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Randomised SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

Applications:

• Plane fitting (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, Fast direct solvers, etc.

• Many, many, many more.



Randomised SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomised sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat
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The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ‖A−QQ∗A︸︷︷︸
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B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

How does it work? To develop intuition, it helps to first consider the case rank(A) = k.
Then ran(Y) = ran(A) holds with probability 1, so the output is exactly the SVD of A.
In the general case, contributions from the singular modes beyond the first k will shift
ran(Y) away from the desired space spanned by the dominant k left singular vectors.
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Distortions in the randomised projections are fine, since all we need is a subspace that
captures “the essential” part of the range. Pollution from unwanted singular modes is
harmless, as long as we capture the dominant ones. By drawing p extra samples (for,
say, p = 5 or p = 10), we make the risk of missing anything important essentially zero.



Randomised SVD:
Input: An m× n matrix A, and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Analogous schemes exist for computing “structure preserving” factorizations where
a number of the columns/rows are chosen to serve as a basis for the column/row
space. “Interpolative decomposition” / “CUR decomposition” / “skeletonization” / . . .

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AG instead of Y = AG.
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Randomised SVD:
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The plot shows the errors from the randomised range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix.
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomised SVD:
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The plot shows the errors from the randomised range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix.
The matrix A now has singular values that decay slowly.



Randomised SVD: The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Randomised SVD: The same plot as before, but now showing 100 instantiations.
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Cost of randomised methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomised
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomised Fourier
transform (SRFT), which can be applied rapidly using variations of the FFT.

• The algorithm must be modified a bit beside replacing the random matrix.
• The SRFT leads to large speed-ups for moderate matrix sizes.
For instance, for m = n = 4000, and k ∼ 102, we observe about ×5 speedup.
• In practice, accuracy is very similar to what you get from Gaussian random matrices.
• Theory is still quite weak.
• Many different “structured random projections” have been proposed: sub-sampled
Hadamard transform, chains of Givens rotations, sparse projections, etc.

References: Ailon & Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006);
Halko, Martinsson, Tropp (2011); Clarkson & Woodruff (2013).
Much subsequent work — “Fast Johnson-Lindenstrauss transform.”
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method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomised Fourier
transform (SRFT), which can be applied rapidly using variations of the FFT.

Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomised methods access A via
sweeps over the entire matrix. With slight modifications, the randomised method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomised
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.



Cost of randomised methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomised
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomised Fourier
transform (SRFT), which can be applied rapidly using variations of the FFT.
Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomised methods access A via
sweeps over the entire matrix. With slight modifications, the randomised method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomised
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.



Cost of randomised methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomised
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomised Fourier
transform (SRFT), which can be applied rapidly using variations of the FFT.
Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomised methods access A via
sweeps over the entire matrix. With slight modifications, the randomised method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomised
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.



Analysis



Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
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Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011



Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.



Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
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If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then
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u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤
(
1 + 6

√
(k + p) · p log p

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.



Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

We seek to bound the error ek = ek(A,R) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·R · · ·

2. Assume that R is drawn from a standardized Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that R is drawn from a standardized Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .



Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define R1 and R2 via

R1 = V∗1 R
k × (k + p) k × n n× (k + p)

and
R2 = V∗2 R.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that R1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2R2R

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).



Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
R1
R2

]
=

[
V∗1R
V∗2R

]
, Y = AR, P projn onto Ran(Y).

Thm: Suppose D1R1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2R2R

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1R1
D2R2

])
= Ran

([
I

D2R2R
†
1D1

]
D1R1

)
= Ran

([
I

D2R2R
†
1D1

])

Set F = D2R2R
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2R2R

†
1‖

2 + ‖D2‖2.



Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2R2R
†
1|||

2, where R1 = V∗1R and R2 = V∗2R.

Assumption: R is drawn from a standardized Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices R1 and R2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . . ). )

What is the distribution of R†1 when R1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖R†1‖ is typically large, and is very unstable.



Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10
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Scatter plot showing distribution of k × (k + p) Gaussian matrices.
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Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `.
Let “g” denote a generic N (0,1) variable and “r2j ” denote a generic χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... ... ... ... ... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... ... ... ... ... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ` = 2k.
More sophisticated methods are required to get to ` = k + 2.



Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)



Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R
†
1‖

2, where R1 and R2 are Gaussian and R1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2R2R
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2R2R
†
1‖.

Condition on R1 and use Proposition 1:

E‖D2R2R
†
1‖ ≤ E

[
‖D2‖ ‖R

†
1‖F + ‖D2‖F ‖R

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖R†1‖

2
F
)1/2

+ ‖D2‖FE‖R†1‖.

Proposition 2 now provides bounds for E‖R†1‖
2
F and E‖R†1‖ and we get

E‖D2R2R
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√

k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.



Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)



Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R†1‖2, where R1 and R2 are Gaussian and R1 is k × k + p.
Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
‖R1‖ ≤

e
√

k+p
p+1 t and ‖R†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t ) ≤ 2 t−p.

Set h(X) = ‖D2XR†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖R†1‖ ‖X − y‖F.

Hold R1 fixed and take the expectation on R2. Then Proposition 1 applies and so

E
[
h
(
R2
) ∣∣ R1

]
≤ ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2R2R†1‖︸ ︷︷ ︸

=h(R2)

> ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖︸ ︷︷ ︸
=E[h(R2)]

+ ‖D2‖ ‖R†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of R†1:

P
[
‖D2R2R†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t ) ≤ 2 t−p to remove the conditioning of Et.



Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and singular values

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAR

instead of
Y = AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” “block Lanczos,” “subspace iteration.”



Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(1) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)

σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.



Matrix approximation by sampling

To simplify slightly, there are two paradigms for how to use randomization to
approximate matrices:

Randomized embeddings Randomized sampling
(What we have discussed so far.) (What we will discuss next.)

Often faster than classical deterministic
methods.

Sometimes far faster than classical
deterministic methods. Faster than
matrix-vector multiplication, even.

Highly reliable and robust. Can fail.

High accuracy is attainable. Typically low accuracy.

Best for scientific computing. Enables solution of large scale prob-
lems in “big data” where no other meth-
ods work.
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t=1At where each At is “simple” in some sense.



Matrix approximation by sampling

Suppose that A =
∑T

t=1At where each At is “simple” in some sense.

Example: Sparse matrix written as a sum over its nonzero entries
5 −2 0
0 0 −3
1 0 0


︸ ︷︷ ︸

=A

=


5 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A2

+


0 0 0
0 0 −3
0 0 0


︸ ︷︷ ︸

=A3

+


0 0 0
0 0 0
1 0 0


︸ ︷︷ ︸

=A4

Example: Each Ai could be a column of the matrix
5 −2 7
1 3 −3
1 −1 1


︸ ︷︷ ︸

=A

=


5 0 0
1 0 0
1 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 3 0
0 −1 0


︸ ︷︷ ︸

=A2

+


0 0 7
0 0 −3
0 0 1


︸ ︷︷ ︸

=A3

.

Example: Matrix-matrix multiplication broken up as a sum of rank-1 matrices:

A = BC =
∑
t

B( : , t)C(t, : ).



Matrix approximation by sampling

Suppose that A =
∑T

t=1At where each At is “simple” in some sense.

Let {pt}Tt=1 be a probability distribution on the index vector {1,2, . . . ,T}.
Draw an index t ∈ {1,2, . . . ,T} according to the probability distribution given, and set

X =
1
pt
At.

Then from the definition of the expectation, we have

E
[
X
]

=
T∑
t=1

pt ×
1
pt
At =

T∑
t=1

At = A,

so X is an unbiased estimate of A.
Clearly, a single draw is not a good approximation — unrepresentative, large variance.
Instead, draw several samples and average:

X̄ =
1
k

k∑
t=1

Xt,

where Xt are independent samples from the same distribution.
As k grows, the variance will decrease, as usual. Various Bernstein inequalities apply.



Matrix approximation by sampling

As an illustration of the theory, we cite a matrix-Bernstein result from J. Tropp (2015):

Theorem: Let A ∈ Rm×n. Construct a probability distribution for X ∈ Rm×n that satisfies

E
[
X
]

= A and ‖X‖ ≤ R.

Define the per-sample second-moment: v(X) := max{‖E[XX∗]‖, ‖E[X∗X]‖}.
Form the matrix sampling estimator: X̄k =

1
k
∑k

t=1Xi where Xt ∼ X are iid.

Then E‖X̄k − A‖ ≤
√

2v(X) log(m + n)

k +
2R log(m + n)

3k .

Furthermore, for all s ≥ 0: P
[
‖X̄k − A‖ ≥ s

]
≤ (m + n) exp

(
−ks2/2

v(X) + 2Rs/3

)
.

Suppose that we want E‖A− X̄‖ ≤ 2ε. The theorem says to pick

k ≥ max

{
2v(X) log(m + n)

ε2
,
2R log(m + n)

3ε

}
In other words, the number k of samples should be proportional to both v(X) and to the
upper bound R.

The scaling k ∼ 1
ε2

is discouraging, and unavoidable.



Matrix approximation by sampling: Matrix matrix multiplication

Given two matrices B and C, consider the task of evaluating

A = B C.
m× n m× T T × n

Sampling approach:
1. Fix a probability distribution {pt}Tt=1 on the index vector {1,2, . . . ,T}.
2. Draw a subset of k indices J = {t1, t2, . . . , tk} ⊆ {1,2, . . . ,T}.
3. Use Ā =

∑k
i=1

1
pti
B( : , ti)C(ti, : ) to approximate A.

You get an unbiased estimator regardless of the probability distribution. But the
computational profile depends critically how which one you choose. Common choices:

Uniform distribution: Very fast. Not very reliable or accurate.

Sample according to column/row norms: Cost is O(mnk), which is much better than
O(mnT ) when k � T . Better outcomes than uniform, but still not particularly good.

In either case, you need k ∼ 1
ε2

to attain precision ε.



Matrix approximation by sampling: Low rank approximation.

Given an m× n matrix A, we seek a rank-k matrix Ā such that ‖A− Ā‖ is small.

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use as your approximation
Ā = C U R,

m× n m× k k × k k × n
where U is computed from information in A(I, J). (It should be an approximation to
the optimal choice U = C†AR†.)

The computational profile depends crucially on the probability distribution that is used.

Uniform probabilities: Can be very cheap. But in general not reliable.

Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Then quite strong theorems
can be proven on the quality of the approximation. Problem: Computing the probability
distribution is as expensive as computing a partial SVD.



Connection between sampling and random embeddings that “mix” variables

Task: Find a rank k approximation to a given m× n matrix A.

Sampling approach: Draw a subset of k columns Y = A(:, J) where J is drawn at
random. Let our approximation to the matrix be

Ak = YY†A.

As we have seen, this in general does not work very well. But it does work well for the
class of matrices for which uniform sampling is optimal.

We can turn A into such a
matrix! Let U be a matrix drawn from a uniform distribution on the set of n× n unitary
matrices (the “Haar distribution”). Then form

Ã = AU.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a great sample through

Y = Ã(:, J) = AU(:, J).

The n× k “slice” U(:, J) is in a sense an optimal random embedding.

Fact: Using a Gaussian matrix is mathematically equivalent to using U(:, J).

Question: What other choices of random projection might mimic the action of U(:, J)?
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Structured random embeddings

Task: Find a rank k approximation to a given m× n matrix A.

Approach: Find an n× k random embedding R, set Y = AR, and then form Ak = YY†A.

Choices of random embeddings:

• Gaussian (or slice of Haar matrix): Optimal. Leads to O(mnk) overall cost.

• Subsampled randomized Fourier transform (SRFT): Indistinguishable from
Gaussian in practice. Leads to O(mnlog(k)) overall cost. Adversarial counter
examples can be built, so supporting theory is weak.

• Chains of Givens rotations: Similar profile to an SRFT.

• Sparse random projections: Need at least two nonzero entries per row. Works
surprisingly well.

• Additive random projections: You can use a map with only ±1 entries.



Key points on matrix approximation by sampling

• These techniques provide a path forwards for problems where traditional techniques
are simply unaffordable.

Kernel matrices in data analysis form a prime target. These are dense matrices, and
you just cannot form the entire matrix. Talk on Thu.

• Popular topic for theory papers.

• When techniques based on randomized embeddings that systematically mix all
coordinates are affordable, they perform far better. Higher accuracy, and less
variability in the outcome.



Future and ongoing work:

• Accelerate full factorizations of matrices.
Techniques for computing approximations to all singular values.

• Engineering considerations.
In practice, the question of how the matrix is “presented” is important.
Is it stored in RAM? Out of core (on a hard drive)? On a distributed memory system?

• [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is methods with complexity O(Nγ) for γ < 3. Crucially, we seek methods
that retain stability, and have high practical efficiency for realistic problem sizes.
(Cf. Strassen — O(N2.81), Coppersmith-Winograd O(N2.38), etc.) Talk on Thu.

• Use randomised embeddings to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomised projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

Great potential for new discoveries in linear algebra!
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Final remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly
recommended; they compare favorably to existing methods in almost every regard.

• The approximation error is a random variable, but its distribution is tightly
concentrated. Rigorous error bounds that are satisfied with probability 1− η where η
is a user set “failure probability” (e.g. η = 10−10 or 10−20).

• This talk did not mention error estimators, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard (at least for me), but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.



Papers (see also http://users.oden.utexas.edu/∼pgm/main_publications.html):
• P.G. Martinsson, J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms.” Acta

Numerica, 2020. Available now as arxiv:2002.01387
• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions.” SIAM Review, 2011.
• P.G. Martinsson, “Randomized Methods for Matrix Computations.” In the 2018 book The

Mathematics of Data, published by AMS. See also arxiv.org #1607.01649.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.

Tutorials, summer schools, etc:
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.

Software packages:
• Column pivoted QR: https://github.com/flame/hqrrp (much faster than LAPACK!)
• Randomized UTV: https://github.com/flame/randutv
• RSVDPACK: https://github.com/sergeyvoronin (expansions are in progress)
• ID: http://tygert.com/software.html




