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Outline of talk

• The interpolatory and CUR decompositions — what are they?

• Applications of IDs in solving PDEs and integral equations.

• Efficient algorithms for computing an interpolatory decomposition.

• PDE applications revisited: How to compress a global operator. [Time permitting]



Interpolative and CUR decompositions

Let A be an m × n matrix of (approximate) rank k.

The CUR or skeleton approximation of A takes the form

(1)
A ≈ C U R,

m × n m × k k × k k × n
where C holds a subset of the columns of A, and R holds a subset of the rows of A.
In other words, C = A(:, Js) and R = A(Is, :) for some index vectors Js and Is.

Closely related are the interpolatory decompositions

A ≈ C Z
m × n m × k k × n

A ≈ X R
m × n m × k k × n

A ≈ X As Z
m × n m × k k × k k × n

where C and R are as in (1), and where As = A(Is, Js).

Example: Suppose A is of size 10 × 8 and that Is = [2,4,9] and Js = [3,4,8]. Then

R = A(Is, :) C = A(:, Js) As = A(Is, Js)

The objective is to find spanning sets of rows and columns.



Interpolative and CUR decompositions

Let A be an m × n matrix of (approximate) rank k.

The CUR or skeleton approximation of A takes the form

(1)
A ≈ C U R,

m × n m × k k × k k × n
where C holds a subset of the columns of A, and R holds a subset of the rows of A.
In other words, C = A(:, Js) and R = A(Is, :) for some index vectors Js and Is.

Closely related are the interpolatory decompositions

A ≈ C Z
m × n m × k k × n

A ≈ X R
m × n m × k k × n

A ≈ X As Z
m × n m × k k × k k × n

where C and R are as in (1), and where As = A(Is, Js).

The fact that the matrices R, C, and As are submatrices of A has important advantages:
• If A is sparse, then the factors R and C are sparse.
• If A is non-negative, then the factors R, C, and As are non-negative.
• The factorizations allow for data interpretation.
• Reduced storage, since we can store the index vectors rather than the factors.
• Invaluable in the context of modern Fast Multipole Methods and Fast Direct Solvers.



Special case: Exact rank deficiency. Suppose A is of size m × n and exact rank k.

Let I and J be permutations or the row and column indices, and split A into four parts

A(I, J) =
[

Ass Asr

Ars Arr

]
,

so that Ass is the leading k × k submatrix. If Ass is non-singular, then necessarily

(2) Arr = ArsA−1
ss Asr.

The skeleton factorization (CUR) follows directly from (2):

A(I, J) =
[

Ass

Ars

]
︸ ︷︷ ︸

=C

A−1
ss︸︷︷︸
=U

[
Ass Asr

]︸ ︷︷ ︸
=R

.

Analogously, the interpolatory decomposition takes the form

A(I, J) =
[

I
ArsA−1

ss

]
︸ ︷︷ ︸

=X

Ass︸︷︷︸
=As

[
I A−1

ss Asr
]
.︸ ︷︷ ︸

=Z

So existence of the CUR and the ID are straight-forward. But two questions arise:
(1) Are the factorizations well-conditioned?
(2) For a matrix of only approximate rank k, how close to optimal can you get?



Conditioning of the interpolatory decomposition

Recall the interpolatory decomposion:

A ≈ X As Z
m × n m × k k × k k × n

where As = A(Is, Js) is a k×k submatrix of A.

X and Z hold k × k identity matrices as submatrices. ⇒ σmin(X) = σmin(Z) = 1

So X and Z are well-conditioned iff their maximal singular values are controlled.

Claim: Pick Is and Js so that | det(A(Is, Js))| is the max over all k × k submatrices. Then

(3) sup
i,j

|X(i, j)| ≤ 1 and sup
i,j

|Z(i, j)| ≤ 1.

Proof: Use Cramer’s rule to bound entries of ArsA−1
ss and A−1

ss Asr.

The bounds (3) imply that κ(X) ≤
√

1 + k(m − k) and κ(Z) ≤
√

1 + k(n − k).

So YES, a reasonably well-conditioned ID exists. (Finding it is another matter . . . )

Note: CUR is in general not well conditioned.



Optimality in terms of low rank approximation

Recall Eckart–Young theorem: inf{∥A − B∥ : B has rank k} = σk+1(A)

(Our default is that ∥ · ∥ refers to the ℓ2 operator norm.)

Question: How close to optimal can you get with an ID or a CUR decomposition?

Very well studied subject.
Tends to be within factor ∼

√
kn of optimal in the worst case.

Often much better in practice, in particular when the singular values decay rapidly.

Theorem: Let A be an m × n matrix, and let k < min(m,n). There exists a matrix U of
size k × k, and index vectors Is and Js of length k such that

∥A − CUR∥ ≤
(
1 + 2

√
k(
√

m +
√

n)
)
σk+1(A),

where
C = A( : , Js), R = A(Is, : ).

References: Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L. (1997); Goreinov, S.A., Tyrtyshnikov,

E.E. (2001). Survey: Ballani, J. & Kressner, D. (2016).
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Example: Finding sparse solutions to least squares problems

Given a rank deficient matrix A ∈ Rm×n and a vector b ∈ Rm×1, consider the problem

min
x∈Rn

∥Ax − b∥.

The minimal norm solution can be computed via the SVD.

A sparse solution can be computed via an ID (or, in practice, a rank revealing QR).
If A = CZ, then

min
x∈Rn

∥Ax − b∥ = min
x′∈Rk

∥Cx′ − b∥.

If the is ID well-conditioned, the norm of the solution can be controlled.

Very simple idea, with surprisingly interesting applications.



Example: Finding sparse solutions to least squares problems

From “Data-Driven Sparse Sensor Placement for Reconstruction”
by Manohar, Brunton, Kutz, & Brunton



Example: Method of fundamental solutions (special case of least squares problem)
Consider a Dirichlet boundary value problem on a domain Ω with boundary Γ:−∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ Γ

We seek a solution of the form

u(x) =
n∑

j=1
log |x − yj|qj

where {yj}n
j=1 denotes a set of source locations outside of Ω.

The red dots denote the points yj.



Example: Method of fundamental solutions (special case of least squares problem)
Consider a Dirichlet boundary value problem on a domain Ω with boundary Γ:−∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ Γ

We seek a solution of the form

u(x) =
n∑

j=1
log |x − yj|qj

where {yj}n
j=1 denotes a set of source locations outside of Ω.

Specifying a set of collocation points {xi}m
i=1 ⊂ Γ, our task is then to solve the system

n∑
j=1

log |xi − yj|qj = f (xi), i ∈ {1,2, . . . ,m}

in a least squares sense.

The matrix A with entries A(i, j) = log |xi − yj| is typically numerically rank deficient, and
an ID can help reduce the dimensionality of the problem.

Rectangular world! Cf. talk by D. Huybrechs; Barnett & Betcke 2007; . . .



Example: Method of fundamental solutions (special case of least squares problem)

With analysis and extra bells and whistles, domains with corners can be handled too!

From Gopal & Trefethen, SINUM, 57(4), 2019 – “Lightning solver”

Similar problems arise in some variations of “radial basis function” methods.

Backwards stability is crucial in this context.



Example: Recursive skeletonization (a fast direct solver for integral equations)
Consider an integral equation

(BIE) q(x) +
∫
Γ

k(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3.

Example: Equation (BIE) may be a reformulation of Laplace BVP−∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ Γ

The standard BIE formulation here is
1
2q(x) +

∫
Γ

d(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where
d(x,y) = n(y) · ∇y

log |x − y |
2π =

n(y) · (x − y)
2π|x − y |2

.

Cf. talks by Anna-Karin Tornberg, Abi Gopal, Hadrien Montanelli, et al.



Example: Recursive skeletonization (a fast direct solver for integral equations)
Consider an integral equation

(BIE) q(x) +
∫
Γ

k(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3.

Example:

Consider the problem of (sound-soft) acoustic scat-
tering from a finite body. The governing equations
may be:

(BVP)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ Γ

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The PDE (BVP) has an alternative mathematical formulation in the BIE

−πiq(x) +
∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |

|x − y |

)
q(y)dS(y) = f (x), x ∈ Γ.



Example: Recursive skeletonization (a fast direct solver for integral equations)
Let A be a dense matrix arising from discretizing an integral equation, and partition

Claim: The matrices A12 and A21 often have low numerical rank. Typical behavior:
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Important: 3D is more adversarial. Slightly different representations are called for.



Example: Recursive skeletonization (a fast direct solver for integral equations)
Let A be a dense matrix arising from discretizing an integral equation, and partition

To reveal the numerical rank, we form the IDs of A12 and A21 to obtain

A12 = U1 Ã12 and
A∗

21 = W1 Ã∗
21

The matrix U1 takes the form

U1 = P1

[
I 0

T I

]
,

where P1 is a permutation matrix, and where T is a matrix that holds the expansion
coefficients in the interpolatory decomposition. U1 is not unitary, but it is invertible, with

U−1
1 =

[
I 0

−T I

]
P∗

1,

(Recall that there exists an ID s.t. |T(i, j)| ≤ 1 ∀i, j, so the conditioning is at least ok.)
Note: For notational simplicity, we assume exact rank deficiencies in this discussion.
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21 = W1 Ã∗
21

Let us plug the factorizations into A:



Example: Recursive skeletonization (a fast direct solver for integral equations)
Let A be a dense matrix arising from discretizing an integral equation, and partition

To reveal the numerical rank, we form the IDs of A12 and A21 to obtain

A12 = U1 Ã12 and
A∗

21 = W1 Ã∗
21

Let us plug the factorizations into A:[
A11 A12
A21 A22

]
=

[
A11 U1Ã12

Ã21W∗
1 A22

]
=

[
U1 0
0 I

] [
U−1

1 A11W−∗
1 Ã12

Ã21 A22

] [
W∗

1 0
0 I

]

The matrices Ã12 and Ã21 do not need to be computed since the non-zero elements
form submatrices of A.
(It would have been possible to use QR or SVD to build the basis matrices U1 and W1.
But then you would mix all entries and would have to explicitly compute Ã12 and Ã21.)



Example: Recursive skeletonization (a fast direct solver for integral equations)
Let A be a dense matrix arising from discretizing an integral equation, and partition

The matrix Partitioning of Γ

Next let us consider a 4 × 4 partitioning of A.
The ID now takes the form

Aij = Ui Ãij W∗
j i, j ∈ {1,2,3,4}, i ̸= j.

This leads to the factorization
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =


U1 0 0 0
0 U2 0 0
0 0 U3 0
0 0 0 U4




U−1

1 A11W−∗
1 Ã12 Ã13 Ã14

Ã21 U−1
2 A22W−∗

2 Ã23 Ã24

Ã31 Ã32 U−1
3 A33W−∗

3 Ã34

Ã41 Ã42 Ã43 U−1
4 A44W−∗

4




W∗

1 0 0 0
0 W∗

2 0 0
0 0 W∗

3 0
0 0 0 W∗

4



The non-zero elements of Ãij form submatrices of A.



Example: Recursive skeletonization (a fast direct solver for integral equations)
We have built a scheme for reducing a system of size pn × pn to one of size pk × pk,
where
p is the number of diagonal blocks,
n is the size of a diagonal block,
k is the rank, which is the size of the reduced blocks.

→

The computational gain is (k/n)3. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



Example: Recursive skeletonization (a fast direct solver for integral equations)
A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster



Example: Recursive skeletonization (a fast direct solver for integral equations)

Original set of points



Example: Recursive skeletonization (a fast direct solver for integral equations)

Skeleton points on level 4, acc =  1.000e−09



Example: Recursive skeletonization (a fast direct solver for integral equations)

Skeleton points on level 3, acc =  1.000e−09



Example: Recursive skeletonization (a fast direct solver for integral equations)

Skeleton points on level 2, acc =  1.000e−09



Example: Recursive skeletonization (a fast direct solver for integral equations)

Skeleton points on level 1, acc =  1.000e−09



Example: Recursive skeletonization (a fast direct solver for integral equations)
Now consider a surface in R3:
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Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +
∫
Γ

1
|x − y | q(y)dA(y), x ∈ Γ,

where Γ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).



Example: Recursive skeletonization (a fast direct solver for integral equations)
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Example: Recursive skeletonization (a fast direct solver for integral equations)
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Example: Recursive skeletonization (a fast direct solver for integral equations)
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Example: Recursive skeletonization (a fast direct solver for integral equations)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



Example: Recursive skeletonization (a fast direct solver for integral equations)
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Example: Recursive skeletonization (a fast direct solver for integral equations)
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Example: Recursive skeletonization (a fast direct solver for integral equations)

Consider scattering from some multibody domain involving cavities.



Example: Recursive skeletonization (a fast direct solver for integral equations)

There are lots of discretization nodes involved. Very computationally intense!



Example: Recursive skeletonization (a fast direct solver for integral equations)

After local compression of each scatter, the problem is much more tractable.



Example: Recursive skeletonization (a fast direct solver for integral equations)

Acoustic scattering on the exterior domain.

Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix is computed
for each body).

On an office desktop, we achieved an accuracy of 10−5, in about 6h (essentially all the
time is spent in applying the inter-body interactions via the Fast Multipole Method).
Accuracy 10−7 took 27h.



Example: Recursive skeletonization (a fast direct solver for integral equations)
BIEs on rotationally symmetric bodies (2014, with S. Hao and P. Young)

N Nbody Tfmm
IGMRES Ttotal Erel

∞(precond /no precond ) (precond /no precond)
10000 50× 25 1.23e+00 21 /358 2.70e+01 /4.49e+02 4.414e-04
20000 100×25 3.90e+00 21 /331 8.57e+01 /1.25e+03 4.917e-04
40000 200×25 6.81e+00 21 /197 1.62e+02 /1.18e+03 4.885e-04
80000 400×25 1.36e+01 21 / 78 3.51e+02 /1.06e+03 4.943e-04
20400 50×51 4.08e+00 21 /473 8.67e+01 /1.99e+03 1.033e-04
40800 100×51 7.20e+00 21 /442 1.56e+02 /3.17e+03 3.212e-05
81600 200×51 1.35e+01 21 /198 2.99e+02 /2.59e+03 9.460e-06

163200 400×51 2.50e+01 21 /102 5.85e+02 /2.62e+03 1.011e-05
40400 50×101 7.21e+00 21 /483 1.53e+02 /3.52e+03 1.100e-04
80800 100×101 1.34e+01 22 /452 2.99e+02 /6.31e+03 3.972e-05

161600 200×101 2.55e+01 22 /199 5.80e+02 /5.12e+03 2.330e-06
323200 400×101 5.36e+01 22 /112 1.25e+03 /5.84e+03 3.035e-06

Exterior Laplace problem solved on the multibody bowl domain with and without
preconditioner.



Example: Recursive skeletonization (a fast direct solver for integral equations)
N Nbody Tprecompute IGMRES Tsolve Erel

∞
80800 100 × 101 6.54e-01 62 5.17e+03 1.555e-03
161600 200 × 101 1.82e+00 63 9.88e+03 1.518e-04
323200 400 × 101 6.46e+00 64 2.19e+04 3.813e-04
160800 100 × 201 1.09e+00 63 9.95e+03 1.861e-03
321600 200 × 201 3.00e+00 64 2.19e+04 2.235e-05
643200 400 × 201 1.09e+01 64 4.11e+04 8.145e-06
641600 200 × 401 5.02e+00 64 4.07e+04 2.485e-05
1283200 400 × 401 1.98e+01 65 9.75e+04 6.884e-07

Exterior Helmholtz problem solved on multibody bowl domain.
Each bowl is 5 wavelength in diameter.

We do not give timings for standard iterative methods since in this example, they
typically did not converge at all (even though the BIE is a 2nd kind Fredholm equation).



Example: Recursive skeletonization (a fast direct solver for integral equations)
Lippmann-Schwinger in the plane for variable coefficient problem. High order
quadrature rule.

The scattering potential κ = 50

κ = 201 κ = 804



Example: Recursive skeletonization (a fast direct solver for integral equations)
Fixed 10 points per wavelength.
Direct solver is run at accuracy 10−3 and used as a preconditioner.
Weak admissibility is used.

N κ Tbuild Tinv Tgmres mem iter res
6400 50.27 0.23 0.24 0.20 0.04 4 6.97e-11
25600 100.53 0.65 0.99 0.62 0.21 5 6.16e-12
102400 201.06 2.26 4.36 2.49 1.01 6 1.04e-12
409600 402.12 14.91 20.06 9.78 4.67 6 3.23e-11
1638400 804.25 99.01 91.37 56.13 21.16 9 8.12e-12
6553600 1608.50 430.60 398.88 330.91 94.63 13 3.93e-11
26214400 3216.99 3102.09 2024.16 2698.53 418.37 22 3.30e-11

The largest experiment is over 500λ in diameter: Less than 3h total run time.

Hardware: Workstation with dual Intel Xeon Gold 6254 (18 cores at 3.1GHz base
frequency).

Joint with Abi Gopal, Advances in Computational Mathematics, 48(4), pp. 1 - 31, 2022.



Example: Recursive skeletonization (a fast direct solver for integral equations)
Acoustic scattering (for now, objective is electro-magnetics, of course):

50λ× 50λ× 14λ
Results from sequential (except for dense linear algebra) Matlab code:

N = 1.2M. Factorization time = 4h. Solve time = 30s. Memory req = 460GB. Precision = 10−3.
D. Sushnikova, L. Greengard, M. O’Neil, M. Rachh; arXiv:2201.07325.

Current work: Parallelize, and develop HPC implementation. With Chao Chen.

Question: Can you combine rank-structure & least squares problems?
Answer appears to be yes! Current work by Heather Wilber and Ethan Epperly.
Alternatively: Build numerical “scattering matrices” locally using least squares.
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Outline of talk

• The interpolatory and CUR decompositions — what are they?

• Applications of IDs in solving PDEs and integral equations.

• Efficient algorithms for computing an interpolatory decomposition.

• PDE applications revisited: How to compress a global operator. [Time permitting]



The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m × n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.



The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m × n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

Rss Rsr
]

m × n m × k k × k k × (n − k)
Set Js = J(1 : k), and pull out the factor Rss to form the column-ID:

A(:, J) ≈ QRss [I R−1
ss Rsr

]
= A(:, Js)Z(:, J).

As previously seen in Anil Damle’s talk on Tuesday!



The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m × n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

Rss Rsr
]

m × n m × k k × k k × (n − k)
Set Js = J(1 : k), and pull out the factor Rss to form the column-ID:

A(:, J) ≈ QRss [I R−1
ss Rsr

]
= A(:, Js)Z(:, J).

Notes:
• Orthonormality must be maintained scrupulously. Use Householder or “double” Gram-Schmidt.
• CPQR can in principle fail (e.g. the “Kahan counter example”), but in practice it works very well.
• Reasonably computationally efficient for matrices that fit in RAM.
• Sophisticated versions of CPQR have been developed that guarantee close to optimal column

selection, as well as bounding all elements of R−1
ss Rsr. (Gu & Eisenstat SISC 1996)



The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m × n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

Rss Rsr
]

m × n m × k k × k k × (n − k)
Set Js = J(1 : k), and pull out the factor Rss to form the column-ID:

A(:, J) ≈ QRss [I R−1
ss Rsr

]
= A(:, Js)Z(:, J).

Questions:
• Can you efficiently process large matrices that do not fit in fast memory?
• Can you efficiently process huge sparse matrices?
• Can you improve on the practical speed of CPQR? Even on the O(mnk) complexity?



The column selection problem — through a sketch
Simple fact: Let A be an m × n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m × n m × k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m × n m × k k × n



The column selection problem — through a sketch
Simple fact: Let A be an m × n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m × n m × k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m × n m × k k × n

Proof: Assume that

(6) A = EF

and that

(7) F = F(:, Js)Z.

Then
A( : , Js)Z

(2)
= EF( : , Js)Z

(3)
= EF = A.



The column selection problem — through a sketch
Simple fact: Let A be an m × n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m × n m × k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m × n m × k k × n

Question: How do you find a k × n matrix F such that A = EF for some E?

Hint: Cora Cartis talk on Monday . . .



The column selection problem — through a sketch
Simple fact: Let A be an m × n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m × n m × k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m × n m × k k × n

Question: How do you find a k × n matrix F such that A = EF for some E?

Randomized embedding! Draw a k × m Gaussian random matrix ΩΩΩ and set

F = ΩΩΩA.

Then with probability one, A = EF, where E = AF†.

We do not need to know the factor E! It just never enters the computation.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Basic version: Use a Gaussian random matrix.

Complexity is O(mnk) for a general dense matrix. Very high practical speed.

Complexity is O(nnz(A)k) for a sparse matrix. Again, high practical speed.

In some ways optimal sampling. Well supported by theory, e.g.:

E∥A − AF†F∥ ≤

1 +

√
k

p − 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2
j

1/2

.

(Skeletonization slightly increases the error: ∥A − A(:, Js)Z∥ ≥ ∥A − AF†F∥.)

Note: The probability that a set of k columns is sampled is in a certain sense
proportional to its spanning volume. This is precisely the property we are after.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Use a Gaussian matrix ΩΩΩ, and incorporate power iteration.

Replace F = ΩΩΩA in step (2) by F = ΩΩΩ
(
AA∗)qA for a small integer q. Say q = 1 or q = 2.

(I.e. do classical subspace iteration.)

This makes row(F) better aligned with the space spanned by the dominant k right
singular vectors of A.

Enhances accuracy, at cost of more work. Strong supporting theory. E.g., with p = k:

E
[
∥A − AF†F∥

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)
σk+1(A).

Re-orthonormalization is sometimes required to avoid loss of accuracy due to round-off.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Use a structured random matrix ΩΩΩ. (“Fast Johnson-Lindenstrauss transform”)

Idea: Use a matrix ΩΩΩ for which ΩΩΩA can be evaluated efficiently.

• Subsampled Randomized Fourier Transform (SRFT). Can be applied using FFT like
methods. Cost is O(mnlog(k)) instead of O(mnk).

• Sparse random matrix. Put only a couple of non-zero entries in each column.
(Entries can be restricted to ±1 for additional efficiency.) O(mn) cost attainable.

Works quite well in practice. SRFTs are almost as good as Gaussians.
However, far weaker theory is available.

Cannot be combined with power iteration.

Ailon/Chazelle 2006; Liberty/Rokhlin/Tygert/Woolfe 2006; Halko/Martinsson/Tropp 2011; Clarkson/Woodruff 2013.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Discrete empirical interpolation method (DEIM)

Idea: Use the sample matrix F to build an approximate truncated SVD of A.
(Form SVD of (AF†)F.) Requires one additional matrix-matrix multiplication.

Then perform partially pivoted LU on a thin matrix formed by the singular vectors to pick
the spanning columns.

DEIM sometimes produces slightly more optimal column selection than CPQR.

DEIM can be faster than doing CPQR directly. (Which is perhaps counterintuitive!)

Often excellent choice.

Reference: Sorensen & Embree SISC 2016.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: “Poor man’s DEIM”

Idea: Skip forming the SVD, and just do partially pivoted LU on F∗ directly!

Very economical. Works about as well as either CPQR, or regular DEIM.

Becomes particularly accurate with one step of power iteration.

Ongoing work: It appears that you can get highly accurate estimates of the residual for
free (almost).

Inspired by work by Trefethen and Schreiber (SIMAX 1990) on Gaussian elimination on random matrices.



Algorithm: Select spanning columns through a sketch
Inputs: An m × n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)× m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Other possibilities:

• Can use sophisticated methods à la Gu-Eisenstat RRQR in Step (3). Leads to
methods that are well supported by theory. Little improvement in practice, however.

• Can use the sketch to form an SVD. Then estimate leverage scores, and draw the
columns through randomized sampling on the index set {1,2, . . . ,n} using the
resulting probability distribution. Rarely competitive in practice.
(However, approaches of this type can be powerful for huge matrices where the
matrix-vector multiplication is not accessible.)



Numerical experiments

Question: Which type of random matrix should I use for the sketching?

We will compare:

• Optimality: How good of a basis for the row space do you get?

• Computational cost: What is the practical speed?
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Question: Which type of random matrix should I use for the sketching?

We will compare:

• Optimality: How good of a basis for the row space do you get?

• Computational cost: What is the practical speed?



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)
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The “MNIST” test matrix is dense and of size 784 × 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.

NOTE TO SELF: Check whether it should be TRANSPOSE for MINST???



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)
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The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282 × 8 617,

with 20 635 nonzero entries.



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

50 100 150 200 250 300
10-5

10-4

10-3

10-2

10-1
Spectral norm errors

50 100 150 200 250 300

10-4

10-3

10-2

10-1
Frobenius norm errors

The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000 × 1 000.

CHECK INFO ON DETAILS ON SNN!



Comparison of different random matrices — execution time

The runtime of applying different subspace embeddings ΩΩΩ ∈ Rℓ×m to an arbitrary dense
matrix of size m × n, scaled with respect to the ambient dimension m, at different
embedding dimension l and a fixed number of columns n = 1000.

Note: Observe that the dimension of the sketch is quite high in these examples.



Numerical experiments

Question: How should I postprocess the matrix, once I have extracted a sketch?

We will compare:

• Column pivoted QR

• DEIM: Form approximate SVD, then partially pivoted LU on the singular vectors.

• Partially pivoted LU directly on the sketching matrix. (“Poor man’s DEIM”)

• (Form approximate RSVD, then compute “leverage scores”, then draw columns
based on the leverage scores.)

In these experiments, we use Gaussian random matrices.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the runtime.

The runtime of various pivoting schemes on the sketches of size n × ℓ, scaled with
respect to the problem size n, at different embedding dimension ℓ.

Observe that the dimension of the sketch is quite high in these examples.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “MNIST” test matrix is dense and of size 784 × 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “YaleFace64x64” test matrix holds 165 face images, each with 64 × 64 pixels. The pictures have

been normalized, to create a dense matrix of size 165 × 4096.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000 × 1 000.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282 × 8 617,

with 20 635 nonzero entries.



Key points:

• Gaussian matrices are highly recommended. Excellent general purpose tools.

• “Sparse random” is very fast in all environments. Slightly less accurate.
(“s-hashing matrix” in Cora Cartis’ talk.)

• Subsampled trigonometric transforms are about as accurate as Gaussians.
When the rank is large (say 500 or 1000), you see substantial speed gain.

• We tested three methods for picking columns from the sketch matrix:
1. Column pivoted QR.
2. DEIM. (Compute approximate RSVD, then do LU with partial pivoting.)
3. Partially pivoted LU.

They are about equally good at picking columns. DEIM perhaps slight winner.
Partially pivoted LU (“Poor man’s DEIM”) is the fastest by a margin.

More detailed analysis in Anil Damle’s talk yesterday.



Key points:

• Gaussian matrices are highly recommended. Excellent general purpose tools.

• “Sparse random” is very fast in all environments. Slightly less accurate.
(“s-hashing matrix” in Cora Cartis’ talk.)

• Subsampled trigonometric transforms are about as accurate as Gaussians.
When the rank is large (say 500 or 1000), you see substantial speed gain.

• We tested three methods for picking columns from the sketch matrix:
1. Column pivoted QR.
2. DEIM. (Compute approximate RSVD, then do LU with partial pivoting.)
3. Partially pivoted LU.

They are about equally good at picking columns. DEIM perhaps slight winner.
Partially pivoted LU (“Poor man’s DEIM”) is the fastest by a margin.

Fun bonus: The idea of picking pivot columns via randomized sketching can also be
used to solve a long-standing open problem of how to block column-pivoted QR. In other
words, you want to move the vast majority of the flops from BLAS2 to BLAS3 operations.



Randomized pivoting in Householder QR

Given a dense n × n matrix A, compute a column pivoted QR factorization
A P ≈ Q R,

n × n n × n n × n n × n
where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗
1A0P1 A2 = Q∗

2A1P2 A3 = Q∗
3A2P3 A4 = Q∗

4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

The pivot selection problem is very closely related to the problem of finding spanning
columns that we started with! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.
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Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

The pivot selection problem is very closely related to the problem of finding spanning
columns that we started with! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.



Randomized pivoting in Householder QR
How to do block pivoting using randomization:
Let A be of size m × n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b × m and form

F = G A
b × n b × m m × n

The rows of F are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix F:

F P = Qtrash Rtrash

b × n n × n b × b b × n



Randomized pivoting in Householder QR

Sp
ee

d-
up

of
HQ

RR
P

vs
dg

eq
p3

Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n
Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

References: Martinsson arXiv:1505.08115; Duersch/Gu arXiv:1509.06820; Martinsson/Quintana-Ortí/Heavner/van de Geijn

SISC 2017; Duersch/Gu SISC 2017 and SIREV 2020.



Outline of talk

• The interpolatory and CUR decompositions — what are they?

• Applications of IDs in solving PDEs and integral equations.

• Efficient algorithms for computing an interpolatory decomposition.

• PDE applications revisited: How to compress a global operator



Compression of global operators
We consider the problem of compressing certain global operators that arise in scientific
computing, such as discretized integral equations. Recall for instance the BIE

(6) q(x) +
∫
Γ

k(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3. The problem involves compressing many
off-diagonal blocks in some hierarchical representation.



Compression of global operators
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computing, such as discretized integral equations. Recall for instance the BIE

(6) q(x) +
∫
Γ

k(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3. The problem involves compressing many
off-diagonal blocks in some hierarchical representation.
Example from earlier — “recursive skeletonization”:



Compression of global operators
We consider the problem of compressing certain global operators that arise in scientific
computing, such as discretized integral equations. Recall for instance the BIE

(6) q(x) +
∫
Γ

k(x,y)q(y)ds(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3. The problem involves compressing many
off-diagonal blocks in some hierarchical representation.
More general class of “rank structured” matrices:

We use the term rank structured to refer to
matrices that are not themselves of globally
low rank, but can be tessellated into sub-
blocks in such as way that each block is ei-
ther small or of low numerical rank.

Such matrices admit linear or almost linear
complexity algorithms for not only matvec,
but also LU, inversion, etc.

All gray blocks have low rank.



Compression of global operators
To illustrate the problem, let A denote the dense N × N matrix arising from discretizing a
boundary integral equation on a contour or surface, and let Γτ denote a subdomain
corresponding to a diagonal block A(Iτ , Iτ ) in the rank structured matrix.

Γτ

• Points in Iτ .
• Points in Icτ .

In recursive skeletonization, we in principle need to compute an ID of the matrix A(Iτ , Icτ ).
Problem: A(Iτ , Icτ ) can be very large! Say 103 × 107. And there are many such
matrices!



Compression of global operators
To illustrate the problem, let A denote the dense N × N matrix arising from discretizing a
boundary integral equation on a contour or surface, and let Γτ denote a subdomain
corresponding to a diagonal block A(Iτ , Iτ ) in the rank structured matrix.

Γτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

One solution — the “proxy surface” method: Replace all “far field” interactions by the
artificial surface Γproxy. We then only need to compute the ID of the matrix
[A(Iτ , I(near)

τ ) F], where F is the matrix of interaction with the proxy surface (green).



Compression of global operators
To illustrate the problem, let A denote the dense N × N matrix arising from discretizing a
boundary integral equation on a contour or surface, and let Γτ denote a subdomain
corresponding to a diagonal block A(Iτ , Iτ ) in the rank structured matrix.

Γτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

One solution — the “proxy surface” method: Replace all “far field” interactions by the
artificial surface Γproxy. We then only need to compute the ID of the matrix
[A(Iτ , I(near)

τ ) F], where F is the matrix of interaction with the proxy surface (green).



Compression of global operators

The proxy surface method works well and is useful whenever you seek to compress a
BIE associated with one of the standard PDEs of mathematical physics (Laplace,
Helmholtz, time-harmonic Maxwell, etc.). Highly recommended when applicable!

We next describe a randomized algorithm for computing a data sparse representation of
a global operator that can be accessed only through its action on vectors.

• In many cases, global operators are accessed by solving an associated PDE. For
instance, Dirichlet-to-Neumann operators involving non-homogenous PDEs.

• Multiplication of operators, possibly involving inverses that are applied using iterative
solvers. For instance, Dirichlet-to-Neumann operators involving homogenous PDEs.
Or multi-physics problems.

• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices.

Also, even in cases where you in principle could apply the proxy surface method, you
may not want to go to the trouble of writing a new code if you already have access to a
legacy code (e.g. the Fast Multipole Method) for the matrix-vector multiplication.
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legacy code (e.g. the Fast Multipole Method) for the matrix-vector multiplication.



Compression of global operators – problem definition:

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Sample the column space of the matrix:

If A ̸= A∗, then sample the row space too:
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Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

For the most general structured matrix formats (e.g. H-matrices), the problem has been
solved in principle, and close to linear complexity algorithms exist:

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP 2011.

• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.

However, existing methods require ∼ k log(N) matvecs, and do not have great practical
speed. For instance, as dimension d increases, the bound on flops has an 8d factor . . .

Recently proposed algorithms have reduced the pre-factors by constructing bespoke
random matrices that are designed to be optimal for any given tessellation pattern. The
key technical idea is to formulate admissibility criteria that form a graph, and then exploit
powerful graph coloring algorithms. [J. Levitt & P.G. Martinsson, arXiv:2205.03406, 2022.]



Compression of global operators – problem definition:

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

The good news is that in the context of numerical PDEs, more specialized rank
structured formats are often sufficient — hierarchically semi-separable matrices,
hierarchically block-separable matrices, “H-matrices with weak admissibility”, etc.

For these matrices, algorithms with true linear complexity and high practical speed exist.

First generation algorithms were not fully black box, as they required the ability to
evaluate a small number of matrix entries explicitly.

• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, and others. Widely used.

However, a fully black box algorithm with true linear complexity and high practical speed
is now available:

• J. Levitt & P.G. Martinsson, arxiv arXiv:2205.02990, 2022.



Approximation of rank-structured matrices – A binary tree structure
An example of a binary tree structure for a matrix of size 400 × 400. The levels of the
tree represent successively refined partitions of the index vector [1, ...,400].

Let m denote the leaf node size.
Let L ≈ log(N/m) denote the depth of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
Consider the following tessellation of a matrix, where each block represents interactions
between two leaf nodes of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
HBS requirements for the finest level: for every leaf node τ , there must exist basis
matrices Uτ and Vτ such that for every leaf node τ ′ ̸= τ , we have

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗
τ ′.

m × m m × k k × k k × m

The on-diagonal blocks are not assumed to be low-rank, and pose the main challenge
for black-box compression.

Question: How would you construct U4?
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Approximation of rank-structured matrices – A naive approach
Consider the task of finding a basis matrix U4 for node 4 using randomized sampling.
We seek a sample of A(I4, Ic4), the HBS row block of node 4.

The naive approach is to sample with a random matrix ΩΩΩ ∈ RN×r , r = k + 10, that has a
block of zeros in rows indexed by I4. Then Y(I4, :) will contain a sample of A(I4, Ic4).

Y = A ΩΩΩ

This scheme requires taking a separate set of r samples for each leaf node, for a total of
∼ rN/m samples. There is a lot of wasted information in Y.
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Approximation of rank-structured matrices – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)
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Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)
In this case, we can explicitly form the diagonal blocks, and subtract their contributions:

Y′ = Y − D ΩΩΩ =
(
A − D

)
ΩΩΩ

Processing Z analogously, we obtain basis matrices Yj and Zj for j ∈ {4,5,6,7} such that

Ai,j ≈ Yi Bi,j Z∗
j , i ̸= j,

for some small matrices Bi,j. How do you find them?
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Approximation of rank-structured matrices – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)
In this case, we can explicitly form the diagonal blocks, and subtract their contributions:

Y′ = Y − D ΩΩΩ =
(
A − D

)
ΩΩΩ

Processing Z analogously, we obtain basis matrices Yj and Zj for j ∈ {4,5,6,7} such that

Ai,j ≈ Yi Bi,j Z∗
j , i ̸= j,

for some small matrices Bi,j. How do you find them? Perform IDs on Yi and Zj:
Ai,j ≈ Ŷi A(Isi , J

s
j ) Ẑ∗

j , i ̸= j, Only need to evaluate A(Isi , J
s
j )!



Approximation of rank-structured matrices – the “almost” black-box case
Step 1: Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Step 2: Construct the diagonal blocks of the matrix explicitly.

Having formed the diagonal blocks, we eliminate their contributions to Y and Z to get
“pure” samples from off-diagonal blocks.
Then determine the spanning rows and columns in each off-diagonal block.
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Step 1: Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Step 3: We now know the spanning columns and the spanning rows.



Approximation of rank-structured matrices – the “almost” black-box case
Step 1: Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Step 3: We now know the spanning columns and the spanning rows.

Evaluate the entries of A that lie at the intersections.

Do this only for the blocks that are needed to form the diagonal blocks at the next level!



Approximation of rank-structured matrices – the “almost” black-box case
Step 1: Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Step 4: For the higher levels, recursively apply the same procedure!!

The number of entry evaluations gets cut in half at each coarser level
→ O(Nk) entry evaluations required.



Approximation of rank-structured matrices – the “almost” black-box case

Computational costs of scheme described:
• Applications of A and A∗ to Gaussian matrices with ≈ k + 10 columns each.
• O(Nk) entry evaluations.
• O(Nk) storage.
• O(Nk2) flops.

Very fast in practice.

But: Requires the ability to evaluate entries!

Let us next lift that restriction.



Approximation of rank-structured matrices – fully black box
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×(r+m), where m is the leaf
node size. (Think m ≈ 2k and r = k + 10.)

Y = A ΩΩΩ

Let us consider the problem of finding a basis matrix U4 for the block A(I4, Ic4).

Since ΩΩΩ(I4, : ) is of size m × (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).Then

YQ4 = A ΩΩΩQ4.

Orthonormalizing the sample gives basis matrix U4,

U4 = qr(Y(I4, :)Q4).
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Approximation of rank-structured matrices – fully black box
• For each leaf node τ , we compute

Qτ = nullspace(ΩΩΩ(Iτ , :), r)
Uτ = qr(Y(Iτ , :)Qτ ).

• Uτ only depends on ΩΩΩ(Iτ , :) and Y(Iτ , :).
• We only need r + m samples to find Uτ for every leaf node τ .
• ΩΩΩQτ is a Gaussian random matrix, except for the block intentionally zeroed out.



Approximation of rank-structured matrices – fully black box
Recall the telescoping factorization A = U(L)Ã(L)

(V(L))∗ + D(L).
Steps:
1. Find U(L),V(L).
2. Find D(L).
3. Compress Ã(L)

recursively.

Compute randomized samples of A and A∗.
1: Form Gaussian random random matrices ΩΩΩ and ΨΨΨ of size N × s.
2: Multiply Y = AΩΩΩ and Z = A∗ΨΨΨ.

Compress level by level from finest to coarsest.
3: for level ℓ = L,L − 1, . . . ,0 do
4: for node τ in level ℓ do
5: if τ is a leaf node then

6:
ΩΩΩτ = ΩΩΩ(Iτ , :), ΨΨΨτ = ΨΨΨ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
7: else
8: Let α and β denote the children of τ .

9:

ΩΩΩτ =

[
V∗
αΩΩΩα

V∗
βΩΩΩβ

]
, ΨΨΨτ =

[
U∗

αΨΨΨα

U∗
βΨΨΨβ

]

Yτ =

[
U∗

α(Yα − DαΩΩΩα)

U∗
β(Yβ − DβΩΩΩβ)

]
, Zτ =

[
V∗
α(Zα − D∗

αΨΨΨα)

V∗
β(Zβ − D∗

βΨΨΨβ)

]

10: if level ℓ > 0 then

11:
Qτ = nullspace(ΩΩΩτ , r), Pτ = nullspace(ΨΨΨτ , r)

Uτ = qr(YτQτ , r), Vτ = qr(ZτPτ , r)
12: Dτ = (I − UτU∗

τ)YτΩΩΩ
†
τ + UτU∗

τ

(
(I − VτV∗

τ)ZτΨΨΨ
†
τ

)∗
13: else
14: Dτ = YτΩΩΩ

†
τ



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)
Ã(L)︷ ︸︸ ︷

(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A − U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗
τAτ,τVτV∗

τ

= . . .

= (I − UτU∗
τ )YτΩΩΩ

†
τ + UτU∗

τ

(
(I − VτV∗

τ )ZτΨΨΨ
†
τ

)∗
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Approximation of rank-structured matrices – Compressing Ã(L)

To compute randomized samples of Ã(L), we multiply the telescoping factorization with ΩΩΩ

to obtain
Y = AΩΩΩ = (U(L)Ã(L)

(V(L))∗ + D(L))ΩΩΩ,

and rearrange to obtain

(U(L))∗(Y − D(L)ΩΩΩ)︸ ︷︷ ︸
sample matrix

= Ã(L)
(V(L))∗ΩΩΩ︸ ︷︷ ︸
test matrix

.



Approximation of rank-structured matrices: Sparse LU
Let C be the stiffness matrix for the standard five-point stencil finite difference
approximation to the Poisson equation on a rectangular grid.

We partition the grid as shown and tessellate C accordingly.

C =


C11 0 C13

0 C22 C23
C31 C32 C33


The matrix we seek to compress is the Schur complement

A = C33 − C31C−1
11 C31 − C32C−1

22 C23.



Approximation of rank-structured matrices: Sparse LU r = 30,m = 60
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Approximation of rank-structured matrices: FMM r = 50,m = 100



Approximation of rank-structured matrices: Key points

• Fully “black box”. Interacts with A only via the matvec.

• True linear complexity. Requires only O(k) samples from A and A∗.
Much faster in practice than existing black box algorithms.

• Ideal tool for acceleration of sparse direct solvers.

• All matrix-vector multiplies can be done in one go. Streaming algorithm!



Key points:

• Interpolatory and CUR decompositions are useful and popular.
• Preserve properties like sparsity and non-negativity. Good for data interpretation.
• Storage efficient.
• Invaluable in the context of modern Fast Multipole Methods and Fast Direct Solvers.
• Enables divide-and-conquer & localization. Essential for 3D computations! (Betcke, Wathen)

• Randomized sketching is an excellent tool for computing the CUR/ID.
• Particularly effective for large sparse matrices, and huge matrices stored out of core.
• Improved asymptotic flop count — “fast Johnson-Lindenstrauss transforms”.
• As robust and accurate as deterministic methods.

Keep it simple, however! Gaussian sketch + partially pivoted LU excel together.

• Randomized algorithms for compressing rank structured matrices.
• Unlocks H-matrix arithmetic in any situation where you have access to fast application of the

operator to vectors.
• Key application: Acceleration of sparse direct solvers to close to linear complexity.

• The ideas presented were strongly influenced by Nick’s work. Thank you!
• Application of powerful ideas from (dense) linear algebra to solving continuum problems.

Backwards stability. The value of high accuracy methods (error estimates less necessary when
you have 15 correct digits). An ideal to strive for in writing (very hard to mimic, however!).



Slides: http://users.oden.utexas.edu/∼pgm/main_talks/

Surveys:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. Arxiv report 2002.01387.
Long survey summarizing major findings in the field in the past decade.

• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,
IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects
rather than theory.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv


