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Outline of talk

1. Introduction to randomized low rank approximation.

2. Interpolatory and CUR factorizations (very brief).

3. Rank revealing factorizations for matrices of full or nearly full rank.

4. Brief survey of related research areas (if time permits):

� Structured random matrices.

� Single-view (“streaming”) algorithms.

� Randomized block Krylov methods.

� Approximation of kernel matrices — A(i, j) = k(xi,xj).

� (Randomized methods for solving Ax = b.)

Slides posted at: http://users.oden.utexas.edu/∼pgm/main_talks.html



Randomized SVD (RSVD):

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)



Randomized SVD (RSVD):

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
Use randomized projection methods to form an approximate basis for the range of
the matrix.

(B) Deterministic post-processing:
Restrict the matrix to the subspace determined in Stage A, and perform expensive
but accurate computations on the resulting smaller matrix.



Randomized SVD (RSVD):

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, D, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ‖A−QQ∗A︸︷︷︸
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Randomized SVD (RSVD):

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, D, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

How does it work? To develop intuition, it helps to first consider the case rank(A) = k.
Then ran(Y) = ran(A) holds with probability 1, so the output is exactly the SVD of A.
In the general case, contributions from the singular modes beyond the first k will shift
ran(Y) away from the desired space spanned by the dominant k left singular vectors.
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Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, D, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Distortions in the randomized projections are fine, since all we need is a subspace that
captures “the essential” part of the range. Pollution from unwanted singular modes is
harmless, as long as we capture the dominant ones. By drawing p extra samples (for,
say, p = 5 or p = 10), we make the risk of missing anything important essentially zero.



Randomized SVD (RSVD):

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• For a dense matrix, asymptotic cost is O(mnk), just like column pivoted QR, or a
Krylov method. RSVD is faster in practice, since the matrix-matrix multiplication is
very fast. Acceleration to O(mn log(k)) is possible. (Will discuss later.)

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AΩΩΩ instead of Y = AΩΩΩ.
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Randomized SVD (RSVD):
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The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (Recall that PkA = UkDkV∗k.)
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomized SVD (RSVD):
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The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (Recall that PkA = UkDkV∗k.)
The matrix A now has singular values that decay slowly.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.
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Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The output of RSVD is a random variable, as it depends on the draw of ΩΩΩ. We have
rigorous mathematical results describing the errors of the algorithm in expectation, as
well as the risk of large deviations. Draw on random matrix theory.

Theorem: Let A be an m× n matrix with singular values {σj}
min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let ΩΩΩ be a Gaussian random matrix of size n× (k + p) and set Q = orth(AΩΩΩ). Then the
average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.
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Randomized SVD:
Original work:
• P.G. Martinsson, V. Rokhlin and M. Tygert (2006a), A randomized algorithm for the approximation of

matrices, Technical Report Yale CS research report YALEU/DCS/RR-1361, Yale.
• Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert, Randomized

algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of
Sciences 2007 104: 20167-20172.

• V. Rokhlin, A. Szlam, and M. Tygert, A Randomized Algorithm for Principal Component Analysis,
SIAM J. Matrix Anal. Appl., 31(3), 1100–1124.

• P.G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the approximation of
matrices. Applied and Computational Harmonic Analysis, 30(1), pp. 47–68, 2011.

• F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of
matrices, Applied and Computational Harmonic Analysis, 25(3), 2008.

Relevant prior work:
• C. H. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala (2000), Latent semantic indexing: a

probabilistic analysis, Vol. 61, pp. 217–235.
• A. Frieze, R. Kannan and S. Vempala (2004), Fast Monte-Carlo algorithms for finding low-rank

approximations, J. ACM 51(6), 1025–1041.
Surveys:
• N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms

for Constructing Approximate Matrix Decompositions, SIAM Review, 2011.
• P.G. Martinsson, Randomized Methods for Matrix Computations. In the 2018 book The Mathematics

of Data, published by AMS.



Outline of talk

1. Introduction to randomized low rank approximation. Done!

2. Interpolatory and CUR factorizations (very brief).

3. Rank revealing factorizations for matrices of full or nearly full rank.

4. Brief survey of related research areas:

� Structured random matrices.

� Single-view (“streaming”) algorithms.

� Randomized block Krylov methods.

� Approximation of kernel matrices — A(i, j) = k(xi,xj).

� (Randomized methods for solving Ax = b.)



Interpolatory and CUR factorizations
Let A be an m× n matrix of approximate rank k. We seek a factorization

A ≈ X R,
m× n m× k k × n

where R holds a subset of k of the rows of A.
In other words, R = A(Is, : ) for some index vector Is of length k. We seek {Is,X}.

Why? Data interpretation, computational efficiency, preserve sparsity/non-negativity, . . .



Interpolatory and CUR factorizations
Let A be an m× n matrix of approximate rank k. We seek a factorization

A ≈ X R,
m× n m× k k × n

where R holds a subset of k of the rows of A.
In other words, R = A(Is, : ) for some index vector Is of length k. We seek {Is,X}.

Why? Data interpretation, computational efficiency, preserve sparsity/non-negativity, . . .

Deterministic techniques

• Finding the absolutely optimal set Is is a very hard problem.
(Typically: “optimal” = “maximal spanning volume”)

• In practice, Gram-Schmidt on the rows works very well (column pivoted QR on At).

• Sophisticated pivoting strategies in QR are guaranteed to lead to close to optimal
choices. [Gu, Eisenstat 1996]



Interpolatory and CUR factorizations
Let A be an m× n matrix of approximate rank k. We seek a factorization

A ≈ X R,
m× n m× k k × n

where R holds a subset of k of the rows of A.
In other words, R = A(Is, : ) for some index vector Is of length k. We seek {Is,X}.

Why? Data interpretation, computational efficiency, preserve sparsity/non-negativity, . . .

Randomized strategy:
• Draw a tall thin Gaussian matrix ΩΩΩ of size, say n× (k + 10).
• Form the sample matrix Y = AΩΩΩ.
• Perform Gram-Schmidt on the rows of Y. Compute {Is,X} from Y!
If Y ≈ XY(Is, : ), then “automatically”, A ≈ XA(Is, : )!

Notes:
• Only one interaction with A. (As opposed to two in RSVD.)
• Can be accelerated to complexity O(mn log(k)) by using a “structured” ΩΩΩ. (Later!)
• An ID can easily be converted to an SVD. Shortcut for RSVD!



Interpolatory and CUR factorizations, variations: A is of size m× n and rank ≈ k.

Row ID (what we discussed so far):
A ≈ X R,

m× n m× k k × n
where R = A(Is, : ) for some index vector Is that identifies k rows.

Column ID:
A ≈ C Z.

m× n m× k k × n
where C = A( : , Js) for some index vector Js that identifies k columns.

Double-sided ID:
A ≈ X A(Is, Js) Z.

m× n m× k k × k k × n
The vectors Is and Js, and the matrices X and Z are as above.

CUR factorization:
A ≈ C U R,

m× n m× k k × k k × n
where C and R are as above. For instance, U = C†AR†, or U = A(Is, Js)−1.

Any of the factorizations can be computed with the randomized technique described.



Interpolatory and CUR factorizations, strategies based on sampling

Many popular algorithms for computing the CUR factorization are based on randomized
sampling. (As opposed to the random embeddings discussed so far.)

The idea is to draw subsets of columns and rows, given some probability distribution.

So called leverage scores provide sampling probabilities that are in some sense ideal.
Powerful theory has been developed.

Computing the leverage scores can be expensive, however. Computationally efficient
ways to estimate them have been a subject of much research. Iterative methods can be
very helpful.

Sampling is a particularly appealing strategy in cases where the matrix is very large, or
expensive to form explicitly. Has been used successfully for, e.g., solving kernel ridge
regression problems.



Interpolatory and CUR factorizations

References:
• M. W. Mahoney and P. Drineas CUR matrix decompositions for improved data analysis, PNAS, 2009,

106(3).
• S.A. Goreinov, N.L. Zamarashkin, E.E. Tyrtyshnikov, Pseudo-skeleton approximations by matrices of

maximal volume, 62(4), 1997.
• M. Gu, S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM

Journal on Scientific Computing, 17(4), 1996.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.
• P.G. Martinsson, V. Rokhlin, and M. Tygert, On interpolation and integration in finite-dimensional

spaces of bounded functions, Communications in Applied Math. and Comp. Science, 1, 2006.
• N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms

for Constructing Approximate Matrix Decompositions, SIAM Review, 2011.
• S. Wang, Z. Zhang, Improving CUR matrix decomposition and the Nyström approximation via

adaptive sampling, The Journal of Machine Learning Research, 14(1), 2013.
• P.G. Martinsson and S. Voronin, Efficient algorithms for CUR and interpolative matrix

decompositions, Advances in Computational Mathematics, 43(3), pp. 495-516, 2017.
• P.G. Martinsson, Randomized methods for matrix computations, The Mathematics of Data, IAS/Park

City Mathematics Series, 25(4), pp. 187 - 231, 2018.
• D.J. Biagioni, D. Beylkin, G. Beylkin, Randomized interpolative decomposition of separated

representations Journal of Computational Physics, 281(15), 2015.
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Computing full (or nearly full) rank revealing factorizations of matrices

Suppose A is a dense n× n matrix, and that we seek a full rank-revealing factorization.

We use the term “rank-revealing” informally, and take it to mean only that a truncated
factorization is a reasonably close to optimal low rank approximation to the matrix. In
this sense, we can classify some standard factorizations as follows:

Not rank-revealing Rank-revealing
• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD

Fast. Slow.



Computing full (or nearly full) rank revealing factorizations of matrices

Suppose A is a dense n× n matrix, and that we seek a full rank-revealing factorization.

We use the term “rank-revealing” informally, and take it to mean only that a truncated
factorization is a reasonably close to optimal low rank approximation to the matrix. In
this sense, we can classify some standard factorizations as follows:

Not rank-revealing Rank-revealing
• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Fast. Slow.

The rank revealing factorizations to the right all depend on algorithms that proceed
through a sequence of rank-one updates to the matrix. This makes them slow when
executed on modern hardware (even on a single core).
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We use the term “rank-revealing” informally, and take it to mean only that a truncated
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Computing full (or nearly full) rank revealing factorizations of matrices

The reason CPQR is so much slower than QR is that it relies on a sequence of rank-one
updates.

Randomization to the rescue! D. Stott Parker (1995) proposed an elegant solution:
(1) Randomly mix the columns by right multiplying A by a random unitary matrix V:

Arand = AV.

(2) Perform unpivoted QR on the new matrix

Arand = UR

The resulting factorization
A = ArandV∗ = URV∗

is provably “rank-revealing” and leads to stable linear solves.

For computational efficiency, Parker introduced a random structured matrix (a bit ahead
of the times) called a “random butterfly transform”.

Further refinements — Demmel, Dumitriu, Holtz, Grigori, Dongarra, etc.
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Computing full (or nearly full) rank revealing factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix ΩΩΩ and form Y =

(
A∗A

)q
ΩΩΩ.

2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.
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Computing full (or nearly full) rank revealing factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix ΩΩΩ and form Y =
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ΩΩΩ.

2. Perform unpivoted QR on Y so that Y = VRtrash.
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)
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that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.
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Computing full (or nearly full) rank revealing factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix ΩΩΩ and form Y =

(
A∗A

)q
ΩΩΩ.

2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.
The method is extremely simple to code:

G = randn(n);

for j = 1:q

G = A’*(A*G);

end

[V,∼] = qr(G);

[U,R] = qr(A*V);



Computing full (or nearly full) rank revealing factorizations of matrices

Next: A randomized technique for computing a column pivoted QR factorization.

• Close to the speed of unpivoted QR.
• Pivot selection quality similar to classical CPQR.
• Same asymptotic flop count as classical QR.
• Can be stopped when a given tolerance is met, to produce a partial factorization.

Note: All methods discussed have complexity O(n3). We are discussing the scaling
factor.



Computing full (or nearly full) rank revealing factorizations of matrices

Given a dense n× n matrix A, compute a column pivoted QR factorization

A P ≈ Q R,
n× n n× n n× n n× n

where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

Perfect for randomized sampling! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.



Computing full (or nearly full) rank revealing factorizations of matrices
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix ΩΩΩ of size b×m and form

Y = ΩΩΩ A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n



Computing full (or nearly full) rank revealing factorizations of matrices
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n n

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/



Computing full (or nearly full) rank revealing factorizations of matrices

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.
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lines mark the theoretically minimal errors. The block size was b = 100 and the green

vertical lines mark block limits.
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lines mark block limits.
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Computing full (or nearly full) rank revealing factorizations of matrices

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).
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factorizations (like CPQR, but unlike SVD).



Computing full factorizations of matrices — Strassen type methods

The essential feature of the randomized methods described is that they enable us to
expend almost all flops on the matrix-matrix computation, which is much faster per flop
than other matrix operations.

Alternatively, use asymptotically faster methods for the matrix-matrix multiplication:

• Strassen: O(n2.83). Stable. Reasonable breakeven point.

• Coppersmith-Winograd etc.: O(n2.37). Unstable. Unreasonable breakeven point.

Observation:

Randomization allows you to use “fast” matrix-matrix multiplication algorithms to
compute rank-revealing factorizations in a numerically stable way. In particular:

fast+stable matrix-matrix multiplication ⇒ fast+stable linear system solve

Original work: Demmel, Dumitriu, and Holtz; Num. Math., 108, 2007.



Computing full factorizations of matrices

Randomized scrambling:
• D.S. Parker, Random butterfly transformations with applications in computational linear algebra,

Technical Report CSD-950023, UCLA, 1995.
• D. Lê, D.S. Parker, Using randomization to make recursive matrix algorithms practical, Journal of

Functional Programming, 9(6), 1999.
• J. Demmel, I. Dumitriu and O. Holtz, Fast linear algebra is stable, Numerische Mathematik, 108(1),

2007.
• J. Demmel, L. Grigori, A. Rusciano, An improved analysis and unified perspective on deterministic

and randomized low rank matrix approximations, arxiv #1910.00223, 2019.
• A. Gopal, P.G. Martinsson, The PowerURV algorithm for computing rank-revealing full factorizations,

arXiv #1812.06007, 2018.

Randomized CPQR and UTV factorizations:
• P.G. Martinsson, G. Quintana-Orti, N. Heavner, and R. van de Geijn, Householder QR Factorization

With Randomization for Column Pivoting (HQRRP), SIAM Journal on Scientific Computation, 39(2),
2017. arxiv #1505.08115, May 2015.

• J.A. Duersch, M. Gu, Randomized QR with column pivoting, SIAM Journal on Scientific Computing,
39(4), C263–C291, 2017. arXiv #1509.06820, Sep. 2015.

• P.G. Martinsson, G. Quintana-Ortí, N. Heavner, randUTV: A blocked randomized algorithm for
computing a rank-revealing UTV factorization, ACM TOMS, 45(1), 2019.



Outline of talk

1. Introduction to randomized low rank approximation. Done!

2. Interpolatory and CUR factorizations (very brief). Done!

3. Rank revealing factorizations for matrices of full or nearly full rank. Done!

4. Brief survey of related research areas:

� Structured random matrices.

� Single-view (“streaming”) algorithms.

� Randomized block Krylov methods.

� Approximation of kernel matrices — A(i, j) = k(xi,xj).

� (Randomized methods for solving Ax = b.)



Research snapshots: Structured random matrices

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
For a general dense matrix A, the cost is O(mnk), due to steps (2) and (5).

These steps can be accelerated to O(mnlog k) by using a structured random matrix ΩΩΩ

(aka “fast Johnson-Lindenstrauss” transform). For instance:
• Subsampled random Fourier Transform (SRFT). Randomized Hadamard. Etc.
• Random sparse matrices. Can be surprisingly sparse!
• Random chains of Given rotations.

In theory, these methods come with much weaker performance guarantees.

In practice, the “good” transforms perform as well as Gaussians.

Certificate of accuracy: You can incorporate a small amount of Gaussian sampling to
compute an error estimator. This removes the risk of using exotic and poorly understood
random maps, without changing the asymptotic cost.
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Research snapshots: Single view (“streaming”) algorithms

Suppose you are given the following task:
• You seek an approximate rank-k factorization of an m× n matrix A.
• You are allowed to see each entry of A only once. (Too large to store.)
• You cannot specify the order in which you see the elements.

Solvable using randomized methods. (Only?) One option is the following:
• Fix oversampling parameters `col and `row, where `col, `row ∼ k.
• Draw random matrices ΩΩΩcol ∈ Rn×`col and ΩΩΩrow ∈ R`row×m.
• As the matrix is streamed by you, incrementally build sample matrices

Ycol = AΩΩΩcol and Yrow = ΩΩΩrowA.

• Compute the factorization from the information in {ΩΩΩcol, Ycol, ΩΩΩrow, Yrow}.

Remarks:
• How to choose `col and `row is not well understood.
• Must have an estimate or bound for the numerical rank in advance.
• Typically lower accuracy than standard RSVD. (Do not use for out-of-core!)
• Tropp has proposed extracting additional samples (“core sample”).
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Research snapshots: Randomized Krylov methods

Given an n× n matrix A (say symmetric), how build a subspace that captures its range?

Option 1: Classical Krylov method

Start with a random vector ω, and use V = span{ω, Aω, A2ω, . . . , Ak−1ω}.

Option 2: Basic RSVD

Start with k random vectors {ωj}kj=1, and use V = span{Aω1, Aω2, . . . , Aωk}.

Intermediate options: In between is a rich design space. We discussed “powering” in the
context of the RSVD. You can also consider variations of block Krylov methods, where
we start with a tall thin random matrix ΩΩΩ, and then use

V = span{AΩΩΩ, A2ΩΩΩ, . . . , AqΩΩΩ}.

How choose parameters to optimize storage vs. flops vs. matrix accesses? What errors
would you expect? How avoid numerical instability? Etc.

Musco & Musco; Tropp; Wang, Zhang, Zhang; Yuan, Gu, Li; Drineas, Ipsen,
Kontopoulou, Magdon-Ismail; . . .
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Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.
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Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 1: Approximate A as a matrix of global low rank

Typically leads to low accuracy, but can be “good enough” for pre-conditioning, for
capturing essential features in learning problems, etc.

The types of random embeddings we have discussed in this talk that intermix all matrix
elements are rarely applicable. Instead, sampling is necessary.



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 2: Tessellate A into blocks that each have low rank — “O(n) data”

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 2: Tessellate A into blocks that each have low rank — “O(n) data”

Randomized sampling strategies can be used to build a data sparse representation.

In scientific computing, we sometimes have technique for evaluating global
matrix-vector products. In such cases, randomized embedding techniques do apply, and
can lead to high accuracy approximations to the matrix.



Research snapshots: Solving Ax = b

Vast area of research!

Luckily for me, this was covered in Petros’ talk.



Key points:

• Randomized low-rank approximation (“randomized SVD”).
• Superior performance in many regards, in particular for very large problems.
• For a fixed number of matrix-vector multiplies, Krylov methods are more accurate.

• Essential benefit of randomization in linear algebra: Reduces communication.
• Enables processing of huge data sets. (Out-of-core / streaming / cloud computing / . . . )
• Very fast on GPUs, distributed memory machines, etc.

• Two distinct paradigms for computing randomized approximations to matrices:
1. Compute sketch via randomized embedding, involving all matrix entries.

Very robust and reliable. Failure risk can be 10−10 or smaller. Not feasible in some environments.
2. Compute sketch via randomized sampling.

Cost can be less than cost for matvec. Very popular in “big data” applications where randomized
sampling often serves as an enabling technology.

• In many situations, you can explicitly compute (or estimate) the residual error.
“Certificate of accuracy” is especially useful for fast J-L transforms.

• Postdoc position is available at UT Austin!



Surveys Adapted from Petros’ slides!

• P. G. Martinsson and J. A. Tropp, Randomized Numerical Linear Algebra:
Foundations & Algorithms, Acta Numerica, 2020.

• P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra.
In the 2018 book The Mathematics of Data, published by AMS.

• P.G. Martinsson, Randomized Methods for Matrix Computations. In the 2018 book
The Mathematics of Data, published by AMS.

• M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra,
Communications of the ACM, 2016.

• D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and
Trends in Theoretical Computer Science, 2014.

• M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and
Trends in Machine Learning, 2011.

• N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM
Review, 2011.


