨΨ∗A

)
= ΨΨΨZ∗ with probability 1.

In the more typical case where A is only approximately of rank k, some oversampling is
required to get a reliable scheme. (Say s = k + 10, or s = 2k, or some such.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Why generalize from “global low rank” to “rank structured”:
• Integral operators from classical physics. If you have a legacy method for the
matrix-vector multiple (e.g. the Fast Multipole Method), then we could enable a
range of operations – LU factorization, matrix inversion, etc.
• Multiplication of operators. Useful for forming Dirichlet-to-Neumann operators, for
combining solvers of multi-physics problems, etc.
• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices. This lets us overcome key bottlenecks (e.g. LU factorization of a
“finite element” matrix is accelerated from O(N2) to close to linear complexity.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

For the most general structured matrix formats (e.g. H-matrices), the problem has been
solved in principle, and close to linear complexity algorithms exist:
• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector

multiplication, JCP 2011.
• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.

However, existing methods require ∼ k log(N) matvecs, and do not have great practical
speed. For instance, as dimension d increases, the bound on flops has an 8d factor . . .

Recently proposed algorithms have reduced the pre-factors by constructing bespoke
random matrices that are designed to be optimal for any given tessellation pattern. The
key technical idea is to formulate admissibility criteria that form a graph, and then exploit
powerful graph coloring algorithms. This technique also enables compression of kernel
matrices that arise in ML. [J. Levitt & P.G. Martinsson, arxiv arXiv: arXiv:2205.03406, 2022.]



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

The good news is that in the context of numerical PDEs, more specialized rank
structured formats are often sufficient — hierarchically semi-separable matrices,
hierarchically block-separable matrices, “H-matrices with weak admissibility”, etc.

For these matrices, algorithms with true linear complexity and high practical speed exist.

First generation algorithms were not fully black box, as they required the ability to
evaluate a small number of matrix entries explicitly.
• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, and others. Widely used.

However, a fully black box algorithm with true linear complexity and high practical speed
is now available:
• J. Levitt & P.G. Martinsson, arxiv arXiv:2205.02990, 2022.


