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Outline of talk

(1) Randomized low rank approximation

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

(2) Samples of current research directions

Finding spanning row and columns.

Matrix approximation via sampling.

Randomized compression of rank structured matrices.



Low rank approximation — problem formulation:
Let A be a given m × n matrix, and let k be an integer such that 1 ≤ k ≪ n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.

m × n m × k k × n
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Why?

• Fitting a hyperplane to a given set of points. Or fitting a multivariate normal
distribution to measurements (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, fast direct solvers, etc.

• Many, many, many more.

Observe that from E and F you can compute approximate singular vectors, find
dominant eigenvectors (when A is normal), find spanning rows/columns, etc.

We seek only to control the residual error ∥A − EF∗∥.



Low rank approximation — problem formulation:
Let A be a given m × n matrix, and let k be an integer such that 1 ≤ k ≪ n ≤ m.
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Existing methods for this task are well established. Textbook methods include:
1. Compute the full singular value decomposition of A, and then truncate:

— Resulting approximation is in many regards ”optimal” — best possible fit.
— Expensive! Cost is O(mn2). Good for small n, or “expensive” data.

2. Krylov methods:
— Standard technique for large sparse matrices.
— Interacts with A only through its action on vectors.
— Theoretically optimal in important regards.

3. Execute Gram-Schmidt on the columns of A (“column pivoted QR”):
— Simple and practical for medium size dense matrices.
— Not entirely optimal, but often good enough.
— Cost is O(mnk) since you can stop after k steps.

These methods work great! But room for improvement in important environments.



Randomized SVD:

Objective: Given an m × n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m × n m × k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n × k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m × k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m × k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ∥A − Q Q∗A︸︷︷︸
=B

∥ = ∥A − Q B︸︷︷︸
=ÛDV∗
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DV∗∥ = ∥A − UDV∗∥.



Randomized SVD:

Objective: Given an m × n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m × n m × k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n × k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m × k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m × k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

We claim that the columns of Y form a good approximate basis for ran(A).
Observe that ran(Y) ⊆ ran(A) automatically.
Loss of accuracy can happen if ran(Y) does not capture important directions.
To avoid this, we draw p extra samples, for, say, p = 5 or p = 10.



Randomized SVD:

Objective: Given an m × n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m × n m × k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n × k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m × k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m × k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Important: You only need to ensure that you do not undersample.

Over-sampling is unproblematic, since excess data gets “filtered out” in Stage B.



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Let us next investigate the accuracy of the method.

To illustrate the errors, we set p = 0 (no over-sampling), and then define

ek = ∥A − UDV∗∥ = ∥A − QQ∗A∥.

Eckart-Young theorem: ek ≥ σk+1, where σj is the j ’th singular value of A.



Randomized SVD:
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The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ∥A − PkA∥,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A is an approximation to a scattering operator for a Helmholtz problem.
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The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ∥A − PkA∥,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A now has singular values that decay slowly.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
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(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.
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Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.

For instance, we can bound the expectation of the error:
Theorem: Let A be an m × n matrix with singular values {σj}

min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let ΩΩΩ be a Gaussian random matrix of size n × (k + p) and set Q = orth(AΩΩΩ). Then the
average error satisfies

E
[
∥A − QQ∗A∥Fro

]
≤
(

1 +
k

p − 1

)1/2
min(m,n)∑

j=k+1
σ2

j

1/2

,

E
[
∥A − QQ∗A∥

]
≤

1 +

√
k

p − 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2
j

1/2

.



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.

There are also bounds on the likelihood of a large deviation from the expectation.
(It turns out to decay super-exponentially fast as p increases!)

References (very incomplete!!):
• Martinsson, Rokhlin, Tygert, Yale-CS-1361, 2006.
• Halko, Martinsson, Tropp, SIREV, 2011. Survey, focus on RSVD.
• Witten, Candès, Algorithmica, 2015.
• Gu, SISC, 2015. Analysis of randomized subspace iteration.
• Musco, Musco, NIPS, 2015. Analysis of block Krylov methods.
• Saibaba, SIMAX, 2019. Accuracy of singular vectors.
• Martinsson, Tropp, Acta Numerica, 2020. Survey. Broader perspective.

Current work: A posteriori error analysis – use only information known to the user.
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Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.
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• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).
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• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m × n. Reduction in complexity from O(mnk) to O(mnlog k).



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m × n. Reduction in complexity from O(mnk) to O(mnlog k).
The key is to use a Fast Johnson-Lindenstrauss transform.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)

Cost is now O(mn)!

Practical acceleration is achieved at ordinary matrix sizes.



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m × n. Reduction in complexity from O(mnk) to O(mnlog k).

A ΩΩΩ AΩΩΩ

The matrix ΩΩΩ is a sparse random matrix. Two nonzero entries are placed randomly
in each row. In consequence, each column of A contributes to precisely two
columns of the sample matrix Y = AΩΩΩ. This structured random map has O(mn)
complexity, is easy to work with practically, and often provides good accuracy.



Randomized SVD:
Input: An m × n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n × (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗ A.
(2) Form the m × (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m × n. Reduction in complexity from O(mnk) to O(mnlog k).

• Single pass algorithms have been developed for streaming environments.
The idea is that you are allowed to observe each matrix element only once.
You cannot store the matrix. Not possible with deterministic methods!
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Randomized compression of rank structured matrices.



Finding spanning rows and columns — CUR/interpolatory/CPQR decompositions
A common task in linear algebra is to find sets of columns/rows that span the
column/row space of a matrix. To illustrate, suppose that we are given an m × n matrix
A, a rank k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.



Finding spanning rows and columns — CUR/interpolatory/CPQR decompositions
A common task in linear algebra is to find sets of columns/rows that span the
column/row space of a matrix. To illustrate, suppose that we are given an m × n matrix
A, a rank k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

Applications:

• Data interpretation: The columns you pick sometimes correspond to specific
variables that explain some data set — specific genes, specific stocks, etc.

• Preserving structure: If A is sparse/non-negative, then so is C. Particularly powerful
in a “CUR” decomposition A ≈ CUR where R holds a subset of rows.

• Storage efficiency: In many environments, there is no need to explicitly store the
factors R or C – just store the index vector and extract / build R or C when needed.



Finding spanning rows and columns — CUR/interpolatory/CPQR decompositions
A common task in linear algebra is to find sets of columns/rows that span the
column/row space of a matrix. To illustrate, suppose that we are given an m × n matrix
A, a rank k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

Standard techniques:

• Golub-Businger pivoting strategy: The standard tool. Simple, attractive flop count,
generally works well, but can be substantially suboptimal. Challenging to implement
efficiently on modern hardware.

• Specialized pivoting strategies such as Gu-Eisenstat: Guaranteed to select columns
that are close to optimal. Rarely implemented (too complicated).

• Randomized sampling strategies: Very popular subject in theoretical CS. Powerful
asymptotic theory. In practice, competitive only for huge matrices, or matrices where
entry evaluation is expensive.
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A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

A hybrid randomized / classical approach:
(1) Apply a random embedding ΩΩΩ to the columns of A
(2) Execute a classical pivoting method on ΩΩΩA



Finding spanning rows and columns — CUR/interpolatory/CPQR decompositions
A common task in linear algebra is to find sets of columns/rows that span the
column/row space of a matrix. To illustrate, suppose that we are given an m × n matrix
A, a rank k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

A hybrid randomized / classical approach:
(1) Apply a random embedding ΩΩΩ to the columns of A
(2) Execute a classical pivoting method on ΩΩΩA

• Sparse random embeddings work well for step (1).

• Partially pivoted LU can be used for step (2). Fast!! (Very surprising to me!)

• Simple to implement.

• Overall complexity as low as O(mn + k2n). (Versus the classical O(mnk).)



Finding spanning rows and columns — CUR/interpolatory/CPQR decompositions
A common task in linear algebra is to find sets of columns/rows that span the
column/row space of a matrix. To illustrate, suppose that we are given an m × n matrix
A, a rank k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m × n m × k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

A hybrid randomized / classical approach:
(1) Apply a random embedding ΩΩΩ to the columns of A
(2) Execute a classical pivoting method on ΩΩΩA

References: Liberty, Woolfe, Martinsson, Rokhlin and Tygert (2007); Sorensen &
Embree (2006); Halko, Martinsson, Tropp (2011); Martinsson, Tropp (2020); Dong &
Martinsson, arXiv:2104.05877, 2021; . . .



Computing full factorizations — accelerated column pivoted QR: The column
selection strategy on the previous slide has been applied to resolve a classical problem
in numerical linear algebra: How do you pick groups of pivots when executing column
pivoted QR? The purpose is to move flops from BLAS2 to BLAS3 operations.
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Speedup attained by a randomized algorithm for computing a full column pivoted QR factoriza-
tion of an n × n matrix. The speed-up is measured versus LAPACK’s faster routine dgeqp3 as
implemented in Netlib (left) and Intel’s MKL (right). Our implementation was done in C, and was
executed on an Intel Xeon E5-2695. Joint work with G. Quintana-Ortí, N. Heavner, and R. van
de Geijn (SISC 2017). Closely related work by Duersch and Gu, SISC 2017 / SIREV 2020.



Randomization as a means to avoid edge cases Pivoting revisited
Consider the problem of solving a linear system

N∑
j=1

aijxj = bi, i ∈ {1,2, . . . ,N},

or
Ax = b,

and our old favourite solution algorithm: Gaussian elimination (GE).

Without pivoting, GE can fail. Either outright. Or, more subtly, “numerically”.

If A is a Gaussian random matrix GE without pivoting works very well, even for large N.

Randomisation can be used to make the failure modes of GE vanishingly unlikely.
For instance, you may randomly rotate the coefficient matrix to obtain(

U∗AV
) (

V∗x
)
=
(
U∗b

)
,

where U and V are drawn from a Haar distribution (uniform on unitary matrices). This
new system can safely be solved without pivoting. Dramatically reduces communication.

To make things shine, use structured random matrices.
Question: How much randomness is required?
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Ax = b,

and our old favourite solution algorithm: Gaussian elimination (GE).

Without pivoting, GE can fail. Either outright. Or, more subtly, “numerically”.

If A is a Gaussian random matrix GE without pivoting works very well, even for large N.

Randomisation can be used to make the failure modes of GE vanishingly unlikely.
For instance, you may randomly rotate the coefficient matrix to obtain(

U∗AV
) (

V∗x
)
=
(
U∗b

)
,

where U and V are drawn from a Haar distribution (uniform on unitary matrices). This
new system can safely be solved without pivoting. Dramatically reduces communication.

To make things shine, use structured random matrices.
Question: How much randomness is required?



Outline of talk

(1) Randomized low rank approximation

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

(2) Samples of current research directions (time permitting)

Finding spanning row and columns.

Matrix approximation via sampling.

Randomized compression of rank structured matrices.



Matrix approximation by sampling

To simplify slightly, there are two paradigms for how to use randomization to
approximate matrices:

Randomized embeddings Randomized sampling
(What we have discussed so far.) (What we will discuss next.)

Often faster than classical deterministic
methods.

Sometimes far faster than classical
deterministic methods. Faster than
matrix-vector multiplication, even.

Highly reliable and robust. Can fail in the “general” case.

High accuracy is attainable. Typically low accuracy.

Best for scientific computing. Enables solution of large scale prob-
lems in “big data” where no other meth-
ods work.
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T∑

t=1
At where each At is “simple” in some sense.



Matrix approximation by sampling

Suppose that A =
T∑

t=1
At where each At is “simple” in some sense.

Example: Sparse matrix written as a sum over its nonzero entries
5 −2 0
0 0 −3
1 0 0


︸ ︷︷ ︸

=A

=


5 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A2

+


0 0 0
0 0 −3
0 0 0


︸ ︷︷ ︸

=A3

+


0 0 0
0 0 0
1 0 0


︸ ︷︷ ︸

=A4

Example: Each Ai could be a column of the matrix
5 −2 7
1 3 −3
1 −1 1


︸ ︷︷ ︸

=A

=


5 0 0
1 0 0
1 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 3 0
0 −1 0


︸ ︷︷ ︸

=A2

+


0 0 7
0 0 −3
0 0 1


︸ ︷︷ ︸

=A3

.

Example: Matrix-matrix multiplication broken up as a sum of rank-1 matrices:

A = BC =
∑

t
B( : , t)C(t, : ).



Matrix approximation by sampling

Suppose that A =
T∑

t=1
At where each At is “simple” in some sense.

Let {pt}T
t=1 be a probability distribution on the index vector {1,2, . . . ,T}.

Draw an index t ∈ {1,2, . . . ,T} according to the probability distribution given, and set

X =
1
pt

At.

Then from the definition of the expectation, we have

E
[
X
]
=

T∑
t=1

pt ×
1
pt

At =
T∑

t=1
At = A,

so X is an unbiased estimate of A.
Clearly, a single draw is not a good approximation — unrepresentative, large variance.
Instead, draw several samples and average:

X̄ =
1
k

k∑
t=1

Xt,

where Xt are independent samples from the same distribution.
As k grows, the variance will decrease, as usual. Various Bernstein inequalities apply.



Matrix approximation by sampling

As an illustration of the theory, we cite a matrix-Bernstein result from J. Tropp (2015):

Theorem: Let A ∈ Rm×n. Construct a probability distribution for X ∈ Rm×n that satisfies

E
[
X
]
= A and ∥X∥ ≤ R.

Define the per-sample second-moment: v(X) := max{∥E[XX∗]∥, ∥E[X∗X]∥}.
Form the matrix sampling estimator: X̄k =

1
k
∑k

t=1 Xi where Xt ∼ X are iid.

Then E∥X̄k − A∥ ≤
√

2v(X) log(m + n)
k +

2R log(m + n)
3k .

Furthermore, for all s ≥ 0: P
[
∥X̄k − A∥ ≥ s

]
≤ (m + n) exp

(
−ks2/2

v(X) + 2Rs/3

)
.

Suppose that we want E∥A − X̄∥ ≤ 2ϵ. The theorem says to pick

k ≥ max

{
2v(X) log(m + n)

ϵ2
,

2R log(m + n)
3ϵ

}
In other words, the number k of samples should be proportional to both v(X) and to the
upper bound R.

The scaling k ∼ 1
ϵ2

is discouraging, and unavoidable (since error ϵ ∼ 1/
√

k).



Matrix approximation by sampling: Matrix matrix multiplication

Given two matrices B and C, consider the task of evaluating

A = B C =
∑T

t=1 B(:, t)C(t, :).
m × n m × T T × n

Sampling approach:
1. Fix a probability distribution {pt}T

t=1 on the index vector {1,2, . . . ,T}.
2. Draw a subset of k indices J = {t1, t2, . . . , tk} ⊆ {1,2, . . . ,T}.
3. Use Ā = 1

k
∑k

i=1
1
pti

B( : , ti)C(ti, : ) to approximate A.

You get an unbiased estimator regardless of the probability distribution. But the
computational profile depends critically how which one you choose. Common choices:

Uniform distribution: Very fast. Not very reliable or accurate.

Sample according to column/row norms: Cost is O(mnk), which is much better than
O(mnT ) when k ≪ T . Better outcomes than uniform, but not great in general case.

In either case, you need k ∼ 1
ϵ2

to attain precision ϵ.



Matrix approximation by sampling: Low rank approximation.

Given an m × n matrix A, we seek a rank-k matrix Ā such that ∥A − Ā∥ is small.

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use as your approximation
Ā = C U R,

m × n m × k k × k k × n
where U is computed from information in A(I, J). (It should be an approximation to
the optimal choice U = C†AR†. For instance, U = A(I, J)−1.)

The computational profile depends crucially on the probability distribution that is used.

Uniform probabilities: Can be very cheap. But in general not reliable.

Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Then quite strong theorems
can be proven on the quality of the approximation. Problem: Computing the probability
distribution is as expensive as computing a partial SVD.



Matrix approximation by sampling: Connections to randomized embedding.

Task: Find a rank k approximation to a given m × n matrix A.

Sampling approach: Draw a subset of k columns Y = A(:, J) where J is drawn at
random. Let our approximation to the matrix be

Ak = YY†A.

As we have seen, this in general does not work very well. But it does work well for the
class of matrices for which uniform sampling is optimal.

We can turn A into such a
matrix! Let ΩΩΩ be a matrix drawn from a uniform distribution on the set of n × n unitary
matrices (the “Haar distribution”). Then form

Ã = AΩΩΩ.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a great sample through

Y = Ã(:, J) = AΩΩΩ(:, J).

The n × k “slice” ΩΩΩ(:, J) is in a sense an optimal random embedding.

Fact: Using a Gaussian matrix is mathematically equivalent to using ΩΩΩ(:, J).

Question: What other choices of random projection might mimic the action of ΩΩΩ(:, J)?
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Matrix approximation by sampling: Structured random embeddings

Task: Find a rank k approximation to a given m × n matrix A.

Approach: Draw an n× k random embedding ΩΩΩ, set Y = AΩΩΩ, and then form Ak = YY†A.

Choices of random embeddings:

• Gaussian (or slice of Haar matrix): Optimal. Leads to O(mnk) overall cost.

• Subsampled randomized Fourier transform (SRFT): Indistinguishable from
Gaussian in practice. Leads to O(mnlog(k)) overall cost. Adversarial counter
examples can be built, so supporting theory is weak.

• Chains of Givens rotations: Similar profile to an SRFT.

• Sparse random projections: Need at least two nonzero entries per row. Works
surprisingly well.

• Additive random projections: You can use a map with only ±1 entries.



Matrix approximation by sampling: Key points

• These techniques provide a path forwards for problems where traditional techniques
are simply unaffordable.

Kernel matrices in data analysis form a prime target. These are dense matrices, and
you just cannot form the entire matrix.

• Popular topic for theory papers.

• When techniques based on randomized embeddings that systematically mix all
coordinates are affordable, they perform far better. Higher accuracy, and less
variability in the outcome.



Outline of talk

(1) Randomized low rank approximation

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

(3) Samples of current research directions

Finding spanning row and columns.

Matrix approximation via sampling.

Randomized compression of rank structured matrices.



Rank structured matrices

We use the term rank structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.

More recently, have been shown to arise in data science as well — kernel matrices,
covariance matrices, Hessians, etc.



Rank structured matrices

We use the term rank structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

We focus on “hierarchical” tessellations (as
the one shown on the right). Some tech-
niques apply to “flat” formats as well.

All gray blocks have low rank.

Hierarchically rank structured matrices often admit linear or close to linear complexity
algorithms for the matrix-vector multiply, matrix-matrix multiply, LU factorization, etc.

Ubiquitous applications in scientific computing: Solution operators for elliptic PDEs, DtN
operators, scattering matrices, Schur complements in sparse direct solvers, etc.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .



In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Sample the column space of the matrix:

If A ̸= A∗, then sample the row space too:



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

The low rank case: In the particularly simple case where A has global rank k, we revert
to the case we considered in the first part of the talk.

In the current framework, the randomized SVD takes the form:
• Set s = k and draw a “test matrix” ΩΩΩ ∈ RN×s from a Gaussian distribution.
• Form the “sample matrix” Y = AΩΩΩ.
• Build ΨΨΨ to hold an ON basis for ran(Y), e.g., [ΨΨΨ,∼] = qr(Y,0).
• Form Z = A∗ΨΨΨ.

Then A = ΨΨΨ
(
ΨΨΨ∗A

)
= ΨΨΨZ∗ with probability 1.

In the more typical case where A is only approximately of rank k, some oversampling is
required to get a reliable scheme. (Say s = k + 10, or s = 2k, or some such.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Why generalize from “global low rank” to “rank structured”:
• Integral operators from classical physics. If you have a legacy method for the

matrix-vector multiple (e.g. the Fast Multipole Method), then we could enable a
range of operations – LU factorization, matrix inversion, etc.

• Multiplication of operators. Useful for forming Dirichlet-to-Neumann operators, for
combining solvers of multi-physics problems, etc.

• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices. This lets us overcome key bottlenecks (e.g. LU factorization of a
“finite element” matrix is accelerated from O(N2) to close to linear complexity.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

For the most general structured matrix formats (e.g. H-matrices), the problem has been
solved in principle, and close to linear complexity algorithms exist:

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP 2011.

• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.

However, existing methods require ∼ k log(N) matvecs, and do not have great practical
speed. For instance, as dimension d increases, the bound on flops has an 8d factor . . .

Recently proposed algorithms have reduced the pre-factors by constructing bespoke
random matrices that are designed to be optimal for any given tessellation pattern. The
key technical idea is to formulate admissibility criteria that form a graph, and then exploit
powerful graph coloring algorithms. This technique also enables compression of kernel
matrices that arise in ML. [J. Levitt & P.G. Martinsson, arxiv arXiv: arXiv:2205.03406, 2022.]



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

The good news is that in the context of numerical PDEs, more specialized rank
structured formats are often sufficient — hierarchically semi-separable matrices,
hierarchically block-separable matrices, “H-matrices with weak admissibility”, etc.

For these matrices, algorithms with true linear complexity and high practical speed exist.

First generation algorithms were not fully black box, as they required the ability to
evaluate a small number of matrix entries explicitly.

• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, and others. Widely used.

However, a fully black box algorithm with true linear complexity and high practical speed
is now available:

• J. Levitt & P.G. Martinsson, arxiv arXiv:2205.02990, 2022.



Approximation of rank-structured matrices – A binary tree structure
An example binary tree structure for a matrix of size 400 × 400. The levels of the tree
represent successively refined partitions of the index vector [1, ...,400].

Let m denote the leaf node size.
Let L ≈ log(N/m) denote the depth of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
Consider the following tessellation of a matrix, where each block represents interactions
between two leaf nodes of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
HBS requirements for the finest level: for every leaf node τ , there must exist basis
matrices Uτ and Vτ such that for every leaf node τ ′ ̸= τ , we have

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗
τ ′.

m × m m × k k × k k × m

The on-diagonal blocks are not assumed to be low-rank, and pose the main challenge
for black-box compression.
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Approximation of rank-structured matrices – Telescoping factorization
This leads to a factorization of A.

A = U(L) Ã(L)
(V(L))∗ + D(L)

Ã(L) is also an HBS matrix, and it can be factorized similarly, leading to a telescoping
factorization.

For example, a factorization of an HBS matrix with a tree of depth L = 3 takes the form

A = U(3)(U(2)(U(1)D(0)(V(1))∗ + D(1))(V(2))∗ + D(2))(V(3))∗ + D(3).
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Approximation of rank-structured matrices – A naive approach
Consider the task of finding basis matrix U4 for node 4 using randomized sampling. We
seek a sample of A(I4, Ic4), the HBS row block of node 4.

The naive approach is to sample with a random matrix ΩΩΩ ∈ RN×r , r = k + 10, that has a
block of zeros in rows indexed by I4. Then Y(I4, :) will contain a sample of A(I4, Ic4).

Y = A ΩΩΩ

This scheme requires taking a separate set of r samples for each leaf node, for a total of
∼ rN/m samples. There is a lot of wasted information in Y.
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Approximation of rank-structured matrices – the “not quite black box” approach
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×r .

Y = A ΩΩΩ

Afterwards, subtract unwanted contributions back out of Y.
Subtracting the contribution of A4,4 gives the desired sample of A(I4, Ic4),

Y(I4, :)− A4,4ΩΩΩ(I4, : ).

This scheme requires only r samples in total, but it also requires direct access to a small
number of entries of A.

P.G. Martinsson, arXiv:0806.2339, 2008. Journal version in SIMAX (Ha!), 2011



Approximation of rank-structured matrices – Finding U
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×(r+m), where m is the leaf
node size.

Y = A ΩΩΩ

Since ΩΩΩ(I4, : ) is of size m × (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).
Then

YQ4 = A ΩΩΩQ4.
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node size.

Y = A ΩΩΩ

Since ΩΩΩ(I4, : ) is of size m × (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).
Then

YQ4 = A ΩΩΩQ4.



Approximation of rank-structured matrices – Finding U

Y = A ΩΩΩ

Q4 = nullspace(ΩΩΩ(I4, : ), r)

YQ4 = A ΩΩΩQ4

We find the sample by multiplying Y(I4, :)Q4.
Orthonormalizing the sample gives basis matrix U4,

U4 = qr(Y(I4, :)Q4).



Approximation of rank-structured matrices – Finding U
• For each leaf node τ , we compute

Qτ = nullspace(ΩΩΩ(Iτ , :), r)
Uτ = qr(Y(Iτ , :)Qτ ).

• Uτ only depends on ΩΩΩ(Iτ , :) and Y(Iτ , :).
• We only need r + m samples to find Uτ for every leaf node τ .
• ΩΩΩQτ is a Gaussian random matrix, except for the block intentionally zeroed out.



Approximation of rank-structured matrices – Compression overview
Recall the telescoping factorization A = U(L)Ã(L)

(V(L))∗ + D(L).
Steps:
1. Find U(L),V(L).
2. Find D(L).
3. Compress Ã(L)

recursively.

Compute randomized samples of A and A∗.
1: Form Gaussian random random matrices ΩΩΩ and ΨΨΨ of size N × s.
2: Multiply Y = AΩΩΩ and Z = A∗ΨΨΨ.

Compress level by level from finest to coarsest.
3: for level ℓ = L,L − 1, . . . ,0 do
4: for node τ in level ℓ do
5: if τ is a leaf node then

6:
ΩΩΩτ = ΩΩΩ(Iτ , :), ΨΨΨτ = ΨΨΨ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
7: else
8: Let α and β denote the children of τ .

9:

ΩΩΩτ =

[
V∗
αΩΩΩα

V∗
βΩΩΩβ

]
, ΨΨΨτ =

[
U∗

αΨΨΨα

U∗
βΨΨΨβ

]

Yτ =

[
U∗

α(Yα − DαΩΩΩα)

U∗
β(Yβ − DβΩΩΩβ)

]
, Zτ =

[
V∗
α(Zα − D∗

αΨΨΨα)

V∗
β(Zβ − D∗

βΨΨΨβ)

]

10: if level ℓ > 0 then

11:
Qτ = nullspace(ΩΩΩτ , r), Pτ = nullspace(ΨΨΨτ , r)

Uτ = qr(YτQτ , r), Vτ = qr(ZτPτ , r)
12: Dτ = (I − UτU∗

τ)YτΩΩΩ
†
τ + UτU∗

τ

(
(I − VτV∗

τ)ZτΨΨΨ
†
τ

)∗
13: else
14: Dτ = YτΩΩΩ

†
τ



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)
Ã(L)︷ ︸︸ ︷

(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A − U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗
τAτ,τVτV∗

τ

= . . .

= (I − UτU∗
τ )YτΩΩΩ

†
τ + UτU∗

τ

(
(I − VτV∗

τ )ZτΨΨΨ
†
τ

)∗



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.
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Ã(L)︷ ︸︸ ︷

(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A − U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by
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τAτ,τVτV∗

τ

= . . .

= (I − UτU∗
τ )YτΩΩΩ

†
τ + UτU∗

τ

(
(I − VτV∗

τ )ZτΨΨΨ
†
τ

)∗



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)
Ã(L)︷ ︸︸ ︷

(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A − U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗
τAτ,τVτV∗

τ

= . . .

= (I − UτU∗
τ )YτΩΩΩ

†
τ + UτU∗

τ

(
(I − VτV∗

τ )ZτΨΨΨ
†
τ

)∗



Approximation of rank-structured matrices – Compressing Ã(L)

To compute randomized samples of Ã(L), we multiply the telescoping factorization with ΩΩΩ

to obtain
Y = AΩΩΩ = (U(L)Ã(L)

(V(L))∗ + D(L))ΩΩΩ,

and rearrange to obtain

(U(L))∗(Y − D(L)ΩΩΩ)︸ ︷︷ ︸
sample matrix

= Ã(L)
(V(L))∗ΩΩΩ︸ ︷︷ ︸
test matrix

.



Approximation of rank-structured matrices: Sparse LU
Let C be the stiffness matrix for the standard five-point stencil finite difference
approximation to the Poisson equation on a rectangular grid.

We partition the grid as shown and tessellate C accordingly.

C =


C11 0 C13

0 C22 C23
C31 C32 C33


The matrix we seek to compress is the Schur complement

A = C33 − C31C−1
11 C31 − C32C−1

22 C23.



Approximation of rank-structured matrices: Sparse LU r = 30,m = 60



Approximation of rank-structured matrices: Sparse LU r = 30,m = 60



Approximation of rank-structured matrices: Sparse LU r = 30,m = 60



Approximation of rank-structured matrices: FMM r = 50,m = 100



Approximation of rank-structured matrices: Key points

• Fully “black box”. Interacts with A only via the matvec.

• True linear complexity. Requires only O(k) samples from A and A∗.
Much faster in practice than existing black box algorithms.
(However, prefactor in # samples is slightly suboptimal – unlike Townsend/Halikias.)

• Ideal tool for acceleration of sparse direct solvers.



Key points on randomized singular value decomposition (RSVD):
• High practical speed — interacts with A only through matrix-matrix multiplication.

• Highly communication efficient.
Acceleration of classical algorithms such as column pivoted QR.
Particularly efficient for GPUs, out-of-core computing, distributed memory, etc.

• Reduction in complexity from O(mnk) to O(mnlog k) or even less via structured
random embeddings.

• Single pass algorithms have been developed for streaming environments.
Not possible with deterministic methods!

Current research directions:

• High performance implementations.

• Faster algorithms for computing full matrix factorizations.

• Solvers for linear systems and for least squares problems.

• Compression of continuum operators and rank structured matrices.

• Applications of randomized embeddings outside of linear algebra: Faster nearest
neighbor search, faster clustering algorithms, data compression on the fly, etc.



Surveys:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. (Arxiv report 2002.01387)

Long survey summarizing major findings in the field in the past decade.
• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,

IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv

DOE report on randomized algorithms: https://arxiv.org/abs/2104.11079 (2021)


