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Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.
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problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Standard numerical recipe for (BVP): (1) Discretize via FD/FEM. (2) Iterative solver.
Focal point of this talk: The solution operator for (BVP). → Direct solvers.



Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: As a warmup, let us consider the Poisson equation

−∆u(x) = g(x) x ∈ R2

(with suitable decay conditions at infinity to ensure uniqueness). The solution is given by

(SLN) u(x) =

∫
R2
φ(x − y)g(y)dy , x ∈ R2.

where the “fundamental solution” of the Laplace operator −∆ on R2 is defined by

φ(x) = − 1
2π log |x|.

In principle very simple. Numerically non-trivial, however: The operator is global, so
discretizing it leads to a dense matrix. (There is also the singular kernel to worry about!)



Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: A general solution operator for (BVP) takes the form

(SLN) u(x) =

∫
Ω
G(x,y)g(y)dy +

∫
Γ
F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are two kernel functions that depend on A, B, and Ω.

Good: The operators in (SLN) are friendly and nice.
Bounded, smoothing, often fairly stable, etc.

Bad: The kernels G and F in (SLN) are generally unknown.
(Other than in trivial cases — constant coefficients and very simple domains.)

Bad: The operators in (SLN) are global.
Dense matrices upon discretization. O(N2) cost? O(N3) cost?



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Recurring idea: Upon discretization,
(SLN) leads to a matrix with off-diagonal
blocks of low numerical rank.

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc.

All gray blocks have low rank.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .
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In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

The talk will describe recent work on algorithms that numerically construct an
approximation to (SLN).

When using these algorithms, the process of solving (BVP) splits into two stages:
1. “Factorization” or “build” stage: Build a representation of the inverse operator.
2. “Solve” stage: Apply the computed inverse to given data f or (and) g.

Typical characteristics of methods of this type:
• Memory usage tends to be high.
• Stage 1 tends to be slower than an iterative solve, when convergence is fast.
• Stage 2 is almost always VERY fast.

Fast Direct Solvers (FDS) are most competitive when:
• Getting iterative methods to converge rapidly is hard.
• When the cost of Stage 1 can be amortized over many solves.

→ scattering problems, time-stepping, optimization, . . .



History:

1980s: Rokhlin and Greengard develop the Fast Multipole Method.

1991: Beylkin, Coifman, Rokhlin: Fast algorithms exist for most solution operators.

1996: Michielssen, Boag, Chew: Fast direct solvers for 3D scattering problems in
certain geometries.

1998 onwards: Hackbusch, Bebendorf, Börm, Grasedyck, Khoromskij, Sauter,
Tyrtyshnikov, . . . develop H and H2-frameworks that provide explicit recipes for operator
algebra in O(n logr n) operations for r moderate.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality.

• Interaction ranks — why are they small? How small are they?

• (Versions of fast direct solvers — “strong” versus “weak” etc.)

• High order discretizations and fast direct solvers.

• [New!] Randomized compression of rank structured matrices.



Curse of dimensionality
Algorithms involving rank-structured matrices scale very poorly with dimension.
For instance, for the classical Fast Multipole Method, key quantities scale as:

Dimension Typical ranks Number of “neighbors” Length of “interaction list”
1 2 2 3
2 10–50 8 27
3 50–500 26 189
d (log(1/ε))d−1 3d − 1 6d − 3d

For fast direct solvers, the scaling with dimension is equally problematic:

Current state of affairs
1 Extremely fast. Linear scaling is easy to attain.
2 Quite fast in practice, but simple methods do not scale linearly.
3 Slow. Basic methods cannot go much beyond N ≈ 107.
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Algorithms involving rank-structured matrices scale very poorly with dimension.
For instance, for the classical Fast Multipole Method, key quantities scale as:

Dimension Typical ranks Number of “neighbors” Length of “interaction list”
1 2 2 3
2 10–50 8 27
3 50–500 26 189
d (log(1/ε))d−1 3d − 1 6d − 3d

For fast direct solvers, the scaling with dimension is equally problematic:

Effective Dimension Current state of affairs
1 Extremely fast. Linear scaling is easy to attain.
2 Quite fast in practice, but simple methods do not scale linearly.
3 Slow. Basic methods cannot go much beyond N ≈ 107.

Fortunately, we can often reduce the effective dimensionality.
For many 3D problems, the dense problems we need to invert “live” on 2D domains!



Curse of dimensionality: Dimension reduction via an integral equation

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(3)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (3) has an alternative mathematical formulation in the BIE

(4) − πiσ(x) +

∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |
|x − y |

)
σ(y)dS(y) = f (x), x ∈ ∂Ω.

The integral equation (4) has several advantages over the PDE (3), including:
• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
• Equation (4) is inherently well-conditioned (as a “2nd kind Fredholm equation”).

A serious drawback of integral equations is that they lead to dense coefficient matrices.
Since we are interested in constructing inverses anyway, this is unproblematic for us!



Curse of dimensionality: Dimension reduction via sparse direct solvers

Let us next consider what happens if we directly discretize the PDE (using, say, finite
elements or finite differences) to obtain a linear system

Au = b

involving a sparse coefficient matrix A.

Key idea: Do a sparse LU factorization based on a “nested dissection” ordering of the
grid as an outer solver. Then use rank structured matrix algebra to deal with the dense
matrices that arise.



Curse of dimensionality: Dimension reduction via sparse direct solvers

A 2D model problem: Let Ω = [0,1]2 and Γ = ∂Ω. We seek to solve

(5)

−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We introduce an n× n grid on Ω with nodes {xj}Nj=1 where N = n2, see Figure A. Letting
u = [u(j)]Nj=1 denote a vector of approximate solution values, u(j) ≈ u(xj), and using the
standard five-point stencil to discretize −∆, we end up with a sparse linear system

Au = b,

where [Au](k) = 1
h2
(
4u(k)− u(ks)− u(ke)− u(kn)− u(kw)

)
, see Figure B.

Figure A: The grid

k kekw

ks

kn

h = 1
n+1

Figure B: The 5-point stencil



Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−111 and A−122 . Then

A =


I 0 0
0 I 0

A31A−111 A32A−122 I



A11 0 0
0 A22 0
0 0 S33




I 0 A−111A13
0 I A−122A23
0 0 I


where S33 = A33 − A31A−111A13 − A32A−122A23 is a Schur complement.
In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−111 . size ∼ N/2× N/2
• Invert A22 to form A−122 . size ∼ N/2× N/2
• Invert S33 = A33 − A31A−111A13 − A32A−122A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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Sparse direct solvers with nested dissection ordering
Typically, nested dissection orderings are more complicated:

Image credit: Jianlin Xia, “Robust and Efficient Multifrontal Solver for Large Discretized PDEs”, 2012

Observe that while the computational domain is 2D in this example, the rank structured
matrices all live on the colored 1D domains.



Curse of dimensionality: Dimension reduction

Key point: When faced with a BVP in 3D, you can in most circumstances build direct
solvers that rely only on dense operators associated with 2D domains.

1. Constant coefficient problems: Reformulate as integral equation on boundary.

2. Variable coefficient problems: Use a sparse direct solver as an “outer” solver.
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Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Question: Why do the dense matrices resulting upon discretization of (SLN) typically
have off-diagonal blocks of low numerical rank?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:

• Rapid convergence of multipole expansions when the region of sources is far away
from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The kernels are derived from the corresponding fundamental solutions:

s(x,y) =φ(x − y),

d(x,y) =∂n(y)φ(x − y),

sκ(x,y) =φκ(x − y),

dκ(x,y) =∂n(y)φκ(x − y),

where, as before,

φ(x) =− 1
2π log |x|,

φκ(x) =
i
4H

(1)
0 (κ|x|).



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

Let A denote the matrix resulting from discretization of either BIE.

On the next slide, we show the singular values of the off-diagonal block A23.



Interaction ranks: Boundary integral equations
The ranks of an off-diagonal block of A:

0 50 100 150 200

10
-10

10
0

rank=56

0 50 100 150 200

10
-10

10
0

rank=55

0 50 100 150 200

10
-10

10
0

rank=92

Si
ng

ul
ar

va
lu
es

of
A

23

Laplace Helmholtz, diam=3λ Helmholtz, diam=30λ

This is all as expected. Somewhat accessible by analysis.

Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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Remarkable similarity!
(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)
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Interaction ranks: Stiffness matrix from finite difference discretization
Recall our example of Laplace’s equation discretized using the 5-point stencil.
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A =

A11 0 A13
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A31 A32 A33

We build the Schur complement S = A33 − A31A−111A13 − A32A−122A23.
Then split the Schur complement into four parts:

Iα

Iβ

S =
Sαα Sαβ

SββSβα

We explore the svds of Sαβ — encoding interactions between Iα and Iβ.
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Singular values of Sαβ for an 80× 80 grid.
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Interaction ranks: Stiffness matrix from finite difference discretization

Let us try a few different PDEs, and different problem sizes:

Note: The rank decay property is remarkably stable!
Note: The decay continues to εmach — regardless of the discretization errors!



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

We recognize this pattern from the potential evaluation operator:
Fast decay once oscillations are resolved.
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We recognize this pattern from the potential evaluation operator:
Fast decay once oscillations are resolved.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The geometry.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The singular values.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality. [Done!]

• Interaction ranks — why are they small? How small are they? [Done!]

• (Versions of fast direct solvers — “strong” versus “weak” etc.)

• High order discretizations and fast direct solvers.

• [New!] Randomized compression of rank structured matrices.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality. [Done!]

• Interaction ranks — why are they small? How small are they? [Done!]

• (Versions of fast direct solvers — “strong” versus “weak” etc.) [Skipped.]

• High order discretizations and fast direct solvers.

• [New!] Randomized compression of rank structured matrices.



Fast direct solvers and high order methods
Claim: Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for medium frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

Problem: If you combine “nested dissection” with traditional discretization techniques
(FD, FEM, etc), then the performance plummets as the order is increased.
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Claim: Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for medium frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

Problem: If you combine “nested dissection” with traditional discretization techniques
(FD, FEM, etc), then the performance plummets as the order is increased.
Solution: Pick your discretization scheme carefully!

• When discretizing the PDE, use methods that play well with “static condensation”.
You want a clean separation between “interior” and “edge” degrees of freedom.
• Multidomain spectral collocation methods (“HPS”, “ultraSEM”, etc.).
• Discontinuous Galerkin. (Or so I speculate, at any rate.)

• When integral equation formulations are used, pick quadratures that have as
localized “corrections” as possible. (Very technical point here!)



Fast direct solvers and high order methods: Multidomain spectral collocation
As a numerical illustration, let us consider the “Hierarchical Poincaré-Steklov (HPS)”
method. We set Ω = [0,1]2 and Γ = ∂Ω, and consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We discretize using spectral collocation on a composite grid on Ω (Chebyshev nodes):

On patch boundaries, we enforce continuity of the potential and the normal derivative.
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We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
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Fast direct solvers and high order methods: Multidomain spectral collocation
As a numerical illustration, let us consider the “Hierarchical Poincaré-Steklov (HPS)”
method. We set Ω = [0,1]2 and Γ = ∂Ω, and consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note: Fixed number of points per wave-length. Almost no “pollution error”!



Fast direct solvers and high order methods: Multidomain spectral collocation
By incorporating rank-structured matrix algebra for the Schur complements, we can
access larger problem sizes, and get linear scaling in important cases.

Problem N Tbuild Tsolve MB

Laplace
1.7e6 91.68 0.34 1611.19
6.9e6 371.15 1.803 6557.27
2.8e7 1661.97 6.97 26503.29
1.1e8 6894.31 30.67 106731.61

Helmholtz I
1.7e6 62.07 0.202 1611.41
6.9e6 363.19 1.755 6557.12
2.8e7 1677.92 6.92 26503.41
1.1e8 7584.65 31.85 106738.85

Helmholtz II
1.7e6 93.96 0.29 1827.72
6.9e6 525.92 2.13 7151.60
2.8e7 2033.91 8.59 27985.41

Helmholtz III
1.7e6 105.58 0.44 1712.11
6.9e6 510.37 2.085 7157.47
2.8e7 2714.86 10.63 29632.89

(About six accurate digits in solution.)



Fast direct solvers and high order methods: Boundary integral equations
Let us consider a multibody scattering problem involving multiple cavities:

Acoustic scattering on the exterior domain. Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix is computed
for each body). On an office desktop, we achieved an accuracy of 10−5, in about 6h
(essentially all the time is spent in applying the inter-body interactions via the Fast
Multipole Method). Accuracy 10−7 took 27h. [2015, CAMWA, Hao/M./Young]



Fast direct solvers and high order methods: Boundary integral equations
Consider sound-soft scattering from a multi-body scatterer of size 4 wave-lengths:

The global scattering matrix is computed using the hierarchical direct solver described.
(The ellipsoids are not rotationally symmetric.)

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations
The local truncation error is set to 10−3.

Grid dimensions N T E Ratio Predicted
2× 2× 2 12 288 1.02× 10+1 3.37× 10−04 - -
3× 3× 3 41 472 3.43× 10+1 4.81× 10−04 3.4 6.2
4× 4× 4 98 304 7.92× 10+1 1.57× 10−04 2.3 3.7
6× 6× 6 331 776 2.96× 10+2 7.03× 10−04 3.7 6.2
8× 8× 8 786 432 6.70× 10+2 4.70× 10−04 2.3 3.7

10× 10× 10 1 536000 2.46× 10+3 3.53× 10−04 3.7 2.7

Increasing the accuracy is possible, but comes at a cost.
Now the local truncation error is set to 10−6.

Grid dimensions N T E Ratio Predicted
2× 2× 2 49 152 1.61× 10+2 1.22× 10−07 - -
3× 3× 3 165 888 6.87× 10+2 4.92× 10−07 4.3 6.2
4× 4× 4 393 216 1.68× 10+3 5.31× 10−07 2.4 3.6
6× 6× 6 1 327104 6.66× 10+3 4.60× 10−06 4.0 6.2
8× 8× 8 3 145728 1.59× 10+4 2.30× 10−07 2.4 3.6

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations

The domain is roughly 2× 2× 0.7 wave-lengths in size.

Ntriangles N T E
32 1 664 7.16× 10+00 3.51× 10−02

128 6 656 6.29× 10+01 4.41× 10−03

512 26 624 2.81× 10+02 4.08× 10−05

2 048 106 496 2.60× 10+03 7.80× 10−07

8 192 425 984 1.47× 10+04 3.25× 10−08

(Note: Laplace problems are much faster.)

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations

A surface Γ with corners and edges.

The grid has been refined to attain high accuracy.

Computing scattering matrices for the corners is
conceptually easy (but laborious). The direct
solver eliminates “extra” DOFs.

Compressing the edges takes effort!

Ntris N E T Nout × Nin

192 21 504 2.60× 10−08 6.11× 10+02 617× 712
432 48 384 2.13× 10−09 1.65× 10+03 620× 694
768 86 016 3.13× 10−10 3.58× 10+03 612× 685

Results from a Helmholtz problem (acoustic scattering) on the domain exterior to the “edgy” cube.
The domain is about 3.5 wave-lengths in diameter.

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: “FEM-BEM coupling”
Consider the free space acoustic scattering problem

−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Joint work with A. Barnett and A. Gillman.

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Use HPS. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

• Merge using fast operator algebra!
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Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b
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The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(κ x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)
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Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−6 (estimated)



Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).



Fast direct solvers and high order methods: rank deficiencies in HPS
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.
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Singular values of T.

Laplace problem.
Rank=22.
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Fast direct solvers and high order methods: rank deficiencies in HPS
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.

Γ1

Γ2
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j
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j

Singular values of T.

Helmholtz problem.
Domain is 110λ× 110λ.
Rank=85.



Fast direct solvers and high order methods: Lippmann-Schwinger
Consider the free space acoustic scattering problem

(6)


−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support in a domain Ω, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

In the figure, v = uin.



Fast direct solvers and high order methods: Lippmann-Schwinger
Consider the free space acoustic scattering problem

(6)


−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support in a domain Ω, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Let us now use an integral equation formulation. It is well known that (6) has an
alternative formulation in the Lippmann-Schwinger integral equation

(7) σ(x) + κ2b(x)

∫
Ω
φκ(x − y)σ(y)dy = −κ2b(x)v(x), x ∈ Ω,

where φκ is the free space fundamental solution of the Helmholtz equation.

We discretize (7) using the trapezoidal rule on a uniform grid, with Duan-Rokhlin
quadrature corrections of order 10.



Fast direct solvers and high order methods: Lippmann-Schwinger

The scattering potential κ = 50

κ = 201 κ = 804



Fast direct solvers and high order methods: Lippmann-Schwinger
Fixed 10 points per wavelength.
Direct solver is run at accuracy 10−3 and used as a preconditioner.
Weak admissibility is used.

N κ Tbuild Tinv Tgmres mem iter res
6400 50.27 0.23 0.24 0.20 0.04 4 6.97e-11
25600 100.53 0.65 0.99 0.62 0.21 5 6.16e-12
102400 201.06 2.26 4.36 2.49 1.01 6 1.04e-12
409600 402.12 14.91 20.06 9.78 4.67 6 3.23e-11
1638400 804.25 99.01 91.37 56.13 21.16 9 8.12e-12
6553600 1608.50 430.60 398.88 330.91 94.63 13 3.93e-11
26214400 3216.99 3102.09 2024.16 2698.53 418.37 22 3.30e-11

The largest experiment is over 500λ in diameter: Less than 3h total run time.

Hardware: Workstation with dual Intel Xeon Gold 6254 (18 cores at 3.1GHz base
frequency).

Joint with Abi Gopal, arxiv #2007.12718



Fast direct solvers and high order methods: rough surface scattering
Consider acoustic scattering from an infinite half-plane with 8× 8 bumps:

Each bump is 0.5λ tall and 2λ wide. Total domain is 44λ× 44λ.
The problem is formulated as a BIE, and is discretized using a “Zeta-corrected”
quadrature rule. A direct solver with weak admissibility and O(N1.5) scaling is used.
26M points total, Tbuild = 1200s, Tsolve = 184s
About three digits of accuracy in the computed solution. (Tentative!)

Work in progress - with Abi Gopal and Bowei Wu.



Active research area!

HSS-accelerated multifrontal solvers: J. Xia, M. de Hoop, X. Li, . . .

BLR-accelerated multifrontal solvers: P. Amestoy, C. Ashcraft, A. Buttari,
J-Y. l’Excellent, T. Mary, . . .

Linear complexity recursive skeletonization: K. Ho, L. Ying.

Linear complexity inverse FMM / strong recursive skeletonization: S. Ambikasaran,
E. Darve; V. Minden, K. Ho, A. Damle, L. Ying; M. O’Neil, D. Sushnikova, M. Rachh,
L. Greengard; . . .

High frequency problems: Y. Liu, H. Guo, E. Michielssen; B. Engquist, L. Ying; S. Li,
Y. Liu, P. Ghysels, L. Klaus; S. Börm, C. Börst; B. Bonev, J. Hesthaven; . . .

HPC and heterogenous computing environments: D. Keyes, H. Ltaief, G. Turkiyyah;
G. Biros, C. Chen; . . .

High order spectral element methods: A. Townsend, D. Fortunato;

Apologies for omissions!



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality. [Done!]

• Interaction ranks — why are they small? How small are they? [Done!]

• (Versions of fast direct solvers — “strong” versus “weak” etc.) [Skipped.]

• High order discretizations and fast direct solvers. [Done!]

• [New!] Randomized compression of rank structured matrices.



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Question: Can you construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Question: Can you construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Applications:
• Integral operators from classical physics. If you have a legacy method for the
matrix-vector multiple (e.g. the Fast Multipole Method), then we could enable a
range of operations – LU factorization, matrix inversion, etc.
• Multiplication of operators. Useful for forming Dirichlet-to-Neumann operators, for
combining solvers of multi-physics problems, etc.
• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices. This lets us overcome key bottlenecks (e.g. LU factorization of a
“finite element” matrix is accelerated from O(N2) to close to linear complexity.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Question: Can you construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Observation: In the simpler case where A is of globally low rank, there are randomized
algorithms that resolve the problem.

For instance, if you draw ΩΩΩ and ΨΨΨ from a Gaussian distribution, then (to high probability)

A ≈ (AΩΩΩ)
(
ΨΨΨ∗AΩΩΩ

)†
(ΨΨΨ∗A) = Y

(
ΨΨΨ∗Y

)† Z∗.
“Generalized Nyström method” of Nakatsukasa. O(k) columns in ΩΩΩ and ΨΨΨ sufficient.

Alternatively, draw ΩΩΩ ∈ Rn×(k+10) from a Gaussian distribution and set Y = AΩΩΩ. Then let
ΨΨΨ ∈ Rn×(k+10) be a matrix whose columns form an ON basis for col(Y). Then

A ≈ ΨΨΨ
(
ΨΨΨ∗A

)
= ΨΨΨZ∗.

(This is the “randomized SVD” in slight disguise.)



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Question: Can you construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Existing algorithms: Algorithms that “almost” resolve the task:
Case 1: Suppose that in addition to matvec, we can also evaluate individual entries of A.
Then an HBS (a.k.a. HSS) representation can be computed in O(N) operations.
Very computationally efficient in practice — requires only O(k) matvecs.

• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, etc.

Case 2: If all we have is the matvec, then we can still compute a rank-structured representation of A using
so called “peeling” algorithms. The price we have to pay is that we now need O(k× logN) matvecs
involving A and A∗.
The method is still fast in many situations, and does save messy coding work. For instance, without this
black-box method, implementing the matrix-matrix multiplication, or changing the partition tree, are quite
hard to implement efficiently.

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP 2011.

• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.



Approximation of rank structured matrices

Environment: We are given a rank structured matrix A ∈ RN×N (to be precise, A is
HBS/HSS of rank k). We assume that we can evaluate x 7→ Ax and x 7→ A∗x fast.

Question: Can you construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

New! J. Levitt & P.G. Martinsson, arxiv arXiv:2205.02990, May 8, 2022.

A method that is:

• True “black box” – no matrix entry evaluation required.

• True O(N) complexity – no log factors.



Approximation of rank-structured matrices – mini review of RSVD

Brief review of a randomized technique for compressing a matrix of globally low rank.

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)
Fix an over-sampling parameter p (say p = 10) and set r = k + p.
1. Draw an n× r Gaussian random matrix ΩΩΩ. Omega = randn(n,r)

2. Form the m× r sample matrix Y = AΩΩΩ. Y = A * Omega

3. Form an m× r orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

4. Form the r × n matrix B = Q∗A. B = Q’ * A

5. Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat(:,1:k)

7. Truncate D and V. D = D(1:k,1:k), V = V(:,1:k)

Key point: If A has ε-rank k, and ΩΩΩ ∈ Rn×(k+10) is drawn from a Gaussian distribution,
then the columns of Y = AΩΩΩ form a “good” basis for the column space of A.



Approximation of rank-structured matrices – A binary tree structure
An example binary tree structure for a matrix of size 400× 400. The levels of the tree
represent successively refined partitions of the index vector [1, ...,400].

Let m denote the leaf node size.
Let L ≈ log(N/m) denote the depth of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
Consider the following tessellation of a matrix, where each block represents interactions
between two leaf nodes of the tree.



Approximation of rank-structured matrices – HBS (a.k.a. HSS) structure
HBS requirements for the finest level: for every leaf node τ , there must exist basis
matrices Uτ and Vτ such that for every leaf node τ ′ 6= τ , we have

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗τ ′.
m×m m× k k × k k ×m

The on-diagonal blocks are not assumed to be low-rank, and pose the main challenge
for black-box compression.
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Approximation of rank-structured matrices – Telescoping factorization
This leads to a factorization of A.

A = U(L) Ã(L)
(V(L))∗ + D(L)

Ã(L) is also an HBS matrix, and it can be factorized similarly, leading to a telescoping
factorization.

For example, a factorization of an HBS matrix with a tree of depth L = 3 takes the form

A = U(3)(U(2)(U(1)D(0)(V(1))∗ + D(1))(V(2))∗ + D(2))(V(3))∗ + D(3).

U(3) U(2) U(1) D(0) (V(1))∗ D(1) (V(2))∗ D(2) (V(3))∗ D(3)
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Approximation of rank-structured matrices – A naive approach
Consider the task of finding basis matrix U4 for node 4 using randomized sampling. We
seek a sample of A(I4, Ic4), the HBS row block of node 4.

The naive approach is to sample with a random matrix ΩΩΩ ∈ RN×r , r = k + 10, that has a
block of zeros in rows indexed by I4. Then Y(I4, :) will contain a sample of A(I4, Ic4).

Y = A ΩΩΩ

This scheme requires taking a separate set of r samples for each leaf node, for a total of
∼ rN/m samples. There is a lot of wasted information in Y.
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Approximation of rank-structured matrices – the “not quite black box” approach
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×r .

Y = A ΩΩΩ

Afterwards, subtract unwanted contributions back out of Y.
Subtracting the contribution of A4,4 gives the desired sample of A(I4, Ic4),

Y(I4, :)− A4,4ΩΩΩ(I4, : ).

This scheme requires only r samples in total, but it also requires direct access to a small
number of entries of A.

P.G. Martinsson, arXiv:0806.2339, 2008. Journal version in SIMAX, 2011



Approximation of rank-structured matrices – Finding U
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×(r+m), where m is the leaf
node size. (Think m ≈ 2k.)

Y = A ΩΩΩ

Since ΩΩΩ(I4, : ) is of size m× (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).
Then

YQ4 = A ΩΩΩQ4.
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Approximation of rank-structured matrices – Finding U

Y = A ΩΩΩ

Q4 = nullspace(ΩΩΩ(I4, : ), r)

YQ4 = A ΩΩΩQ4

We find the sample by multiplying Y(I4, :)Q4.
Orthonormalizing the sample gives basis matrix U4,

U4 = qr(Y(I4, :)Q4).



Approximation of rank-structured matrices – Finding U
• For each leaf node τ , we compute

Qτ = nullspace(ΩΩΩ(Iτ , :), r)

Uτ = qr(Y(Iτ , :)Qτ ).

• Uτ only depends on ΩΩΩ(Iτ , :) and Y(Iτ , :).
• We only need r + m samples to find Uτ for every leaf node τ .
• ΩΩΩQτ is a Gaussian random matrix, except for the block intentionally zeroed out.



Approximation of rank-structured matrices – Compression overview
Recall the telescoping factorization A = U(L)Ã(L)

(V(L))∗ + D(L).
Steps:
1. Find U(L),V(L).
2. Find D(L).
3. Compress Ã(L)

recursively.

Compute randomized samples of A and A∗.
1: Form Gaussian random random matrices ΩΩΩ and ΨΨΨ of size N × s.
2: Multiply Y = AΩΩΩ and Z = A∗ΨΨΨ.

Compress level by level from finest to coarsest.
3: for level ` = L,L− 1, . . . ,0 do
4: for node τ in level ` do
5: if τ is a leaf node then

6:
ΩΩΩτ = ΩΩΩ(Iτ , :), ΨΨΨτ = ΨΨΨ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
7: else
8: Let α and β denote the children of τ .

9:

ΩΩΩτ =

[
V∗αΩΩΩα

V∗βΩΩΩβ

]
, ΨΨΨτ =

[
U∗αΨΨΨα

U∗βΨΨΨβ

]

Yτ =

[
U∗α(Yα − DαΩΩΩα)

U∗β(Yβ − DβΩΩΩβ)

]
, Zτ =

[
V∗α(Zα − D∗αΨΨΨα)

V∗β(Zβ − D∗βΨΨΨβ)

]

10: if level ` > 0 then

11:
Qτ = nullspace(ΩΩΩτ , r), Pτ = nullspace(ΨΨΨτ , r)

Uτ = qr(YτQτ , r), Vτ = qr(ZτPτ , r)

12: Dτ = (I− UτU∗τ)YτΩΩΩ
†
τ + UτU∗τ

(
(I− VτV∗τ)ZτΨΨΨ

†
τ

)∗
13: else
14: Dτ = YτΩΩΩ

†
τ



Approximation of rank-structured matrices – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)

Ã(L)︷ ︸︸ ︷
(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A− U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗τAτ,τVτV∗τ
= . . .

= (I− UτU∗τ )YτΩΩΩ
†
τ + UτU∗τ

(
(I− VτV∗τ )ZτΨΨΨ

†
τ

)∗
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Approximation of rank-structured matrices – Compressing Ã(L)

To compute randomized samples of Ã(L), we multiply the telescoping factorization with ΩΩΩ

to obtain
Y = AΩΩΩ = (U(L)Ã(L)

(V(L))∗ + D(L))ΩΩΩ,

and rearrange to obtain

(U(L))∗(Y− D(L)ΩΩΩ)︸ ︷︷ ︸
sample matrix

= Ã(L)
(V(L))∗ΩΩΩ︸ ︷︷ ︸
test matrix

.



Approximation of rank-structured matrices: Sparse LU
Let C be the stiffness matrix for the standard five-point stencil finite difference
approximation to the Poisson equation on a rectangular grid.

We partition the grid as shown and tessellate C accordingly.

C =


C11 0 C13

0 C22 C23
C31 C32 C33


The matrix we seek to compress is the Schur complement

A = C33 − C31C−111C31 − C32C−122C23.



Approximation of rank-structured matrices: Sparse LU r = 30,m = 60
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Approximation of rank-structured matrices: FMM r = 50,m = 100



Approximation of rank-structured matrices: Key points

• Fully “black box”. Interacts with A only via the matvec.

• True linear complexity. Requires only O(k) samples from A and A∗.
Much faster in practice than existing black box algorithms.
(However, prefactor in # samples is slightly suboptimal – unlike Townsend/Halikias.)

• Ideal tool for acceleration of sparse direct solvers.
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• Smoothing.
• Stable.
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• Smoothness is not necessary.
• Numerical compression is essential.
•Wave problems with small λ remain challenging.
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The solution operator of a linear elliptic PDE is “friendly.”
• Smoothing.
• Stable.

Long range interactions are low rank.
• Cf. St Venant principle, multipole expansions, etc.
• Smoothness is not necessary.
• Numerical compression is essential.
•Wave problems with small λ remain challenging.

High-order discretizations + FDS.
• Maximize the work done by each DOF to save memory.
• Perfect for ill-conditioned problems with oscillatory solutions.
• Requires care in choosing discretization scheme.

New randomized methods for matrix algebra→ acceleration & simplification.



Where we are now: Postdoc position(s) available!

• We have developed direct solvers with O(N) complexity for elliptic PDEs with
non-oscillatory (or “mildly oscillatory”) solutions for most standard environments:
• Sparse matrices from FEM/FD/composite spectral/... in both 2D and 3D.
• Boundary integral equations in 2D and 3D. (Work in progress . . . )

• Advantages of direct solvers:
• Often instantaneous solves once a solution operator has been built.
• Can eliminate problems with slow convergence of iterative solvers.
• Communication efficient.

• Disadvantages of direct solvers:
• Memory hogs. (But distributed memory is OK.)
• The build stage is still slow for many 3D problems. (I am optimistic that we will fix this!)

Where to go next: New powerful tool available→ lots of opportunities!

• Explore happy couplings:
• Direct solver + high order discretization. (Helps with memory. Wave problems.)
• Direct solver + integral equation formulations. (Need dense matrices anyway.)
• Direct solver + parallelization. (Root of tree is cheap!)
• Direct solver + numerical coarse graining. (Another talk. . . )

• Parabolic and hyperbolic problems. Parallel-in-time methods?



More details in a 2019 monograph:


