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Outline of talk

1. Randomized low rank approximation

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

2. Variations of randomized algorithms for low rank approximation

Single pass and streaming algorithms.

Structured random embeddings.

Matrix approximation via sampling.

3. Samples of current research directions

Least squares problems and linear system solvers.

Sketching for data compression.



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Why?

• Fitting a hyperplane to a given set of points. Or fitting a multivariate normal
distribution to measurements (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, fast direct solvers, etc.

• Many, many, many more.

Observe that from E and F you can compute approximate singular vectors, find
dominant eigenvectors (when A = A∗), find spanning rows/columns, etc.

We seek only to control the residual error ‖A− EF∗‖.



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Existing methods for this task are well established. Textbook methods include:

1. Compute the full singular value decomposition of A, and then truncate:
— Resulting approximation is in many regards ”optimal” — best possible fit.
— Expensive! Cost is O(mn2). Good for small n, or “expensive” data.

2. Krylov methods:
— Standard technique for large sparse matrices.
— Interacts with A only through its action on vectors.
— Theoretically optimal in important regards.

3. Execute Gram-Schmidt on the columns of A (“column pivoted QR”):
— Simple and practical for medium size dense matrices.
— Not entirely optimal, but often good enough.
— Cost is O(mnk) since you can stop after k steps.

These methods work great! But room for improvement in important environments.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
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B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ‖A−QQ∗A︸︷︷︸
=B
‖ = ‖A−Q B︸︷︷︸

=ÛDV∗
‖ = ‖A− QÛ︸︷︷︸

=U
DV∗‖ = ‖A− UDV∗‖.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

We claim that the columns of Y form a good approximate basis for ran(A).
Observe that ran(Y) ⊆ ran(A) automatically.
Loss of accuracy can happen if ran(Y) does not capture important directions.
To avoid this, we draw p extra samples, for, say, p = 5 or p = 10.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Important: You only need to ensure that you do not undersample.

Over-sampling is unproblematic, since excess data gets “filtered out” in Stage B.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Observe how simple the interaction with A is.
Two matrix-matrix products only.
This often leads to very high practical execution speed on modern hardware.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AΩΩΩ instead of Y = AΩΩΩ.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Let us next investigate the accuracy of the method.

To illustrate the errors, we set p = 0 (no over-sampling), and then define

ek = ‖A− UDV∗‖ = ‖A−QQ∗A‖.

Eckart-Young theorem: ek ≥ σk+1, where σj is the j ’th singular value of A.



Randomized SVD:
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The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomized SVD:

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

S
p
e
c
tr

a
l 
n
o
rm

 e
rr

o
r

Accuracy in rank k approximation

Exact SVD (optimal)

Basic RSVD (q=0)

RSVD with one step of power iteration (q=1)

RSVD with two steps of power iteration (q=2)

The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A now has singular values that decay slowly.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.

For instance, we can bound the expectation of the error:
Theorem: Let A be an m× n matrix with singular values {σj}

min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let ΩΩΩ be a Gaussian random matrix of size n× (k + p) and set Q = orth(AΩΩΩ). Then the
average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ), any
theoretical analysis needs to describe the probability distribution of the error.

There are also bounds on the likelihood of a large deviation from the expectation.
(It turns out to decay super-exponentially fast as p increases!)

References (very incomplete!!):
• Martinsson, Rokhlin, Tygert, Yale-CS-1361, 2006.
• Halko, Martinsson, Tropp, SIREV, 2011. Survey, focus on RSVD.
• Witten/Candès, Algorithmica, 2015.
• Gu, SISC, 2015. Analysis of randomized subspace iteration.
• Musco, Musco, NIPS, 2015. Analysis of block Krylov methods.
• Saibaba, SIMAX, 2019. Accuracy of singular vectors.
• Martinsson, Tropp, Acta Numerica, 2020. Survey. Broader perspective.
• Nakatsukasa, arXiv:2009.11392, 2020. Generalized Nyström method.



Outline of talk

1. Randomized low rank approximation [Done!]

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

2. Variations of randomized algorithms for low rank approximation

Single pass and streaming algorithms.

Structured random embeddings.

Matrix approximation via sampling.

3. Samples of current research directions

Least squares problems and linear system solvers.

Sketching for data compression.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
We seek to eliminate the intermediate matrices Y and Q from the description.
We will use the notion of a Moore-Penrose pseudoinverse. Brief recap:
Let X be an m× n matrix of rank k, with singular value decomposition

X = U D V∗.
m× n m× k k × k k × n

Then the Moore-Penrose pseudoinverse is

X† = V D−1 U∗.
n×m n× k k × k k ×m

The matrix X† is a generalization of an inverse for an invertible matrix.
The property we need is: XX† is the orthogonal projection onto col(X).



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.
Next, let us also approximate the row space: Draw a (k + p)×m Gaussian matrix ΨΨΨ,
then the rows of ΨΨΨA approximately span the row space of A. Then:

A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA).



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.
Next, let us also approximate the row space: Draw a (k + p)×m Gaussian matrix ΨΨΨ,
then the rows of ΨΨΨA approximately span the row space of A. Then:

A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA).

Simplify: A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA) = · · · = (AΩΩΩ)
(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA).



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 1:
The matrix Aapprox can be built in a single pass over A.
In other words, we need to view each matrix entry of A only once.
This cannot be done using deterministic methods (as far as I know).
“Streaming” or “single-view” algorithm.

Note: Using different over-sampling parameters for the row and column spaces is often better.

References: Alon, Gibbons, Matias and Szegedy (2002); Woolfe, Liberty, Rokhlin, and Tygert (2008);
Clarkson and Woodruff (2009); Li, Nguyen and Woodruff (2014); Boutsidi, Woodruff and Zhong (2016),
Tropp, Yurtsever, Udell and Cevher (2017); Pourkamali-Anaraki and Becker (2019); Wang, Gittens and
Mahoney (2019); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021;
. . .many more . . .



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.

O(mnk) matches the flop count of Gram-Schmidt, or a Krylov method applied to a dense
matrix.



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!

A ΩΩΩ AΩΩΩ

The matrix ΩΩΩ is a sparse random matrix. Two nonzero entries are placed randomly in
each row. In consequence, each column of A contributes to precisely two columns of the
sample matrix Y = AΩΩΩ. This structured random map has O(mn) complexity, is easy to
work with practically, and often provides good accuracy.



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)
Cost is now O(mn)!

When a structured random matrix is used, overall cost can be reduced to O(mn + k3).
Despite the pseudo-inverse, this can be done in a numerically stable way.
References: Ailon & Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006); Halko, Martinsson,

Tropp (2011); Clarkson & Woodruff (2013); Meng & Mahoney (2013); Nelson & Nguyen (2013); Urano

(2013); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021. Much

subsequent work — “Fast Johnson-Lindenstrauss transform.”



Low rank approximation via sampling:
Task: Find a rank-k approximation to a given m× n matrix A.
Question: Can we be even more aggressive? Complexity less than O(mn)?

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use as your approximation Aapprox = CUR where U is computed from information in
A(I, J). (It should be an approximation to the optimal choice U = C†AR†.)

The computational profile depends crucially on the probability distribution that is used.
Uniform probabilities: Can be very cheap. But in general not reliable.
Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Then quite strong theorems
can be proven on the quality of the approximation. Problem: Computing the probability
distribution is as expensive as computing a partial SVD.
References: Drineas, Kannan & Mahoney (2006); Drineas, Mahoney & Muthukrishnan (2008); Kannan &

Vempala (2017); Drineas & Mahoney (2018); Martinsson & Tropp (2020); . . .
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Low rank approximation via sampling: Connection to structured embeddings
Task: Find a rank k approximation to a given m× n matrix A.
Sampling approach (now single sided again): Draw a subset of k columns
C = A(:, J) where J is drawn at random. Consider the approximant

Aapprox = CC†A.

As we have seen, this in general does not work very well. But it does work well for the
class of matrices for which uniform sampling is optimal.

We can turn A into such a
matrix! Let U be a matrix drawn from a uniform distribution on the set of n× n unitary
matrices (the “Haar distribution”). Then form

Ã = AU.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a well behaved sample through

C = Ã(:, J) = AU(:, J).

The n× k “slice” U(:, J) is in a sense an optimal random embedding.

Fact: Using a Gaussian matrix is mathematically equivalent to using U(:, J).

Observation: A structured random embedding seeks to mimic the action of U(:, J).
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Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m× n m× k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

This problem can be solved via index sampling using leverage scores, as discussed.
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k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m× n m× k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

This problem can be solved via index sampling using leverage scores, as discussed.

Alternatively, the following two stage approach works very well:
(1) Apply a random embedding ΩΩΩ to the columns of A (sparse random is perfect).
(2) Execute a classical pivoting method on ΩΩΩA (partially pivoted LU is ideal).



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a factorization

A ≈ C Z,
m× n m× k k × n

where C = A(J, :) holds a subset of k columns of A, as before.

This problem can be solved via index sampling using leverage scores, as discussed.

Alternatively, the following two stage approach works very well:
(1) Apply a random embedding ΩΩΩ to the columns of A (sparse random is perfect).
(2) Execute a classical pivoting method on ΩΩΩA (partially pivoted LU is ideal).

References: Liberty, Woolfe, Martinsson, Rokhlin and Tygert (2007); Sorensen &
Embree (2006); Halko, Martinsson, Tropp (2011); Dong & Martinsson,
arXiv:2104.05877, 2021; . . .



Computing full factorizations — accelerated column pivoted QR: The column
selection strategy on the previous slide has been applied to resolve a classical problem
in numerical linear algebra: How do you pick groups of pivots when executing column
pivoted QR? The purpose is to move flops from BLAS2 to BLAS3 operations.
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Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n
Speedup attained by a randomized algorithm for computing a full column pivoted QR factoriza-
tion of an n × n matrix. The speed-up is measured versus LAPACK’s faster routine dgeqp3 as
implemented in Netlib (left) and Intel’s MKL (right). Our implementation was done in C, and was
executed on an Intel Xeon E5-2695. Joint work with G. Quintana-Ortí, N. Heavner, and R. van
de Geijn (SISC 2017). Closely related work by Duersch and Gu, SISC 2017 / SIREV 2020.



Outline of talk

1. Randomized low rank approximation [Done!]

“Randomized singular value decomposition” or “RSVD”.

Techniques based on randomized embeddings.

Relatively well established material within numerical linear algebra.

2. Variations of randomized algorithms for low rank approximation [Done!]

Single pass and streaming algorithms.

Structured random embeddings.

Matrix approximation via sampling.

3. Samples of current research directions

Least squares problems and linear system solvers.

Sketching for data compression.



Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems.
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.
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Draw a random embedding ΩΩΩ ∈ Rd×m and construct a smaller sketched system.



Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems.
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.

Draw a random embedding ΩΩΩ ∈ Rd×m and construct a smaller sketched system.

A bold approach — “sketch-to-solve”:
Find the vector x that solves the sketched system.
A safe approach — “sketch-to-precondition”:
Build a preconditioner M ∈ Rn×n by factorizing ΩΩΩA so that ΩΩΩA = QM.
Iterate on the preconditioned linear system (AM−1) (Mx) = b.

Rokhlin/Tygert (2008), Avron/Maymounkov/Toledo (2010), many more



Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems. Sketch-to-precondition paradigm.

• Randomized Kaczmarz: Randomization in a classical algorithm. Particularly
effective when randomized embeddings are incorporated. (Strohmer/Vershynnin 2009,

Needell/Ward/Srebro 2014, Gower/Richtarik 2015, Liu/Wright 2016, . . . )

• Eliminating pivoting in Gaussian elimination: D. Stott Parker showed in 1995
that you can eschew pivoting in Gaussian elimination if you first “scramble” the
coefficient matrix through “pre-conditioning” via random unitary maps. Early
example of fast J-L transform! Related work by Demmel/Dumitriu/Holtz (2007).

• Graph Laplacians: Linear systems whose coefficient matrix is a graph Laplacian
can be solved using randomized methods in close to linear (in the number of edges)
complexity. The idea is to compute an approximate Cholesky factorization A ≈ CC∗,
and then use C as a preconditioner in conjugate gradients. Can be hybridized with
ideas from nested dissection to achieve high practical speed for problems in
scientific computing. (Spielman/Teng 2004, Kyng/Sachdeva 2016, Koutis/Miller/Tolliver 2011,

Livne/Brandt 2012, Spielman 2020, Chen/Liang/Biros 2020, . . . ).



Solution of huge linear systems via randomized sampling

Randomized sampling has enabled the solution of some systems Ax = b that would
otherwise be intractable. Think of systems so large that even forming A is impossible.

In such situations, we must have some à priori information about structure or regularity
in A that can be exploited. A common situation is that A(i, j) = k(xi,xj), where k is a
given kernel function, and {xi}Ni=1 is a given set of points in Rd.

• Kernel ridge regression: Need to solve a linear system
(
A + µI

)
x = b where A is a

kernel matrix. Techniques based on Nyström approximation combined with
randomized sampling have proven highly effective. (Alaoui/Mahoney 2015,

Avron/Clarkson/Woodruff 2017, Musco/Musco 2017, Rudi/Calandriello/Carratino/Rosasco 2018, . . . )

• Rank-structured representations of kernel matrices: Multifrontal sparse direct
solvers; FMMs; boundary integral equation methods; covariance matrices in
Gaussian processes; log-determinants; etc. (Martinsson 2011, March/Xiao/Biros 2015,

Ambikasaran/Foreman-Mackey/Greengard/Hogg/O’Neil 2015, Ghysels/Li/Gorman/Rouet 2016,

Yu/Levitt/Reiz/Biros 2017, Rebrova/Chávez/Liu/Ghysels/Li 2018, Geoga/Anitescu/Stein 2019, . . . )

• Electronic structure calculations: Impossible even to store x. (Lim/Weare 2017)



Randomized embeddings: “Sketching” for data compression

Storage of scientific data is often a core challenge:

• Massive sensor arrays.
• High resolution and multiband imaging.
• Time stepping in scientific simulations — fluid dynamics, molecular dynamics, etc.

In some environments, well-established techniques based on harmonic analysis (Fourier
bases, wavelets, etc) are helpful.

When less is known about the data à priori, computing randomized sketches has proven
to be valuable. Many different regimes have been pursued:
• Low rank matrices.
• Various tensor decompositions.
• Sparse Fourier transforms.

References: Woolfe/Liberty/Rokhlin/Tygert (2008), Clarkson/Woodruff (2009), Halko/Martinsson/Tropp

(2011), Li/Nguyen/Woodruff (2014), Ghashami/Liberty/Phillips/Woodruff (2016), Kressner/Periša (2017),

Tropp/Yurtsever/Udell/Cevher (2017–), . . .



Key points on randomized singular value decomposition (RSVD):

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Highly communication efficient.
Acceleration of classical algorithms such as column pivoted QR.
Particularly efficient for GPUs, out-of-core computing, distributed memory, etc.

• Reduction in complexity from O(mnk) to O(mnlog k) or even less via structured
random embeddings.

• Single pass algorithms have been developed for streaming environments.
Not possible with deterministic methods!

Current research directions:

• High performance implementations.

• Faster algorithms for computing full matrix factorizations.

• Solvers for linear systems and for least squares problems.

• Applications of randomized embeddings outside of linear algebra: Faster nearest
neighbor search, faster clustering algorithms, data compression on the fly, etc.



Surveys:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. (Arxiv report 2002.01387)

Long survey summarizing major findings in the field in the past decade.
• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,

IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv

DOE report on randomized algorithms: https://arxiv.org/abs/2104.11079 (2021)


