
Randomized algorithms for
large scale linear algebra

Per-Gunnar Martinsson
Dept. of Mathematics & Oden Institute for Computational Sciences and Engineering

University of Texas at Austin

Students, postdocs, collaborators: Ke Chen, Yijun Dong, Robert van de Geijn,
Abinand Gopal, Nathan Halko, Nathan Heavner, James Levitt, Gregorio Quintana-Ortí,

Joel Tropp, Sergey Voronin, Bowei Wu, Anna Yesypenko.

Slides: http://users.ices.utexas.edu/∼pgm/main_talks.html

Research support by:



Randomized dimension reduction
Let {a(j)}nj=1 be a set of points in Rm, where m is very large. Consider tasks such as:

• Suppose the points almost live on a linear subspace of (small) dimension k.
Find a basis for the “best” subspace.
• Given k, find the subset of k vectors with maximal spanning volume.
• Suppose the points almost live on a low-dimensional nonlinear manifold.
Find a parameterization of the manifold.
• Given k, find for each vector a(j) its k closest neighbors.
• Partition the points into clusters.

(Note: Some problems have well-defined solutions; some do not. The first can be solved
with algorithms with moderate complexity; some are combinatorially hard.)

Idea: Find an embedding f : Rm→ Rd for d � m that is almost isometric in the sense

‖f (a(i))− f (a(j))‖ ≈ ‖a(i) − a(j)‖, ∀ i, j ∈ {1,2,3, . . . ,n}.

Then solve the problems for the vectors {f (a(j))}nj=1 in Rd.

Lemma [Johnson-Lindenstrauss]: For d ∼ log(n), there exists a well-behaved
embedding f that “approximately” preserves distances.



Randomized dimension reduction
Let {a(j)}nj=1 be a set of points in Rm, where m is very large. Consider tasks such as:

• Suppose the points almost live on a linear subspace of (small) dimension k.
Find a basis for the “best” subspace.
• Given k, find the subset of k vectors with maximal spanning volume.
• Suppose the points almost live on a low-dimensional nonlinear manifold.
Find a parameterization of the manifold.
• Given k, find for each vector a(j) its k closest neighbors.
• Partition the points into clusters.

(Note: Some problems have well-defined solutions; some do not. The first can be solved
with algorithms with moderate complexity; some are combinatorially hard.)

Idea: Find an embedding f : Rm→ Rd for d � m that is almost isometric in the sense

‖f (a(i))− f (a(j))‖ ≈ ‖a(i) − a(j)‖, ∀ i, j ∈ {1,2,3, . . . ,n}.

Then solve the problems for the vectors {f (a(j))}nj=1 in Rd.

Lemma [Johnson-Lindenstrauss]: For d ∼ log(n), there exists a well-behaved
embedding f that “approximately” preserves distances.



To be precise, we have:

Lemma [Johnson-Lindenstrauss]: Let ε be a real number such that ε ∈ (0, 1), let n be
a positive integer, and let d be an integer such that

(1) d ≥ 4
(
ε2

2 −
ε3

3

)−1
log(n).

Then for any set V of n points in Rm, there is a map f : Rm→ Rd such that

(2) (1− ε) ‖u− v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε) ‖u− v‖2, ∀ u, v ∈ V .

You can prove that if you pick d as specified, and draw a Gaussian random matrix R of
size d ×m, then there is a positive likelihood that the map

f (x) = 1√
d
Rx

satisfies the criteria.

Practical problem: You have two bad choices:
(1) Pick a small ε; then you get small distortions, but a huge d since d ∼ 8

ε2
log(n).

(2) Pick ε that is not close to 0; then distortions are large.



Question: Is it possible to build algorithms that combine the powerful dimension
reduction capability of randomized projections with the accuracy and robustness of
classical deterministic methods?

Putative answer: Yes — use a two-stage approach:

(A) Randomized sketching:
In a pre-computation, random projections are used to create low-dimensional
sketches of the high-dimensional data. These sketches are somewhat distorted, but
approximately preserve key properties to very high probability.

(B) Deterministic post-processing:
Once a sketch of the data has been constructed in Stage A, classical deterministic
techniques are used to compute desired quantities to very high accuracy, starting
directly from the original high-dimensional data.



Question: Is it possible to build algorithms that combine the powerful dimension
reduction capability of randomized projections with the accuracy and robustness of
classical deterministic methods?

Putative answer: Yes — use a two-stage approach:

(A) Randomized sketching:
In a pre-computation, random projections are used to create low-dimensional
sketches of the high-dimensional data. These sketches are somewhat distorted, but
approximately preserve key properties to very high probability.

(B) Deterministic post-processing:
Once a sketch of the data has been constructed in Stage A, classical deterministic
techniques are used to compute desired quantities to very high accuracy, starting
directly from the original high-dimensional data.



Example: Suppose you are given n points {a(j)}nj=1 in Rm. The coordinate matrix is

A =
[
a(1) a(2) · · · a(n)

]
∈ Rm×n.

How do you find the k nearest neighbors for every point?

If m is “small” (say m ≤ 10 or so), then you have several options; you can, e.g, sort the
points into a tree based on hierarchically partitioning space (a “kd-tree”).

Problem: Classical techniques of this type get very expensive as m grows.

Simple idea: Use a random map to project onto low-dimensional space. This “sort of”
preserves distances. Execute a fast search there.

Improved idea: The output from a single random projection is unreliable. But, you can
repeat the experiment several times, use these to generate a list of candidates for the
nearest neighbors, and then compute exact distances to find the k closest among the
candidates.

Jones, Osipov, Rokhlin, 2011



Outline of talk

(1) Randomized dimension reduction — introduction.

(2) Computing low rank approximations (“randomized singular value decomposition”).

(3) Solving Ax = b.



Outline of talk

(1) Randomized dimension reduction — introduction.

(2) Computing low rank approximations (“randomized singular value decomposition”).

(3) Solving Ax = b.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
Use randomized projection methods to form an approximate basis for the range of
the matrix.

(B) Deterministic post-processing:
Restrict the matrix to the subspace determined in Stage A, and perform expensive
but accurate computations on the resulting smaller matrix.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ‖A−QQ∗A︸︷︷︸
=B
‖ = ‖A−Q B︸︷︷︸

=ÛDV∗
‖ = ‖A− QÛ︸︷︷︸

=U
DV∗‖ = ‖A− UDV∗‖.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

How does it work? To develop intuition, it helps to first consider the case rank(A) = k.
Then ran(Y) = ran(A) holds with probability 1, so the output is exactly the SVD of A.
In the general case, contributions from the singular modes beyond the first k will shift
ran(Y) away from the desired space spanned by the dominant k left singular vectors.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix R. R = randn(n,k)

A.2 Form the m× k sample matrix Y = AR. Y = A * R

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Distortions in the randomized projections are fine, since all we need is a subspace that
captures “the essential” part of the range. Pollution from unwanted singular modes is
harmless, as long as we capture the dominant ones. By drawing p extra samples (for,
say, p = 5 or p = 10), we make the risk of missing anything important essentially zero.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Analogous schemes exist for computing “structure preserving” factorizations where
a number of the columns/rows are chosen to serve as a basis for the column/row
space. “Interpolative decomposition” / “CUR decomposition” / “skeletonization” / . . .

→ Relaxed solution to “maximal spanning volume” problem on first slide.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AG instead of Y = AG.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Analogous schemes exist for computing “structure preserving” factorizations where
a number of the columns/rows are chosen to serve as a basis for the column/row
space. “Interpolative decomposition” / “CUR decomposition” / “skeletonization” / . . .

→ Relaxed solution to “maximal spanning volume” problem on first slide.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AG instead of Y = AG.



Randomized SVD:

0 10 20 30 40 50 60 70 80 90 100

10
-10

10
-5

10
0

S
p
e
c
tr

a
l 
n
o
rm

 e
rr

o
r

Accuracy in rank k approximation

Exact SVD (optimal)

Basic RSVD (q=0)

RSVD with one step of power iteration (q=1)

RSVD with two steps of power iteration (q=2)

The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix. (Recall that PkA = UkDkV∗k.)
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomized SVD:

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

S
p
e
c
tr

a
l 
n
o
rm

 e
rr

o
r

Accuracy in rank k approximation

Exact SVD (optimal)

Basic RSVD (q=0)

RSVD with one step of power iteration (q=1)

RSVD with two steps of power iteration (q=2)

The plot shows the errors from the randomized range finder. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAG,
and where G is a Gaussian random matrix. (Recall that PkA = UkDkV∗k.)
The matrix A now has singular values that decay slowly.



Randomized SVD: The same plot as before, but now showing 100 instantiations.

0 10 20 30 40 50 60 70 80 90 100

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

S
p

e
c
tr

a
l 
n

o
rm

 e
rr

o
r

Exact SVD (optimal)

Basic RSVD (average of all runs)

RSVD with one step of power iteration (average of all runs)

RSVD with two steps of power iteration (average of all runs)

The darker lines show the mean errors across the 100 experiments.



Randomized SVD: The same plot as before, but now showing 100 instantiations.

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

S
p
e
c
tr

a
l 
n
o
rm

 e
rr

o
r

Exact SVD (optimal)

Basic RSVD (average of all runs)

RSVD with one step of power iteration (average of all runs)

RSVD with two steps of power iteration (average of all runs)

The darker lines show the mean errors across the 100 experiments.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The output of RSVD is a random variable, as it depends on the draw of R. We have
rigorous mathematical results describing the errors of the algorithm in expectation, as
well as the risk of large deviations. Connections to random matrix theory.

Theorem: Let A be an m× n matrix with singular values {σj}
min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let R be a Gaussian random matrix of size n× (k + p) and set Q = orth(AR). Then the
average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The output of RSVD is a random variable, as it depends on the draw of R. We have
rigorous mathematical results describing the errors of the algorithm in expectation, as
well as the risk of large deviations. Connections to random matrix theory.

Theorem: Let A be an m× n matrix with singular values {σj}
min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let R be a Gaussian random matrix of size n× (k + p) and set Q = orth(AR). Then the
average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
We can reduce the flop count from O(mnk) to O(mnlog k) by using a so called “fast
Johnson-Lindenstrauss” transform. A popular choice is the subsampled random Fourier
Transform (SRFT) which can be applied using a variation of the FFT. Many other options:
sub-sampled Hadamard transform, chains of Givens rotations, sparse projections, . . .



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
We can reduce the flop count from O(mnk) to O(mnlog k) by using a so called “fast
Johnson-Lindenstrauss” transform. A popular choice is the subsampled random Fourier
Transform (SRFT) which can be applied using a variation of the FFT. Many other options:
sub-sampled Hadamard transform, chains of Givens rotations, sparse projections, . . .

Example: The SRFT takes the form
R = D F S.

n× k n× n n× n n× k

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.
• F is the discrete Fourier transform, Fpq =

1√
n
e−2πi(p−1)(q−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1 in
each column. (So the action of S is to draw k columns at random from DF.)



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
We can reduce the flop count from O(mnk) to O(mnlog k) by using a so called “fast
Johnson-Lindenstrauss” transform. A popular choice is the subsampled random Fourier
Transform (SRFT) which can be applied using a variation of the FFT. Many other options:
sub-sampled Hadamard transform, chains of Givens rotations, sparse projections, . . .

• The algorithm must be modified a bit beside replacing the random matrix.
• The SRFT leads to large speed-ups for moderate matrix sizes.
For instance, for m = n = 4000, and k ∼ 102, we observe about ×5 speedup.
• In practice, accuracy is similar to what you get from Gaussian random matrices.
• Theory is still quite weak.

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).
Halko, Martinsson, Tropp (2011). Much subsequent work . . .



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The perhaps most important feature of randomized algorithms in linear algebra is that
they are very communication efficient. This makes them particularly competitive in
strongly communication constrained environments (huge matrices stored out-of-core,
distributed memory parallel computers, GPUs).

There exist single-pass versions of the RSVD that work even under the constraint that
each matrix element can be viewed only once. (“Streaming algorithms.”)



Outline of talk

(1) Randomized dimension reduction — introduction.

(2) Computing low rank approximations (“randomized singular value decomposition”).

(3) Solving Ax = b where A ∈ Rn×n. (Focus is on the case where A is dense.)

• O(n3) methods for general coefficient matrices.

• Faster than O(n3) methods for general coefficient matrices?

• Linear complexity methods for “special” coefficient matrices.

Observation: When A is well-conditioned, iterative methods converge rapidly.
Worst case complexity for solving Ax = b to precision ε is then O(n2 log(1/ε)).
The challenge concerns matrices that are ill-conditioned.
(Or, to be more precise, whose spectra are not clustered.)



Outline of talk

(1) Randomized dimension reduction — introduction.

(2) Computing low rank approximations (“randomized singular value decomposition”).

(3) Solving Ax = b where A ∈ Rn×n. (Focus is on the case where A is dense.)

• O(n3) methods for general coefficient matrices.

• Faster than O(n3) methods for general coefficient matrices?

• Linear complexity methods for “special” coefficient matrices.

Observation: When A is well-conditioned, iterative methods converge rapidly.
Worst case complexity for solving Ax = b to precision ε is then O(n2 log(1/ε)).
The challenge concerns matrices that are ill-conditioned.
(Or, to be more precise, whose spectra are not clustered.)



Outline of talk

(1) Randomized dimension reduction — introduction.

(2) Computing low rank approximations (“randomized singular value decomposition”).

(3) Solving Ax = b where A ∈ Rn×n. (Focus is on the case where A is dense.)

• O(n3) methods for general coefficient matrices.

• Faster than O(n3) methods for general coefficient matrices?

• Linear complexity methods for “special” coefficient matrices.

Observation: When A is well-conditioned, iterative methods converge rapidly.
Worst case complexity for solving Ax = b to precision ε is then O(n2 log(1/ε)).
The challenge concerns matrices that are ill-conditioned.
(Or, to be more precise, whose spectra are not clustered.)



Randomized methods for solving Ax = b: O(n3) complexity methods

Suppose A is a dense ill-conditioned matrix of moderate size. In such a case, it is
natural to look to O(n3) methods that compute a full factorization of the matrix.

Standard options (all with complexity O(n3)) include:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD

Not always stable. Always stable.
Fast. Slow.



Randomized methods for solving Ax = b: O(n3) complexity methods

Suppose A is a dense ill-conditioned matrix of moderate size. In such a case, it is
natural to look to O(n3) methods that compute a full factorization of the matrix.

Standard options (all with complexity O(n3)) include:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not always stable. Always stable.
Fast. Slow.

The “robust” factorizations to the right all depend on algorithms that proceed through a
sequence of rank-one updates to the matrix. This makes them slow when executed on
modern hardware (even on a single core).



Randomized methods for solving Ax = b: O(n3) complexity methods

Suppose A is a dense ill-conditioned matrix of moderate size. In such a case, it is
natural to look to O(n3) methods that compute a full factorization of the matrix.

Standard options (all with complexity O(n3)) include:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not always stable. Always stable.
Fast. Slow.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix

CPQR

QR



Randomized methods for solving Ax = b: O(n3) complexity methods

The culprit preventing us from attaining high performance is pivoting since it relies on a
sequence of rank-one updates.

Randomization to the rescue! D. Stott Parker (1995) proposed an elegant solution:

(1) Randomly mix the columns by right multiplying A by a random unitary matrix V:

Arand = AV.

(2) Perform unpivoted QR on the new matrix

Arand = UR

The resulting factorization
A = ArandV∗ = URV∗

is provably “rank-revealing” and leads to stable linear solves.

For computational efficiency, Parker introduced a random structured matrix (a bit ahead
of the times) called a “random butterfly transform”.

Further refinements — Demmel, Dumitriu, Holtz, Grigori, Dongarra, etc.



Randomized methods for solving Ax = b: O(n3) complexity methods

The culprit preventing us from attaining high performance is pivoting since it relies on a
sequence of rank-one updates.

Randomization to the rescue! D. Stott Parker (1995) proposed an elegant solution:

(1) Randomly mix the columns by right multiplying A by a random unitary matrix V:

Arand = AV.

(2) Perform unpivoted QR on the new matrix

Arand = UR

The resulting factorization
A = ArandV∗ = URV∗

is provably “rank-revealing” and leads to stable linear solves.

For computational efficiency, Parker introduced a random structured matrix (a bit ahead
of the times) called a “random butterfly transform”.

Further refinements — Demmel, Dumitriu, Holtz, Grigori, Dongarra, etc.



Randomized methods for solving Ax = b: O(n3) complexity methods

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
AA∗

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.



Randomized methods for solving Ax = b: O(n3) complexity methods

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
AA∗

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

0 100 200 300 400
10

-10

10
-5

10
0

Exact and estimated singular values

singular values

CPQR

randURV q=0

randURV q=1

randURV q=2

100 200 300 400
10

-4

10
-3

10
-2

10
-1

Exact and estimated singular values

singular values

CPQR

randURV q=0

randURV q=1

randURV q=2



Randomized methods for solving Ax = b: O(n3) complexity methods

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
AA∗

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix

CPQR

randURV q=2

randURV q=1

randURV q=0

QR



Randomized methods for solving Ax = b: O(n3) complexity methods

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
AA∗

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
-1

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix - now with GPU numbers

CPQR

randURV q=2

randURV q=1

randURV q=0

QR

randURV q=2 (on gpu)

randURV q=1 (on gpu)

randURV q=0 (on gpu)

QR (on gpu)



Randomized methods for solving Ax = b: O(n3) complexity methods

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
AA∗

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.
The method is extremely simple to code:

G = randn(n);

for j = 1:q

G = A*(A’*G);

end

[V,∼] = qr(G);

[U,R] = qr(A*V);



Randomized methods for solving Ax = b: O(n3) complexity methods

Given a dense n× n matrix A, compute a column pivoted QR factorization

A P ≈ Q R,
n× n n× n n× n n× n

where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

Perfect for randomized sampling! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.



Randomized methods for solving Ax = b: O(n3) complexity methods
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b×m and form

Y = G A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n



Randomized methods for solving Ax = b: O(n3) complexity methods

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/



Randomized methods for solving Ax = b: O(n3) complexity methods

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.



0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “Fast Decay” of size 4000× 4000. The black
lines mark the theoretically minimal errors. The block size was b = 100 and the green

vertical lines mark block limits.



0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “BIE” of size 4000× 4000. The black lines
mark the theoretically minimal errors. The block size was b = 100 and the green vertical

lines mark block limits.



0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

Rank-k approximation errors for k ≤ 300 for the matrix “Gap” of size 4000× 4000. The
black lines mark the theoretically minimal errors. The block size was b = 100 and the

green vertical lines mark block limits.



500 1000 1500 2000 2500 3000 3500 4000

10
-4

10
-3

10
-2

10
-1

Fast decay

500 1000 1500 2000 2500 3000 3500 4000
10

-2

10
-1

S-shaped decay

0 50 100 150 200 250 300

k

10
0

D
ia

g
o

n
a

l 
e

n
tr

ie
s

Gap

Singular values

CPQR

randUTV: q=2

500 1000 1500 2000 2500 3000 3500 4000

k

10
-3

10
-2

10
-1

Single layer BIE

The diagonal entries of the T-matrix in the UTV decom-
position (red) provide excellent approximations to the true
singular values (black).



Randomized methods for solving Ax = b: O(n3) complexity methods

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).



Randomized methods for solving Ax = b: O(n3) complexity methods

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).



Randomized methods for solving Ax = b: Strassen-type methods

The essential feature of the randomized methods described is that they enable us to
expend almost all flops on the matrix-matrix computation, which is much faster per flop
than other matrix operations.

Alternatively, use asymptotically faster methods for the matrix-matrix multiplication:

• Strassen: O(n2.83). Stable. Reasonable breakeven point.

• Coppersmith-Winograd etc.: O(n2.37). Unstable. Unreasonable breakeven point.

Observation:

Randomization allows you to use “fast” matrix-matrix multiplication algorithms to
compute rank-revealing factorizations in a numerically stable way. In particular:

fast+stable matrix-matrix multiplication ⇒ fast+stable linear system solve

Original work: Demmel, Dumitriu, and Holtz; Num. Math., 108, 2007.



Randomized methods for solving Ax = b: Randomized pre-conditioning

Let us consider
Ax = b

for A ∈ Rm×n with m� n. Complexity of standard solvers: O(mn2)

Method proposed by Rokhlin and Tygert (PNAS 2008): Form a “sketched equation”

X∗Ax = X∗b

where X is an m× ` SRFT. Compute QR factorization of the new coefficient matrix

X∗A = QRP∗.

Form a preconditioner
M = RP∗.

Solve the preconditioned linear system(
AM−1

) (
Mx
)︸ ︷︷ ︸

=:y
= b

for the new unknown y. Complexity of randomized solver: O
(
(log(n) + log(1/ε))mn+ n3

)
.

Later improvements include BLENDENPIK by Avron, Maymounkov, Toledo (2010).



Randomized methods for solving Ax = b: Randomized pre-conditioning

Let us consider
Ax = b

for A ∈ Rm×n with m� n. Complexity of standard solvers: O(mn2)

Method proposed by Rokhlin and Tygert (PNAS 2008): Form a “sketched equation”

X∗Ax = X∗b

where X is an m× ` SRFT. Compute QR factorization of the new coefficient matrix

X∗A = QRP∗.

Form a preconditioner
M = RP∗.

Solve the preconditioned linear system(
AM−1

) (
Mx
)︸ ︷︷ ︸

=:y
= b

for the new unknown y. Complexity of randomized solver: O
(
(log(n) + log(1/ε))mn+ n3

)
.

Later improvements include BLENDENPIK by Avron, Maymounkov, Toledo (2010).



Randomized methods for solving Ax = b: Randomized pre-conditioning

Let us consider
Ax = b

for A ∈ Rm×n with m� n. Complexity of standard solvers: O(mn2)

Method proposed by Rokhlin and Tygert (PNAS 2008): Form a “sketched equation”

X∗Ax = X∗b

where X is an m× ` SRFT. Compute QR factorization of the new coefficient matrix

X∗A = QRP∗.

Form a preconditioner
M = RP∗.

Solve the preconditioned linear system(
AM−1

) (
Mx
)︸ ︷︷ ︸

=:y
= b

for the new unknown y. Complexity of randomized solver: O
(
(log(n) + log(1/ε))mn+ n3

)
.

Later improvements include BLENDENPIK by Avron, Maymounkov, Toledo (2010).



Randomized methods for solving Ax = b: Randomized Kaczmarz

The classical Kaczmarz algorithm:
With A ∈ Rm×n, we seek to solve Ax = b through an iterative procedure.
Given an approximate solution xold, compute an improved solution xnew as follows:
(1) Pick a row index i ∈ {1,2, . . . ,m}.
(2) Require that xnew is picked so that row i of the system is satisfied exactly.
(3) Within the hyperplane defined by (2), pick xnew as the point closest to xold.

The resulting formula is xnew = xold +
b(i)−

(
A(i, :) · xold

)
‖A(i, :)‖2

A(i, :)∗.

Question: How do you pick the row index i in step (1)?



Randomized methods for solving Ax = b: Randomized Kaczmarz

The classical Kaczmarz algorithm:
With A ∈ Rm×n, we seek to solve Ax = b through an iterative procedure.
Given an approximate solution xold, compute an improved solution xnew as follows:
(1) Pick a row index i ∈ {1,2, . . . ,m}.
(2) Require that xnew is picked so that row i of the system is satisfied exactly.
(3) Within the hyperplane defined by (2), pick xnew as the point closest to xold.

The resulting formula is xnew = xold +
b(i)−

(
A(i, :) · xold

)
‖A(i, :)‖2

A(i, :)∗.

Question: How do you pick the row index i in step (1)?



Randomized methods for solving Ax = b: Randomized Kaczmarz

The classical Kaczmarz algorithm:
With A ∈ Rm×n, we seek to solve Ax = b through an iterative procedure.
Given an approximate solution xold, compute an improved solution xnew as follows:
(1) Pick a row index i ∈ {1,2, . . . ,m}.
(2) Require that xnew is picked so that row i of the system is satisfied exactly.
(3) Within the hyperplane defined by (2), pick xnew as the point closest to xold.

The resulting formula is xnew = xold +
b(i)−

(
A(i, :) · xold

)
‖A(i, :)‖2

A(i, :)∗.

Question: How do you pick the row index i in step (1)?

Strohmer & Vershynin (2009): Draw i with probability proportional to ‖A(i, :)‖.

Theorem: Let x? denote the exact solution to Ax = b, and let xk denote the k’th iterate
of the S&V randomized Kaczmarz method. Then

E
[
‖xk − x?‖

]
≤
(
1− 1

κ(A)2

)k
‖x0 − x?‖,

where κ(A) is the “scaled” condition number κ(A) = ‖A‖F ‖A−1‖2.



Randomized methods for solving Ax = b: Randomized Kaczmarz

The classical Kaczmarz algorithm:
With A ∈ Rm×n, we seek to solve Ax = b through an iterative procedure.
Given an approximate solution xold, compute an improved solution xnew as follows:
(1) Pick a row index i ∈ {1,2, . . . ,m}.
(2) Require that xnew is picked so that row i of the system is satisfied exactly.
(3) Within the hyperplane defined by (2), pick xnew as the point closest to xold.

The resulting formula is xnew = xold +
b(i)−

(
A(i, :) · xold

)
‖A(i, :)‖2

A(i, :)∗.

Question: How do you pick the row index i in step (1)?

Gower & Richtarik (2015): Draw an m× ` random map X

xnew = argmin{‖y− xold‖ : y satisfies X∗Ay = X∗b}.

Leads to stronger analysis, and a much richer set of dimension reducing maps.
In particular, it improves practical performance since it enables blocking.

Note: An ideal weight for a group of rows would be their spanning volume . . .



Randomized methods for solving Ax = b: Randomized Newton-Schulz

Classical Newton-Schulz for computing A−1: With A ∈ Rn×n, we build B = A−1

through an iterative scheme. Given an approximation Bold, the improved one is

Bnew = Bold − ABoldA.

Converges rapidly from a good initial guess. But basin of convergence is not large.

Gower & Richtarik (2019): Find B = A−1 by solving the equation

(3) A∗ = A∗AB.

Equation (3) is solved through sketching + iteration: Draw an m× ` random map X

Bnew = argmin{‖M− Bold‖ : M satisfies X∗A∗ = X∗A∗AM}.

Equivalent to iteration

Bnew = Bold − A∗AX
(
X∗A∗AA∗AX

)†X∗A∗(ABold − I
)
.

Detailed error analysis exists. For instance:
The expectation of the error converges exponentially fast, regardless of starting point.



Randomized iterative solvers is a very active area: J. Weare & L.-H. Lim article in
SIAM Review (2017); recent and current work by H. Avron, P. Drineas, M. Mahoney,
D. Needell, V. Rokhlin, S. Toledo, J. Tropp, R. Ward, and many more.



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
• A = A∗ ∈ Rn×n.
• A(i, j) ≤ 0 when i 6= j.
• A(i, i) = −

∑
j 6=i A(i, j)

We assume that the underlying graph is connected, in which case A has a 1-dimensional
nullspace. We enforce that

∑
i x(i) = 0 and

∑
i b(i) = 0 in everything that follows.



α + β + γ −α −β − γ 0 0
−α α + δ + ζ −δ 0 0
−β − γ −δ β + γ + δ −ζ 0

0 0 −ζ ζ + η −η
0 0 0 −η η


(a) A graph with n = 5 vertices, and m =

6 edges. The conductivities of each edge
is marked with a Greek letter.

(b) The 5×5 graph Laplacian matrix associated
with the graph shown in (a).



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
Standard solution techniques:

• Multigrid: Works great for certain classes of matrices.

• Cholesky: Compute a decomposition

A = CC∗,

with C lower triangular. Always works. Numerically stable (when pivoting is used).
Can be expensive since the factor C typically has far more non-zero entries than A.

• Incomplete Cholesky: Compute an approximate factorization

A ≈ CC∗,

where C is constrained to be as sparse as A (typically the same pattern). Then use
CG to solve a system with the preconditioned coefficient matrix C−1AC−∗. Can work
very well, hard to analyze.



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
Randomized solution techniques:
• Spielman-Teng (2004): Complexity O(mpoly(log n) log(1/ε)).
Relies on graph theoretical constructs (low-stretch trees, graph sparsification,
explicit expander graphs, . . . ). Important theoretical results.

• Kyng-Lee-Sachdeva-Spielman (2016): O(m (log n)2).
Relies on local sampling only. Much closer to a realistic algorithm.

The idea is to build an approximate sparse Cholesky factor that is accurate with high
probability. For instance, the 2016 paper proposes to build factors for which

1
2A 4 CC∗ 4 3

2A.

When this bound holds, CG converges as O(γn) with γ =
√
3−1√
3+1
≈ 0.27.

Sparsity is maintained by performing inexact rank-1 updates in the Cholesky procedure.
As a group of edges in the graph is removed, a set of randomly drawn new edges are
added, in a way that is correct in expectation.



Randomized approximation of “rank-structured” matrices

Many matrices in applications have off-diagonal blocks that are of low rank:
• Matrices approximating integral equations associated with elliptic PDEs.
(Essentially, discretized Calderòn-Zygmund operators.)
• Scattering matrices in acoustic and electro-magnetic scattering.
• Inverses of (sparse) matrices arising upon FEM discretization of elliptic PDEs.
• Buzzwords: H-matrices, HSS-matrices, HBS matrices, . . .

Using randomized algorithms, we have developed O(N)-complexity methods for
performing algebraic operations on dense matrices of this type. This leads to:
• Accelerated direct solvers for elliptic PDEs.
• O(N) complexity in many situations.

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.



Existing randomized compression schemes for rank-structured matrices:

Let A be a rank-structured matrix, for which we can rapidly evaluate x 7→ Ax and x 7→ A∗x.

Case 1: Suppose that in addition to matvec, we can also evaluate individual entries of A.
Then an HBS (a.k.a. HSS) representation can be computed in O(N) operations.
Very computationally efficient in practice — requires only O(k) matvecs.

• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, etc.

Case 2: If all we have is the matvec, then we can still compute a rank-structured
representation of A using so called “peeling” algorithms. The price we have to pay is
that we now need O(k× logN) matvecs involving A and A∗.

The method is still fast in many situations, and does save messy coding work. For
instance, without this black-box method, implementing the matrix-matrix multiplication,
or changing the partition tree, are quite hard to implement efficiently.

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP 2011.

• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.



“Hierarchically Off-Diagonal Low Rank (HODLR)” matrices
This is a very simple structured matrix format.
Informally, it means that you tessellate a matrix “like this”:

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

Then A is HODLR if each off-diagonal block (in blue in the figure) has “low rank”.

Note: A.k.a. “S-matrix” (“S” for simple), H-matrix with weak permissibility condition, etc.



To more formally define the HODLR format, we need to introduce a tree structure on the
index set I = [1, 2, 3, . . . , N].

Let A be an N × N matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

For nodes σ and τ on the same level, set Aσ,τ = A(Iσ, Iτ ).



Formal definition of HODLR format

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

For every sibling pair {α, β} set

Aα,β = A(Iα, Iβ).

Fix a bound k on the rank, and a tol-
erance ε. We then require that each
off-diagonal block (in blue in the figure)
have ε-rank at most k. Define factors

Aα,β = Uα Ãα,β V∗β.
nα × nβ nα × k k × k k × nβ

The cost of performing a matvec is then

2× N
2 k + 4× N

4 k + 8× N
8 k + · · ·︸ ︷︷ ︸

logN terms

∼ N log(N) k.



Formal definition of HODLR format

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

For every sibling pair {α, β} set

Aα,β = A(Iα, Iβ).

Fix a bound k on the rank, and a tol-
erance ε. We then require that each
off-diagonal block (in blue in the figure)
have ε-rank at most k. Define factors

Aα,β = Uα Ãα,β V∗β.
nα × nβ nα × k k × k k × nβ

The cost of performing a matvec is then

2× N
2 k + 4× N

4 k + 8× N
8 k + · · ·︸ ︷︷ ︸

logN terms

∼ N log(N) k.



The “Peeling algorithm” — level 0

=

Y
2

Y
3

R
20

R
3 0

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

At level 0, we seek to factorize the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Now: Y2 = A2,3R3 and Y3 = A3,2R2.
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = qr(Yτ ).

How determine Ã2,3, Ã3,2, V2 and V3?



The “Peeling algorithm” — level 0

=

Y
2

Y
3

R
20

R
3 0

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

At level 0, we seek to factorize the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Now: Y2 = A2,3R3 and Y3 = A3,2R2.
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = qr(Yτ ).
How determine Ã2,3, Ã3,2, V2 and V3?



The “Peeling algorithm” — level 0

=

Z
2

Z
3

U
20

U
3 0

A
3,2

*

A
2,3

*

A
5,4

*

A
4,5

*

A
7,6

*

A
6,7

*

A
9,8

*

A
8,9

*

A
11,10

*

A
10,11

*

A
13,12

*

A
12,13

*

A
15,14

*

A
14,15

*

A
8,8

*

A
9,9

*

A
10,10

*

A
11,11

*

A
12,12

*

A
13,13

*

A
14,14

*

A
15,15

*

We know U2 and U3, and seek to determine Ã2,3, Ã3,2, V2 and V3.
Put U2 and U3 into the probing matrix.
Then: Z2 = A∗3,2U3 = V2A∗3,2 and Z3 = A∗2,3U2 = V3A∗2,3.
We then get [V2, Ã

∗
3,2] = qr(Z2) and [V3, Ã

∗
2,3] = qr(Z3).



The “Peeling algorithm” — level 1

=

Y
4

Y
5

R
40

R
5 0

Y
6

Y
7

R
60

R
7 0

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

At level 1, we seek to determine the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Subtract the contributions from the known gray blocks to get new sample matrices Zτ .
The columns of Zτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = orth(Yτ , ε).



The “Peeling algorithm” — level 1

=

Z
4

Z
5

U
40

U
5 0

Z
6

Z
7

U
60

U
7 0

A
3,2

*

A
2,3

*

A
5,4

*

A
4,5

*

A
7,6

*

A
6,7

*

A
9,8

*

A
8,9

*

A
11,10

*

A
10,11

*

A
13,12

*

A
12,13

*

A
15,14

*

A
14,15

*

A
8,8

*

A
9,9

*

A
10,10

*

A
11,11

*

A
12,12

*

A
13,13

*

A
14,14

*

A
15,15

*

Put the matrices {Uτ}τ is on level 1 into the probing matrix.
Then, e.g., Z4 = A∗5,4U5 = V4A∗5,4.
We get, e.g., [V4, Ã

∗
5,4] = qr(Z4,0).



The “Peeling algorithm” — level 2

=

Y
8

Y
9

R
80

R
9 0

Y
10

Y
11

R
100

R
11 0

Y
12

Y
13

R
120

R
13 0

Y
14

Y
15

R
140

R
15 0

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

At level 2, we seek to determine the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Subtract the contributions from the known gray blocks to get new sample matrices Zτ .
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = orth(Yτ , ε).
By sampling A∗, we determine Vτ and Ãτ,σ.



The “Peeling algorithm” — leaves

=

Y
8

Y
9

Y
10

Y
11

Y
12

Y
13

Y
14

Y
15

A
2,3

A
3,2

A
4,5

A
5,4

A
6,7

A
7,6

A
8,9

A
9,8

A
10,11

A
11,10

A
12,13

A
13,12

A
14,15

A
15,14

A
8,8

A
9,9

A
10,10

A
11,11

A
12,12

A
13,13

A
14,14

A
15,15

Once you reach the finest level, simply use small identity matrices as probing matrices.

The diagonal blocks Dτ are obtained by subtracting contributions from the off-diagonal
blocks from Yτ .



Build compressed representations of all off-diagonal blocks.
loop over levels ` = 0 : (L− 1)

Build the random matrices R1 and R2.
R1 = zeros(n, r)
R2 = zeros(n, r)
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
R1(Iα, :) = randn(nα, r)
R2(Iβ, :) = randn(nβ, r)

end loop

Apply A to build the samples for the
incoming basis matrices.
Y1 = AR2 − A(`)R2

Y2 = AR1 − A(`)R1

Orthonormalize the sample matrices to build
the incoming basis matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Uα = qr(Y1(Iα, :)).
Uβ = qr(Y2(Iβ, :)).
R1(Iα, :) = Uα

R2(Iβ, :) = Uβ

end loop

Apply A∗ to build the samples for the outgoing basis matrices.
Z1 = A∗R2 −

(
A(`)
)∗R2

Z2 = A∗R1 −
(
A(`)
)∗R1

Take local SVDs to build incoming basis matrices and
sibling interaction matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
[Vα,Bβα, Ûβ] = svd(Z1(Iα, :), ε).
[Vβ,Bαβ, V̂α] = svd(Z2(Iβ, :), ε).
Uβ ← UβÛβ.
Uα ← UαÛα.

end loop
end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
R = zeros(N,nmax)

loop over leaf boxes τ
R(Iτ ,1 : nτ) = eye(nτ).

end loop
Y = AR− A(L)R
loop over leaf boxes τ

Dτ = Y(Iτ ,1 : nτ).
end loop

The matrix A(`) consists of all blocks on level ` or coarser.



Key points on “peeling” algorithm for compressing rank-structured matrices:
• Entirely black-box — very easy to use.
• Complexity O(N logN).
• “Reasonable” practical speed.

Question: Is O(N) complexity (without log factors) attainable?

Answer: Yes, but currently with many caveats. Most importantly, current methods
require the ability to evaluate a small number of individual entries of the matrix.

Research objectives:

• Accelerate randomized compression algorithms for rank-structured matrices.

• Attempt to build O(N) methods that do not require individual entries.
This appears to be non-trivial . . .

• Improve performance for non-uniform trees.

• Improve accuracy by incorporating power iteration, if needed.

• Eliminate tuning parameters.



Key points on “peeling” algorithm for compressing rank-structured matrices:
• Entirely black-box — very easy to use.
• Complexity O(N logN).
• “Reasonable” practical speed.

Question: Is O(N) complexity (without log factors) attainable?

Answer: Yes, but currently with many caveats. Most importantly, current methods
require the ability to evaluate a small number of individual entries of the matrix.

Research objectives:

• Accelerate randomized compression algorithms for rank-structured matrices.

• Attempt to build O(N) methods that do not require individual entries.
This appears to be non-trivial . . .

• Improve performance for non-uniform trees.

• Improve accuracy by incorporating power iteration, if needed.

• Eliminate tuning parameters.



Key points on “peeling” algorithm for compressing rank-structured matrices:
• Entirely black-box — very easy to use.
• Complexity O(N logN).
• “Reasonable” practical speed.

Question: Is O(N) complexity (without log factors) attainable?

Answer: Yes, but currently with many caveats. Most importantly, current methods
require the ability to evaluate a small number of individual entries of the matrix.

Research objectives:

• Accelerate randomized compression algorithms for rank-structured matrices.

• Attempt to build O(N) methods that do not require individual entries.
This appears to be non-trivial . . .

• Improve performance for non-uniform trees.

• Improve accuracy by incorporating power iteration, if needed.

• Eliminate tuning parameters.



Key points:

• Randomized low-rank approximation (“randomized SVD”).
• Superior performance in many regards, in particular for very large problems.
• For a fixed number of matrix-vector multiplies, Krylov methods are more accurate.

• Essential benefit of randomization in linear algebra: Reduces communication.
• Enables processing of huge data sets. (Out-of-core / streaming / cloud computing / . . . )
• Very fast on GPUs, distributed memory machines, etc.

• Recommended approach: Sketch first, then return to original data.
(As opposed to: Sketch, then solve using only the sketched data.)

• Even though the algorithms are randomized, the output can be trusted.
The probability of failure is extremely low (say 10−10).
In most situations, you can explicitly compute the residual error.
Cf. Monte Carlo vs. Las Vegas methods.



Future and ongoing work: Postdoc position available!

1. Accelerate full factorizations of matrices.
New randomized column pivoted QR algorithm is much faster than LAPACK.
New “UTV” factorization method is almost as accurate as SVD and much faster.

2. Randomized algorithms for structured matrices.
Use randomization to accelerate key numerical solvers for PDEs, for simulating
Gaussian processes, etc.

3. [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is methods with complexity O(nγ) for γ < 3. Crucially, we seek methods
that retain stability, and have high practical efficiency for realistic problem sizes.

4. Use randomized projections to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomized projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

Great potential for new discoveries in linear algebra!



Future and ongoing work: Postdoc position available!

1. Accelerate full factorizations of matrices.
New randomized column pivoted QR algorithm is much faster than LAPACK.
New “UTV” factorization method is almost as accurate as SVD and much faster.

2. Randomized algorithms for structured matrices.
Use randomization to accelerate key numerical solvers for PDEs, for simulating
Gaussian processes, etc.

3. [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is methods with complexity O(nγ) for γ < 3. Crucially, we seek methods
that retain stability, and have high practical efficiency for realistic problem sizes.

4. Use randomized projections to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomized projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

Great potential for new discoveries in linear algebra!



Papers (see also http://users.ices.utexas.edu/∼pgm/main_publications.html):
• P.G. Martinsson, J. Tropp, “Randomized algorithms for linear algebra.” Acta Numerica, 2020.
• P.G. Martinsson, “Fast Direct Solvers for Elliptic PDEs.” SIAM/CBMS, Dec. 2019.
• P.G. Martinsson, “Randomized Methods for Matrix Computations.” In the 2018 book The

Mathematics of Data, published by AMS. See also arxiv.org #1607.01649.
• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions.” SIAM Review, 2011.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.

Tutorials, summer schools, etc:
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software packages:
• Column pivoted QR: https://github.com/flame/hqrrp (much faster than LAPACK!)
• Randomized UTV: https://github.com/flame/randutv
• RSVDPACK: https://github.com/sergeyvoronin
• ID: http://tygert.com/software.html


